

Advanced database management systems

Course notes

István Vassányi, PhD

vassanyi at almos dot uni-pannon.hu

University of Pannonia, Department of Electrical Engineering and Information Systems

Veszprém, Hungary

June 2018

© Copyright University of Pannonia. All rights reserved

A felsőfokú oktatás minőségének és

hozzáférhetőségének együttes javítása a
Pannon Egyetemen

EFOP-3.4.3-16-2016-00009

CONTENTS

1. Review of core database skills ...4

Modeling ... 4

Querying .. 7

Programming .. 8

Cursors .. 12

Transaction management ... 12

2. Loose coupling based on triggers and jobs ... 17

Problem scenario .. 17

Solution ... 17

A short overview on triggers ... 18

Cases when the use of a DML trigger is recommended ... 19

Tight coupling .. 20

The loosely coupled system .. 20

The log table and the trigger... 20

The stored procedure for processing new orders .. 21

The stored procedure for processing the event log ... 22

The scheduled job that calls the event log processor ... 23

3. Replication and log shipping ... 24

Replication concepts and architecture ... 24

PRACTICE: snapshot replication .. 25

Creating the publication ... 26

Checking the publication... 29

Creating a push subscription ... 30

Checking the subscription ... 32

PRACTICE: transactional replication ... 32

Replication between separate servers ... 35

Configuring the distributor ... 35

Configuring the publisher ... 37

Adding the publication and the subscription .. 38

Merge replication .. 38

The publication ... 39

The subscription .. 42

Log shipping .. 46

4. Database administration and maintenance ... 52

Database files .. 52

Database performance ... 52

Alerts ... 52

Setting up database mail... 53

Enabling the mail profile in SQL server agent ... 54

Creating an operator ... 55

Adding the alert .. 55

Backups ... 57

Maintenance plans .. 57

5. APPENDIX: SQL examples for self-learning ... 58

1. Review of core database skills

Welcome. In most of the demos in this course, we’ll use the Northwind sample relational database1 and
the SQL server 2016 technology from Microsoft. The Northwind database was designed to support a small
company trading with consumables. It includes an inventory and tables for the administration of the
orders. The table and filed names should be self-explanatory.

Modeling

 First we review the core relational modeling concepts for On-Line Transaction Processing (OLTP)
databases, demonstrated on the Northwind database: Customers, Employees, Orders,
OrderDetails, Products, Categories, Territories tables.

o We start with a conceptual model (domain model or entity relationship model) that we
derive from the use cases and our aim is to develop the logical database model

1 You can download the database dump from https://www.microsoft.com/en-us/download/details.aspx?id=23654
In this course, we modified the original database by adding a foreign key territory_id to the Customers table and an
extra field Salary to the Employees table, for the sake of some exercises.

https://www.microsoft.com/en-us/download/details.aspx?id=23654

o The relational model is the most widely used paradigm to support traditional business
processes due to its simplicity

o Entities, attributes, instances, identifiers are implemented in the relational model as
tables, fields, records, primary keys. Keys may be composed from multiple fields

o Only one value in any single cell—no redundancy and no inconsistency is allowed in third
normal form (3NF). Characteristics of 3NF:

 Each table has a primary key that may be composed of multiple fields, and on
which all the other fields functionally depend;

 In case of composite (multi-field) keys, all of the non-key fields depend on the
whole key, and not just a part of it i.e. there are no partial dependencies;

 The non-key fields depend on no other field(s) except the key, i.e. there are no
transitive dependencies within a table.

o All tables are connected

o 1:N (one-to-many) relationships are implemented with foreign keys (e.g.
Orders.EmployeeID)

o N:M (many-to-many) relationships are implemented with linking tables (e.g.
EmployeeTerritories)

o 1:1 (one-to-one) relationship is not exemplified in the Northwind database

 A normal 1:1 relationship could be a CompanyCar table if an employee may have
at most one company car allocated

 A specialization type 1:1 relationship could be an ExciseProducts table for excise
goods with extra fields ExciseDutyAmount, RegBarCode etc.

o Linking tables usually have composite keys. We generate keys only if an external
reference is needed.

o The relationship structure of an OLTP schema reveals the key transactions of the
application that uses the database.

 Snowflake or snowball structure, each snowflake supporting one or more
transactions.

 Base tables are at the leaves (e.g. Region, Customers, Categories)

 Transactional tables or event-tables are in the middle (Order Details,
EmployeeTerritories). These tables form the ‘beating heart’ of the information
system.

Feature Base Tables Transactional Tables

Position in the
schema

Leaf. Does not reference any
other table

Centre. References directly or
indirectly all tables

Size Small Large

Speed of change Slow. Cold backups may be
sufficient.

Fast. Hot backups are needed.

 Connection between a properly designed Graphical User Interface (GUI) and the relational
schema

o Hidden or read-only label: key

o Editable text boxes: attributes (fields) that depend on the key

o Dropdown/combo lists: references to base tables

o Checkbox with an additional text box: specialization

o Dropdown tables or lists: 1:N relationships

 Further reading on modeling:

o https://www.safaribooksonline.com/library/view/relational-theory-
for/9781449365431/ch01.html

o http://www.blackwasp.co.uk/RelationalDBConcepts.aspx

o https://www.tutorialspoint.com/ms_sql_server/index.htm

 PRACTICE: create and extend the sample database

o Install MS SQL Server 2016 or later, start the database service and connect to it using MS
Management Studio.

o Run the northwind database create dump and review the tables with the GUI tools

o Draw a logical database model diagram similar to the diagram above

o Add the fields Employees.Salary and Customers.territory_id

o Design and implement an extension to the database to model the following scenario.
We send our employees to regular training sessions where they learn various skills.
Training sessions are organized by contracted third party companies. We have a list of
required skills (like “grade B business presentation” or “accounting basics” etc.) for each
employment category (like “sales manager”, see Employees.Title) that they must learn
within 10 years after the beginning of their employment. For each training, we store the
duration (beginning and ending date), location, organizing company, skills taught,
participants, their training status (like “enrolled”, “started”, “completed”, “aborted”) and
their exam results separately for the various skills. With respect to the companies
organizing the trainings, we store the fees paid by our company for the training sessions
each year.

o (Add the new tables to the database diagram and enter some test data)

o SOLUTION: train_tables.sql2

2 For the solutions of the students’ test problems please contact the author

https://www.safaribooksonline.com/library/view/relational-theory-for/9781449365431/ch01.html
https://www.safaribooksonline.com/library/view/relational-theory-for/9781449365431/ch01.html
http://www.blackwasp.co.uk/RelationalDBConcepts.aspx
https://www.tutorialspoint.com/ms_sql_server/index.htm

Querying

 We review the basics of Structured Query Language (SQL) querying like selecting, grouping,
joining. Example queries:

o Value of each order

o Minimum and maximum quantities sold for each product on a yearly basis

o Which employee sold the most pieces of the most popular product in 1998?

-- Value of each order
select o.orderid, o.orderdate,
 str(sum((1-discount)*unitprice*quantity), 15, 2) as order_value,
 sum(quantity) as no_of_pieces,
 count(d.orderid) as no_of_items
from orders o inner join [order details] d on o.orderid=d.orderid
group by o.orderid, o.orderdate
order by sum((1-discount)*unitprice*quantity) desc

-- Quantities sold for each product on a yearly basis
select p.ProductID, p.ProductName, year(o.orderdate), SUM(quantity) as quantity
from orders o inner join [order details] d on o.orderid=d.orderid
inner join Products p on p.ProductID=d.ProductID
group by p.ProductID, p.ProductName, year(o.orderdate)
order by p.ProductName

-- Which employee sold the most pieces of the most popular product in 1998?
select top 1 u.titleofcourtesy+' '+u.lastname+' '+ u.firstname +' ('+u.title +')' as name,
 sum(quantity) as pieces_sold,
 pr.productname as productname
from orders o inner join [order details] d on o.orderid=d.orderid
 inner join employees u on u.employeeid=o.employeeid
 inner join products pr on pr.productid=d.productid
where year(o.orderdate)=1998 and d.productid =
 (select top 1 p.productid
 from products p left outer join [order details] d on p.productid=d.productid
 group by p.productid
 order by count(*) desc)
group by u.employeeid, u.titleofcourtesy, u.title, u.lastname, u.firstname,
pr.ProductID,pr.productname
order by sum(quantity) desc

 For more examples and a systematic overview of SQL querying, see the Appendix

 Further reading on querying:

o https://docs.microsoft.com/en-us/sql/t-sql/queries/queries

 PRACTICE: using the tables implemented in the first practice, implement the following queries

o What are the missing skills for Mrs. Peacock?

o Are there any sessions in the future that are still required for Peacock to attend?

o What is the first and last training date and the average duration of trainings in days?

o Which employee has the most skills with an exam result above ‘fail’?

o What is the total fee paid for all training sessions in which our most skilled employee (see
above) participated?

https://docs.microsoft.com/en-us/sql/t-sql/queries/queries

o Which required skill(s) have not yet been addressed by any training session?

o SOLUTION: train_solution.sql

Programming

 Besides SQL, procedural transactional logic can be implemented in the scripting language T-SQL,
and it can be run and stored on the server side

o Pros and cons for server side business logic

 Simple architecture

 Technological neutrality

 Data safety

 Manageability

 Efficiency

 Readable code

 Low level

 Poor software technological support

 Expensive scalability

o The bottom line is that the part of business logic that involves simple, set-based
operations on large volumes of structured data are best implemented and managed on
the database server in the form of stored procedures, functions, triggers and jobs.
Procedurally sophisticated parts of the business logic that call for a high level, object-
oriented programming environment, should be implemented on an application server.

o The elements of server side programmability

 Special SQL keywords for control flow: DECLARE, SET, BEGIN/END, IF/ELSE,
WHILE/BREAK/CONTINUE, RETURN, WAITFOR/DELAY/TIME, GOTO

 Error handling: TRY/CATCH/THROW/RAISERROR

 Objects supporting programmability: CREATE PROCEDURE/FUNCTION/TRIGGER

 Transactional support: BEGIN/COMMIT/ROLLBACK TRANSACTION

o Below is a simple example of a T-SQL script and its stored procedure equivalent. The
similar user defined function can be used in a SELECT statement.

--a simple script that demonstrates the elements of T-SQL
--we search for an emplyee, and if we find a single matching record,
--we increase the salary of the employee by 10%
set nocount on
declare @name nvarchar(20), @address nvarchar(max), @res_no int, @emp_id int
set @name='Fuller'
select @res_no=count(*) from Employees where LastName like @name + '%'
if @res_no=0 print 'No matching record.'
else if @res_no>1 print 'More than one matching record.'
else begin --a single hit
 select @address=Country+', '+City+' '+Address, @emp_id=EmployeeID
 from Employees where LastName like @name

 print 'Employee ID: ' + cast(@emp_id as varchar(10)) + ', address: ' + @address
 update Employees set salary=1.1*salary where EmployeeID=@emp_id
 print 'Salary increased.'
end
go

--wrap it in a stored procedure
create procedure sp_increase_salary @name nvarchar(40)
as
set nocount on
declare @address nvarchar(max), @res_no int, @emp_id int
select @res_no=count(*) from Employees where LastName like @name + '%'
if @res_no=0 print 'No matching record.'
else if @res_no>1 print 'More than one matching record.'
else begin --a single hit
 select @address=Country+', '+City+' '+Address, @emp_id=EmployeeID
 from Employees where LastName like @name
 print 'Employee ID: ' + cast(@emp_id as varchar(10)) + ', address: ' + @address
 update Employees set salary=1.1*salary where EmployeeID=@emp_id
 print 'Salary increased.'
end
go
--test
select Salary from Employees where LastName like 'Fuller%'
exec sp_increase_salary 'Fuller'
select Salary from Employees where LastName like 'Fuller%'

--a scalar valued function that returns the salary of a person or 0 if the person is not found
go
create function fn_salary (@name nvarchar(40)) returns money as
begin
 declare @salary money, @res_no int
 select @res_no=count(*) from Employees where LastName like @name + '%'
 if @res_no <> 1 set @salary=0
 else select @salary=Salary from Employees where LastName like @name + '%'
 return @salary
end
go
--test
select [your user name].fn_salary('Fuller') as salary

 Note that a stored procedure can return multiple record sets is it contains multiple SELECT
statements without variable assignment. Parameters passed by value as shown in the example
above are INPUT type parameters. Stored procedures may also return scalar values in OUTPUT
parameters (not shown in the example). Stored procedures may also call other stored procedures
or functions, therefore they can be used to implement complex business logic on the DB server.

 A user defined function differs from a stored procedure in that it must have a single return value,
the type of which may be scalar like money or table. The last statement of a function must be a
RETURN. The advantage of user defined functions over stored procedures is that a function may
be called from inside a SELECT statement like any other built-in SQL function like DATEDIFF etc.,
thus it can add a lot to the flexibility of static SQL queries.

 PRACTICE

o Using the training queries, create a stored procedure that returns the missing skills for an
employee name passed as a parameter. The stored procedure should return a table with

a single field containing the missing skills. If the employee cannot be identified, return an
error message and no table.

o Using the training queries, create a table-valued function that returns the missing skills
for an employeeID, in the form of a table. Hint: use ‘returns table’ in the function
specification.

 In order to demonstrate a more realistic business process, here is an example script for making a
new Northwind order that contains a single order item. The scenario is that the company office
receives an urgent order from a valued customer over the phone. Such a process is a typical
business transaction.

--variables
declare @prod_name varchar(20), @quantity int, @cust_id nchar(5) --we receive the textual
customer id over the phone
declare @status_message nvarchar(100), @status int --the result of the business process
declare @res_no int --No of hits
declare @prod_id int, @order_id int --IDs
declare @stock int --existing product stock
declare @cust_balance money --customers balance
declare @unitprice money --unit price of product

-- parameters
set @prod_name = 'boston'
set @quantity = 10
set @cust_id = 'AROUT'

begin try
 select @res_no = count(*) from products where productname like '%' + @prod_name + '%'
 if @res_no <> 1 begin
 set @status = 1
 set @status_message = 'ERROR: Ambiguous Product name.';
 end else begin
 -- if we find a single product, we look for the key and the stock
 select @prod_id = productID, @stock = unitsInStock from products where
productName like '%' + @prod_name + '%'
 -- is the stock sufficient?
 if @stock < @quantity begin
 set @status = 2

 set @status_message = 'ERROR: Stock is insufficient.'
 end else begin
 -- Does the customer have credit?
 select @cust_balance = balance from customers where customerid =
@cust_id
 --if there is no hit, the @cust_balance is null
 --there cannot be more than one hit
 select @unitprice = unitPrice from products where productID = @prod_id -
-no discount
 if @cust_balance < @quantity*@unitprice or @cust_balance is null begin
 set @status = 3
 set @status_message = 'ERROR: Customer not found or balance
insufficient.'
 end else begin
 -- no more checks, we start the transaction (3 steps)
 -- 1. decrease the balance
 update customers set balance = balance-(@quantity*@unitprice) where
customerid=@cust_id
 -- 2. new record in the Orders, Order Details

 insert into orders (customerID, orderdate) values (@cust_id,
getdate()) --orderid: identity
 set @order_id = @@identity --result of the last identity insert
 insert [order details] (orderid, productid, quantity, UnitPrice)
--here we make an error
 values(@order_id, @prod_id, @quantity, @unitprice) --here
we make an error
-- insert [order details] (orderid, productid, quantity, UnitPrice,
Discount) --the correct line
-- values(@order_id, @prod_id, @quantity, @unitprice, 0) --
the correct line
 -- 3. update product stock
 update products set unitsInStock = unitsInStock - @quantity where
productid = @prod_id
 set @status = 0
 set @status_message = cast(@order_id as varchar(20)) + ' order
processed successfully.'
 end
 end
 end
 print @status
 print @status_message
end try
begin catch
 print 'OTHER ERROR: '+ ERROR_MESSAGE() + ' (' + cast(ERROR_NUMBER() as varchar(20)) +
')'
end catch
go

--we set parameters for testing
set nocount off
update products set unitsInStock = 900 where productid=40
update customers set balance=1000 where CustomerID='AROUT'
delete [Order Details] where OrderID in (select orderid from Orders where CustomerID='AROUT'
and EmployeeID is null)
delete Orders where CustomerID='AROUT' and EmployeeID is null
--we run the script and then check:
select * from Customers where CustomerID='AROUT'
select * from Products where productid=40
select top 3 * from Orders where CustomerID='arout' order by OrderDate desc

--Seems fine. However we neglected a NOT NULL constraint of the discount field:
--"OTHER ERROR: Cannot insert the value NULL into column 'Discount'"
--Even worse, we still decreased the balance of the customer!

--in a concurrent environment, other errors may manifest as well

--after correction, test the other two branches as well

 Further reading on programming:

o https://docs.microsoft.com/en-us/sql/t-sql/language-elements/control-of-flow

 PRACTICE: using the tables and scripts implemented in the previous practices,

o Write a script that checks whether an employee needs any of the skills offered by a
training session, and if yes, enroll the employee for all such sessions.

o Run the script in a stored procedure

o SOLUTION: train_solution.sql

https://docs.microsoft.com/en-us/sql/t-sql/language-elements/control-of-flow

Cursors
Cursors can be used for problems for which the procedural row-by-row approach is more suitable than
the set-based querying approach.

EXAMPLE for cursor syntax

declare @emp_id int, @emp_name nvarchar(50), @i int, @address nvarchar(60)
declare cursor_emp cursor for
 select employeeid, lastname, address from employees order by lastname
set @i=1
open cursor_emp
fetch next from cursor_emp into @emp_id, @emp_name, @address
while @@fetch_status = 0
begin
 print cast(@i as varchar(5)) + ' EMPLOYEE:'
 print 'ID: ' + cast(@emp_id as varchar(5)) + ', LASTNAME: ' + @emp_name + ', ADDRESS: ' +
@address
 set @i=@i+1
 fetch next from cursor_emp into @emp_id, @emp_name, @address
end
close cursor_emp
deallocate cursor_emp
go
--equivalent to this with a SELECT
select 'ID: ' + cast(employeeid as varchar(5)) + isnull(', LASTNAME: ' + lastname, '') +
isnull(', ADDRESS: ' + address, '')
from employees order by lastname
--or, with a row number
select cast(row_number() over(order by lastname) as varchar(50))+
'. ügynök: ID: ' + cast(employeeid as varchar(5)) + isnull(', LASTNAME: ' + lastname, '') +
isnull(', ADDRESS: ' + address, '')
from employees

PRACTICE: Implement a cursor that iterates the USA customers and prints the number of their respective
orders row by row.

Transaction management

 The core transactional concepts

o We define ‘transaction’ as a logically coherent sequence of operations in a business
process. ‘Logically coherent’ means that the operations form a semantic unit.
Transactions may be nested e.g. the transaction of buying a helicopter includes the
transaction of the customer identifying herself and the transaction of paying the bill by
bank transfer etc.

o Atomicity, consistency, isolation and durability requirements for environments
implementing transactions. We violated the atomicity and isolation requirement in our
last order processing example.

o There are implicit and explicit (programmed) transactions. Implicit transactions are all
SQL DML statements.

o Transactions in T-SQL are programmed with the BEGIN/COMMIT/ROLLBACK
TRANSACTION statements. The transaction consists of all statements between the BEGIN
TRANSACTION and a COMMIT TRANSACTION or ROLLBACK TRANSACTION statement.
COMMIT closes the transaction and frees all the resources like table locks etc. that were

used by the server for transaction management. ROLLBACK does the same after undoing
all changes performed by all the statements of the transaction. For this to be possible, the
server uses a sophisticated logging mechanism called the Write-Ahead Log (WAL). If not
truncated or backed up, the transactional log may grow bigger than the database itself.

o In MS SQL Server, if XACT_ABORT is ON and one of the transaction’s statements causes
an error, the server stops executing the transaction and performs an automatic
ROLLBACK.

EXAMPLE

--simple demo for atomicity, with xact_abort on
set xact_abort off
delete t2
go
begin tran
 insert t2 (id, t1_id) values (10, 1)
 insert t2 (id, t1_id) values (11, 2) --foreign key constraint violation
 insert t2 (id, t1_id) values (12, 3)
commit tran
go
--"The INSERT statement conflicted with the FOREIGN KEY constraint ..." etc
select * from t2
id t1_id
10 1
12 3
--atomicity was not preserved
set xact_abort on
delete t2
go
begin tran
 insert t2 (id, t1_id) values (10, 1)
 insert t2 (id, t1_id) values (11, 2) --foreign key constraint violation
 insert t2 (id, t1_id) values (12, 3)
commit tran
go
--"The INSERT statement conflicted with the FOREIGN KEY constraint ..." etc
select * from t2
id t1_id
--atomicity was preserved

o Nested transactions technically mean multiple BEGIN TRANSACTION statements. A single
ROLLBACK will roll back all transactions that have been begun, see example below

begin tran
 print @@trancount --1
 begin tran
 print @@trancount --2
 commit tran
 print @@trancount --1
commit tran
print @@trancount --0

begin tran
 print @@trancount --1
 begin tran
 print @@trancount --2
rollback tran
print @@trancount --0

o It is a serious programming error not to close a transaction by either a COMMIT or a
ROLLBACK. An unterminated transaction will continue consuming server resources and
will eventually cripple the system. The @@TRANCOUNT global variable may be used to
check whether the current connection has an unterminated transaction.

EXAMPLE: In order to correct the shortcomings of the example order processing script, we wrap it
into a stored procedure, and add TRY/CATCH error handling and transactional support.

go
create procedure sp_new_order
@prod_name nvarchar(40), @quantity smallint, @cust_id nchar(5)
as
set nocount on
set xact_abort on
--variables
declare @status_message nvarchar(100), @status int --the result of the business process
declare @res_no int --No of hits
declare @prod_id int, @order_id int --IDs
declare @stock int --existing product stock
declare @cust_balance money --customers balance
declare @unitprice money --unit price of product
begin tran
begin try
 select @res_no = count(*) from products where productname like '%' + @prod_name + '%'
 if @res_no <> 1 begin
 set @status = 1
 set @status_message = 'ERROR: Ambiguous Product name.';
 end else begin
 -- if we find a single product, we look for the key and the stock
 select @prod_id = productID, @stock = unitsInStock from products where
productName like '%' + @prod_name + '%'
 -- is the stock sufficient?
 if @stock < @quantity begin
 set @status = 2
 set @status_message = 'ERROR: Stock is insufficient.'
 end else begin
 -- Does the customer have credit?
 select @cust_balance = balance from customers where customerid =
@cust_id
 --if there is no hit, the @cust_balance is null
 --there cannot be more than one hit
 select @unitprice = unitPrice from products where productID = @prod_id -
-no discount
 if @cust_balance < @quantity*@unitprice or @cust_balance is null begin
 set @status = 3
 set @status_message = 'ERROR: Customer not found or balance
insufficient.'
 end else begin
 -- no more checks, we start the transaction (2 steps)
 -- 1. decrease the balance
 print 'Processing order...'
 update customers set balance = balance-(@quantity*@unitprice)
where customerid=@cust_id
 -- 2. new record in the Orders, Order Details
 insert into orders (customerID, orderdate) values (@cust_id,
getdate()) --orderid: identity
 set @order_id = @@identity --result of the last identity insert
 insert [order details] (orderid, productid, quantity, UnitPrice)
values(@order_id, @prod_id, @quantity, @unitprice) --here we make an error

 -- insert [order details] (orderid, productid, quantity, UnitPrice,
Discount) values(@order_id, @prod_id, @quantity, @unitprice, 0) --the correct line
 set @status = 0
 set @status_message = 'Order No. ' + cast(@order_id as
varchar(20)) + ' processed successfully.'
 end
 end
 end
 print 'Status: ' + cast(@status as varchar(50))
 print @status_message
 if @status = 0 commit tran else begin
 print 'Rolling back transaction'
 rollback tran
 end
end try
begin catch
 print 'OTHER ERROR: '+ ERROR_MESSAGE() + ' (' + cast(ERROR_NUMBER() as varchar(20)) +
')'
 print 'Rolling back transaction'
 rollback tran
end catch
go

--test
--we set parameters for testing
set nocount off
update customers set balance=1000 where CustomerID='AROUT'
delete [Order Details] where OrderID in (select orderid from Orders where CustomerID='AROUT'
and EmployeeID is null)
delete Orders where CustomerID='AROUT' and EmployeeID is null
--we run the stored proc
exec sp_new_order 'boston', 10, 'Arout'
--check the results:
select * from Customers where CustomerID='AROUT' --should be 816
select top 3 * from Orders o inner join [Order Details] od on o.OrderID=od.OrderID
 where CustomerID='arout' order by OrderDate desc --should see the new item
select @@trancount --must be 0

o Test the above stored procedure for various errors: programming errors and logical errors
like insufficient stock. Check the integrity of the database. Make sure that the
transactional support prevents any serious errors.

 In order to ensure isolation, the server uses locks on rows (records), ranges or tables. An Isolation
Level is a locking strategy enforced by the server. The main lock types on MS SQL Server are Read
(shared), Write (exclusive) and Update. Below are the 4 ANSI standard isolation levels, though
current database technologies support more than just these 4.

o READ UNCOMMITTED: no locking

o READ COMMITTED: locks removed after the completion of the SQL statement

o REPEATABLE READ: locks that were granted for the transaction are kept until the end of
the transaction

o SERIALIZABLE: other transactions cannot insert records into a table for which a
transaction has a row or range lock, phantom read is not possible

--simple demo for isolation: the webshop case
create table test_product(id int primary key, prod_name varchar(50) not null, sold
varchar(50), buyer varchar(50))

insert test_product(id, prod_name, sold) values (1, 'car', 'for sale')
insert test_product(id, prod_name, sold) values (2, 'horse', 'for sale')
go
select * from test_product
update test_product set sold='for sale', buyer=null where id=2
go
set tran isolation level read committed --the default
go
begin tran
declare @sold varchar(50)
select @sold=sold from test_product where id=2
if @sold='for sale' begin
 waitfor delay '00:00:10' --now we are performing the bank transfer
 update test_product set sold='sold', buyer='My name' where id=2
 print 'sold successfully'
end else print 'product not available'
commit tran
go
--we run the above transaction concurrently in two query editors
--the second script:
set tran isolation level read committed
go
begin tran
declare @sold varchar(50)
select @sold=sold from test_product where id=2
if @sold='for sale' begin
 waitfor delay '00:00:10' --now we are performing the bank transfer
 update test_product set sold='sold', buyer='Your name' where id=2 --note the diff
 print 'sold successfully'
end else print 'product not available'
commit tran
go
--check what happens:
select * from test_product
id prod_name sold buyer
1 car for sale NULL
2 horse sold Your name
--The horse was sold successfully to two customers, but only Your name will receive it. Very
awkward.
update test_product set sold='for sale', buyer=null where id=2
--Now try the same with set tran isolation level repeatable read
--"Transaction (Process ID 53) was deadlocked on lock resources with another process and has
been chosen as the deadlock victim. Rerun the transaction."
--No logical error. Only one horse is sold.

--Conclusion: be careful to select the right isolation level.

 Further reading on transaction management:

o https://docs.microsoft.com/en-us/sql/t-sql/language-elements/control-of-flow

 PRACTICE: Add transactional support to your own training management stored procedure and
test it for various errors.

https://docs.microsoft.com/en-us/sql/t-sql/language-elements/control-of-flow

2. Loose coupling based on triggers and jobs

Problem scenario

The new orders are stored in the Orders and Orderitems tables by a third party management and trading
application that has no open API, or for any other reason refuses to generate service level events.
Therefore, in the current order processing workflow at the Northwind Traders Ltd Co. the trading
department communicates with the Shipping and Logistics (SL) division via email (or any other manual
messaging system) about the new or changed orders. Our company is responsible for IT support in SL
management. The head of SL division prepares the detailed daily work plans every morning for the various
units according to the emails received from the trading department. For this, she uses our software tool.
Both the trading and the SL use the same Northwind SQL Server database.

We are asked to relieve the trading and SL staff from manually writing emails and manually entering data
from emails into another application by automating the order processing workflow as much as possible.

Solution

Since the trading system is a ‘black box’, we must rely on database level events. Every time an order is
created or modified, we must run the required (rather complex) logic on the database that creates or
changes the required records in the SL tables like Products. Thus both the writing and the processing of
emails will be unnecessary.

It is, however, vital that our solution should not at the least interfere with the trading system. It cannot
significantly slow down the order saving process, nor may any error that may occur while processing an
order event on the SL side be propagated back to the trading system.

For this reason, we use the loose coupling concept. We only log the INSERT and UPDATE events on orders
via a trigger in a special table, and process these events in batches executed by a scheduled job. The job
also keeps track of the state and results of the processing of each event. Since the processing of the event
is performed out-of-process, a processing error does not manifest as an error in the trading system.

Note: a trigger is a special stored procedure that is invoked automatically by the database management
system upon database events like table INSERT, UPDATE or DELETE.

System overview:

Orders
table

Event log
table

Manu-
facturing
tables

Insert
trigger

Order
processing

job

A short overview on triggers

Triggers are special procedures stored on the server and run automatically when a pre-defined condition
is satisfied. SQL Server supports the following types of triggers with respect to the trigger event:

 DML triggers (table level triggers) that are executed when a DELETE, INSERT or UPDATE action is
performed on a table

 DDL triggers (database level triggers) that are fired when the schema of the database changes e.g.
a table is created

 Logon triggers (server level triggers) that are fired after the authentication phase of logging in
finishes

We focus now on DML triggers. The definition of the trigger includes the target table, the trigger event
(DELETE, INSERT or UPDATE) and the mode of operation. SQL server supports the following operational
modes:

 AFTER: fired after the successful execution of the specified SQL statement. This means that all
eventual check and other constraints and cascade updates/deletes associated with the DML
statement have executed successfully. We can place multiple triggers on the same object, even
of the same type, like two INSERT triggers. In this case, the order of execution can be influenced
by setting trigger properties.

 INSTEAD OF: the DML statement is not executed at all, only the trigger.

The records modified by the DML statement can be accessed by the trigger code via special logical tables.
SQL server provides the following two logical tables:

 ‘deleted’: holds the records deleted form the table in case of a DELETE trigger or the original (old)
records updated in case of an UPDATE trigger. An update is logically equivalent to a delete
followed by an insert. The deleted table is empty in case of an INSERT trigger.

 ‘inserted’: holds the records inserted by an INSERT statement or the new records updated by an
UPDATE trigger. The inserted table is empty in case of a DELETE trigger.

SQL server also supports the update([field name]) function available in INSERT or UPDATE triggers that
returns true if the DML statement changed the specified field. The field cannot be a computed column.

If the trigger raises an error, the DML statement is rolled back.

A trigger may run code that invokes other triggers or even the same trigger in a recursive manner, up to
32 levels on MS SQL server. This feature is controlled via the nested triggers server option (see below).

Cases when the use of a DML trigger is recommended
 Administration functions such as maintaining a log or keeping old values of changed records n

backup tables.

 Enforcing data integrity rules that follow from the business logic and that are beyond the scope
of simple primary key, foreign key or check constraints. Example in the Northwind database:

o We do not send heavy packages overseas. Therefore we refuse orders with a freight over
200 that has a ShipCountry not equal to USA. (Can be implemented by an INSERT AFTER
or INSERT INSTEAD OF trigger on the Orders table.) Such checks should of course be built
into the client software, however, database level integrity enforcement can protect from
application errors or hacking.

 Automating business workflow processes. Examples in the Northwind database:

o We sent an automated email to the customer when the shipping date is decided i.e. when
the ShippedDate field of an order is set (UPDATE trigger)

o We automatically send an order to our gross supplier when the UnitsInStock of a Product
drops below the ReorderLevel (UPDATE or INSERT trigger)

o We automatically update the UnitsInStock field of the Products table when the quantity
field in a corresponding Order Detail record changes

PRACTICE: write an update trigger for the Order Details. When the quantity changes, update the
UnitsInStock of the product. You can assume that only one Order Details record is updated at a time.

PRACTICE: Assume that in the problem above more than Order Details records are updated at a time.

CAVEAT: the operation of triggers is ‘silent’, and severe problems may result from forgetting about them.
For example, if the administrator restores the Order Items tables from a backup copy with an UPDATE
statement without first disabling the trigger…

For more examples on SQL server triggers see http://sqlhints.com/2016/02/28/inserted-and-deleted-
logical-tables-in-sql-server/

Tight coupling

In the example below we create a new insert trigger on the Orders table that runs long and throws an
exception, thus disabling the order saving process. This is exactly what we do NOT want. We implement
loose coupling instead of tight coupling.

drop trigger tr_demo_bad
go
create trigger tr_demo_bad on orders for insert as
declare @orderid int
select @orderid=OrderID from inserted
print 'New order ID: ' + cast(@orderid as varchar(50))
waitfor delay '00:00:10' --10 s
select 1/0 --we make an error
go
--test #1: with both last lines commented out
insert Orders (CustomerID, OrderDate) values ('AROUT', GETDATE())
--restore table
delete Orders where CustomerID='AROUT' and EmployeeID is null
--test #2: recreate the trigger, with the last lines commented out
insert Orders (CustomerID, OrderDate) values ('AROUT', GETDATE())
--we have long to wait, but there is no error
--restore table
delete Orders where CustomerID='AROUT' and EmployeeID is null
--test #3: recreate the trigger, with all lines
insert Orders (CustomerID, OrderDate) values ('AROUT', GETDATE())
--we have long to wait, then we have the message:
'New order ID: 11094
Msg 8134, Level 16, State 1, Procedure tr_demo_bad, Line 6 [Batch Start Line 276]
Divide by zero error encountered.
The statement has been terminated.'
select * from Orders where CustomerID='AROUT' and EmployeeID is null
--no such record, because
--the insert statemant has been rolled back -> we crashed the trading system

The loosely coupled system

The idea is that the trigger only saves the events into a log table. We then process the table with a stored
procedure.

The log table and the trigger
The trigger uses the virtual tables inserted and deleted. This trigger can process multi-record INSERTs and
UPDATEs.

--the log table
go
--drop table order_log
go
create table order_log (
 event_id int IDENTITY (1, 1) primary key ,
 event_type varchar(50) NOT NULL ,
 order_id int NOT NULL ,
 orderitem_id int NULL ,
 status int NOT NULL default(0),
 time_created datetime NOT NULL default(getdate()) ,

http://sqlhints.com/2016/02/28/inserted-and-deleted-logical-tables-in-sql-server/
http://sqlhints.com/2016/02/28/inserted-and-deleted-logical-tables-in-sql-server/

 time_process_begin datetime NULL ,
 time_process_end datetime NULL ,
 process_duration as datediff(second, time_process_begin, time_process_end)
)
go
drop trigger tr_log_order
go
create trigger tr_log_order ON Orders for insert, update as
declare @orderid int
select @orderid=orderid from inserted --there can be more then a single record in inserted
print 'OrderID of the LAST record: ' + cast(@orderid as varchar(50))
if update(orderid) begin --if the orderid has changed, then this is an INSERT
 print 'Warning: new order'
 insert order_log (event_type, order_id) --status, time_created use default
 select 'new order', orderid from inserted
end else if update(shipaddress) or update(shipcity) begin --shipaddress or shipcity has
changed
 print 'Warning: address changed'
 insert order_log (event_type, order_id)
 select 'address changed', orderid from inserted
end else begin --other change
 print 'Warning: other change'
 insert order_log (event_type, order_id)
 select 'other change', orderid from inserted
end
go

--test #1
insert Orders (CustomerID, OrderDate) values ('AROUT', GETDATE())
select * from order_log
--we have one new record in the log table

--test #2
insert Orders (CustomerID, OrderDate) values ('AROUT', GETDATE()), ('HANAR', GETDATE())
select * from order_log
--we have two new records in the log table

--test #3
update Orders set ShipVia = 3 where OrderID in (11097, 11096) --these are the IDs of test #2
select * from order_log
--we have two new records of the type 'other change'

--restore the tables
delete Orders where CustomerID in ('AROUT', 'HANAR') and EmployeeID is null
delete order_log

The stored procedure for processing new orders
We expect that the items of a new order are inserted subsequently after the order record is created.

--a simple stored procedure that processes a new order
--and returns 0 if all of its items could be committed to the inventory without error
--demonstrating also the use of output parameters
drop proc sp_commit_new_order_to_inventory
go
create procedure sp_commit_new_order_to_inventory
@orderid int,
@result int output
as
begin try
 update products set unitsInStock = unitsInStock - od.quantity

 from products p inner join [Order Details] od on od.ProductID=p.ProductID
 where od.OrderID=@orderid
 set @result=0
end try
begin catch
 print ' Inventory error: '+ ERROR_MESSAGE() + ' (' + cast(ERROR_NUMBER() as
varchar(20)) + ')'
 set @result=1
end catch
go

--test
select * from order_log --11097
select * from Products where ProductID=10 --unitsinstock =31
select * from Products where ProductID=9 --unitsinstock =29
insert [Order Details] (orderid, productid, quantity, UnitPrice, Discount)
values (11097, 9, 10, 30, 0),(11097, 10, 40, 30, 0) --the second item will cause an error in
sp_commit_new_order_to_inventory
go
declare @res int
exec sp_commit_new_order_to_inventory 11097, @res output
print @res
exec sp_commit_new_order_to_inventory 11096, @res output
print @res
go
--check: no change in unitsinstock (OK)
select * from Products where ProductID=10 --unitsinstock =31
select * from Products where ProductID=9 --unitsinstock =29

The stored procedure for processing the event log
Since completely different actions are to be taken depending on the event type, we use a cursor to iterate
the order log.

--stored procedure for processing the order_log
--drop proc sp_order_process
go
create proc sp_order_process as
declare @event_id int, @event_type varchar(50), @order_id int, @result int
declare cursor_events cursor forward_only static
 for
 select event_id, event_type, order_id
 from order_log where status=0 --we only care for the unprocessed events

set xact_abort on
set nocount on
open cursor_events
fetch next from cursor_events into @event_id, @event_type, @order_id
while @@fetch_status = 0
begin
 print 'Processing event ID=' + cast(@event_id as varchar(10)) + ', Order ID=' +
cast(@order_id as varchar(10))
 update order_log set time_process_begin=getdate() where event_id=@event_id
 begin tran
 set @result = null
 if @event_type = 'new order' begin
 print ' Processing new order...'
 exec sp_commit_new_order_to_inventory @order_id, @result output
 end else if @event_type = 'address changed' begin
 print ' Processing address changed...'

 waitfor delay '00:00:01' --we only simulate the processing of other event types
 set @result=0
 end else if @event_type = 'other change' begin
 print ' Processing other change...'
 waitfor delay '00:00:01'
 set @result=0
 end else begin
 print ' Unknown event type...'
 waitfor delay '00:00:01'
 set @result=1
 end

 if @result=0 begin
 print 'Event processing OK'
 commit tran
 end else begin
 print 'Event processing failed'
 rollback tran
 end
 print ''
 update order_log set time_process_end=getdate(),
 status=case when @result=0 then 2 else 1 end
 where event_id=@event_id
 fetch next from cursor_events into @event_id, @event_type, @order_id
end
close cursor_events deallocate cursor_events
go

--teszt
update order_log set status=0
select *from orders where EmployeeID is null
select * from order_log
exec dbo.sp_order_process
select * from order_log

--we get:
Processing event ID=5, Order ID=11097
 Processing new order...
 Inventory error: The UPDATE statement conflicted with the CHECK constraint etc.
Event processing failed

Processing event ID=6, Order ID=11096
 Processing new order...
Event processing OK

The scheduled job that calls the event log processor
We implement the job using the SSMS GUI and check its operation in the Job Activity Monitor.

PRACTICE: create a loosely coupling solution that monitors the Products table and orders new supply from
the associated Supplier when the UnitsinStock value falls below that specified in the ReorderLevel field.

3. Replication and log shipping

In the loose coupling case study we were in fact implementing a special form of replication.

Replication concepts and architecture

Replica means a copy of the original. In database technology, replication is used to automate the copying
and merging of data from or to multiple sources. The components of the replication metaphor are as
follows.

 The publisher is the entity (a database server) that has data to be shared. Such data is organized
into publications. Each publication contains one or more articles. The articles can be tables or
parts of tables, stored procedures or other database objects.

 The subscriber is the entity that subscribes to publications. It can be the same database server as
the publisher or another server. Several subscribers, possibly on different servers, may subscribe
for the same publication.

 The subscription may have various modalities with respect to the way and scheduling of copying.
It can also include filtering the data or on-the-fly data transform steps. It can be a push or a pull
subscription. The pull subscriptions are created at, and scheduled by, the subscriber.

The main types and application scenarios of replication are as follows.

 Snapshot replication. After an initial snapshot of the articles, the copied objects will be dropped
and re-created on the subscriber each time the data is refreshed, regardless of whether there was
any change in the publication. Applicable for reporting parts of an OLTP database off to a data
warehouse or a reporting server, scheduled out of office hours e.g. sending data generated during
the day overnight (‘point in time reports’). Since several subscriptions may point to the same
destination database, replication can be used as an ETL (extract-transform-load) mechanism if
SQL Server technology is used by all publishers. CAVEAT: due to the drop/re-create mechanism,
objects at the subscriber may be temporarily inaccessible. The latency of the data must also be
tolerated. All other replication types below are initialized with a snapshot.

 Transactional replication. It moves only the data that has been changed, and it can be configured
for near real time data synchronization. A primary key on the replicated tables is needed.
Applicable when considerable latency is a problem and when we do not want to move unchanged
data. An example is the off-site branches of a company that have their own local servers holding
only parts of the central database relevant for their operation. Such an architecture improves site
autonomy and robustness of the database system.

 Merge replication. In this scheme the subscribers may themselves generate changes to the data
and there is a mechanism in place that distributes these changes to all parties and merges them
into a consistent database. The merging process may also involve conflict resolution. In order to
identify records across multiple servers, the tables must have a field of UNIQUEIDENTIFIER data
type with ROWGUIDCOL3 property. A typical scenario is the case of traveling businesspeople who
are not always connected the central database. The changes they make on their local database is
merged automatically with others’ changes automatically.

The type of the replication is always determined by the publication.

3 Works like an identity column without a seed and with globally unique values

Replication technology is based on scheduled jobs and, in the case of merge replication, triggers on
published articles.

Replication is not recommended when an exact copy of a whole database is to be maintained on a remote
server to improve availability and reliability, because log shipping and the Always-On technology of SQL
server 2012 and later offer a simpler and more robust solution.

CAVEAT: though replication prepares multiple copies of the data, it is not a replacement for backups and
disaster recovery planning.

There are three server roles in replication, the publisher, the distributor and the subscriber. All three roles
may be taken by the same server instance when a local database is replicated into another local database,
or by different instances. In more realistic setups, the distributor role is taken by another server to offload
the publisher. The distributor is responsible for storing the changed data in a shared folder and a
distribution database and forwarding the data to the subscribers. A publisher may have only one
distributor, but a distributor may serve several subscribers.

In bi-directional or updatable replication the subscriber may be allowed to make changes on the publisher
as well.

SQL server implements replication functionality with various agents. These agents are jobs running under
the supervision of SQL Server Agent.

 The Snapshot agent generates the snapshot and stores it in the snapshot folder at the distributor.
The agent uses the bcp (bulk copy) utility to copy the articles of the publication.

 The Distribution agent. In snapshot replication this agent applies the snapshot to the subscriber
and in transactional replication it runs the transactions held in the distribution database on the
subscriber. The distribution database is a system database on the distributor, therefore you can
find it in the System Databases group. This agent runs at the subscriber for pull subscriptions and
it runs at the publisher for push subscriptions.

 The Log reader agent reads the transaction log at the publisher and copies the relevant
transactions from the log to the distribution database. It is used only in transactional replication.
There is a separate agent for each database published.

 The Queue reader agent copies changes made by the subscribers to the publisher in an updatable
or bi-directional transactional replication.

 The Merge agent merges incremental changes that occur at both the subscriber and the publisher
in merge replication. Detecting changes is based on triggers. The merge agent is not used in
transactional replication.

Except for a pull subscription, all agents run at the distributor.

PRACTICE: snapshot replication

First of all configure the test environment. For the replication examples to work as expected, you need
three ‘named’ MS SQL Server instances installed on the same server machine. They should be named
Principal, Secondary and Third.

Scenario: we want to replicate the orders of the American customers to another database on the same
server (Principal) to refresh the reporting data warehouse overnight. We choose snapshot replication.

Creating the publication
1. Connect to the Principal server and create a new database called nw. Select the FULL recovery

mode. Run the create dump of the Northwind database.

2. Create another empty database called nw_repl, also on the Principal server.

3. Start the New publication wizard and select nw as the publication database:

4. On the next panel, select Snapshot publication, then select the Orders table as the single article
of the publication:

5. On the Filter table dialog, choose Add

6. Complete the filter statement to filter out American customers

7. Specify that the snapshot agent should run every two minutes by selecting Change on the next
panel. Note: We use this short time interval only for demo purposes. The agent runs the bcp utility
which places a lock on the whole table until it finishes the copying in order to guarantee data
consistency. This means the blocking of all other transactions that may wish to modify the table.
Snapshot generation in production systems should be scheduled considering performance
implications.

8. We now have to specify agent security. On the Security settings tab, set your own user credentials
and impersonate process account. This is the simplest way of ensuring that the snapshot agent
will have write permission to the snapshot folder. Note: you might wonder why the SQL Server
Agent service or the SQLSERVER service uses a low privilege non-administrator Windows account.
The reason for this is that in this way an attacker who has successfully cracked the DBMS has less
chance to corrupt the whole server.

9. On the next panel, select create the publication and name it ‘orders’.

Checking the publication
The new publication appears under Local publications. The snapshot folders are created at C:\Program
Files\Microsoft SQL Server\MSSQL12.PRINCIPAL\MSSQL\repldata\unc\STAN$PRINCIPAL_NW_ORDERS,
but no actual snapshot was not generated because no subscriptions needed initialization yet.

Check the new job that appears under SQL Server Agent jobs. The job history shows that the agent is run
periodically as configured.

Creating a push subscription
1. Start the new subscription wizard from the pop-up menu on the orders publication. Select the

orders publication as the source

2. On the next panel, choose Run all agents at the distributor for push subscription

3. Specify the same server as the subscriber and the nw_repl as the subscription database

4. Set the security of the distribution agent the same way as the snapshot agent

5. For the schedule, select Run continuously to provide minimal latency

6. On the next panel, select initialization. This will generate the first snapshot in the distribution
folder.

7. Finish creating the new subscription

Note: you can change the properties of subscriptions and publications later if you select Properties from
their pop-up menu.

Checking the subscription
1. Locate the new Orders table in the nw_repl database and check that it contains the USA orders

2. Check the contents of the snapshot folder. Bulk copy is a fast method SQL server uses to insert
data directly into database files.

3. Start the Replication monitor from the pop-up menu of the new subscription and check the
publication and the subscription status. You can also review the active replication agents here:

8. Open the Job activity monitor. The distribution agent appears as a new job in the list, with a status
of Executing all the time

9. Change the first USA record of the orders table at the publisher with an UPDATE statement. The
change appears in the replicated table shortly (ca. 30 seconds) after the snapshot agent is run the
next time.

10. Finally, delete the subscription and the publication. This can be accomplished by selecting
Generate scripts form the popup menu of the Replication group, specifying ‘To drop…’ and
running the script in an editor. Alternatively, you can delete the objects one-by-one manually.

11. The replicated tables at the subscriber will not be deleted by deleting the subscription, so delete
the Orders table manually from the nw_repl database.

PRACTICE: create a push snapshot publication into the nw_repl table that copies those employees from
the Employees table whose title is Sales representative. Verify the correct operation, then delete all
related objects.

PRACTICE: transactional replication

Scenario: we wish to create a near-real time (scheduled) loose coupling between the central Northwind
database and an off-site division that deals only with the products of the category ‘Beverages’
(CategoryID=1). We replicate only orders and order items that are beverages via transactional replication.

First we implement this demo on a single server (Principal). The filter condition above can be defined as
follows:

select * from [Order Details] where ProductID in (select productid from Products where
CategoryID=1)

select * from orders where orderid in (
 select orderid from [Order Details] where ProductID in (select productid from Products
where CategoryID=1)
)

1. Define the type of the publication as transactional on the Publication type dialog panel
2. Select the Orders and Order Details tables on the Articles panel
3. On the Filer table panel, add the filter to the two tables one by one by copying the WHERE part

from the above queries. For the Orders table:

4. You should have the filters defined for both tables:

5. On the next panel, select Create a snapshot immediately

6. On the panels that follow set the security of the agents the same way as in the previous demo

7. Name the publication nw_trans and finish creating the publication

8. Select New subscription in the pop-up menu of the publication

9. Select the Run all agents at the Distributor on the next panel (push subscription)

10. Select the nw_repl database as the subscription database:

11. Set the security of the distribution agent the same way as in the previous demo

12. Specify Run continuously for the schedule of the Log reader and Distribution agents:

13. Test the correct operation of the transactional replication. Update the employeeID in first record
of the Orders table in the nw database and then select the same record in the nw_repl database.
You should see the changed value within 10 seconds.

14. Check the operation of the replication agents

15. Clean up the replication by deleting all replication objects

PRACTICE: implement the loose coupling scenario for order event processing using transactional
replication on the Products, Orders and Order details tables. We suppose that the logistics division has its
own database, possibly running on another server.

1. Add a new field named status to the Orders table in the nw database with a default value of 0

2. Replicate the three tables to the nw_repl database

3. Since the subscriber can change the replicated records and since the trading application using the
Orders table will never update the status field, we will use this field on the subscriber to log the
processing state of order records in a way similar to the case study solution:

a. New orders will have a status of 0 by default

b. In order to mark changed orders, we can use an update trigger on the publisher that
changes the status of the already existing record to 1

c. The job at the subscriber processes order records with a status 0 or 1 and sets the status
to 2 on success

In this way we avoid using an extra log table.

Replication between separate servers

In the next demo we implement the same transactional replication in a more realistic scenario using the
Principal as the publisher and the Third server as the distributor and subscriber, respectively. In an even
more realistic scenario, they would be not only separate server instances, but they would also reside on
separate server machines. We cannot, however, implement such a scenario in the lab.

Configuring the distributor
1. In the pop-up menu of Replication on the Third instance select Configure Distribution, and accept

the first choice. This will create the distribution database on Third.

2. On the next pane accept the location of the snapshot folder. Since the Third instance will also be
the subscriber, we do not create a network share.

3. On the next pane accept the defaults for the location and name of the distribution database.

4. We then have to specify which publisher servers are allowed to use this distribution database. On
the next pane deselect Third (since Third will not be publishing) and by pressing Add, add the
Principal instance:

5. On the next pane you must specify a password that the Publishers using this distribution database
will need to use. Specify the same password that you use for login.

6. At the end of the process, you have configured the distributor successfully:

Configuring the publisher
1. In order to configure the Principal as publisher, we first disable it as distributor. Remember that

so far the Principal acted as its own distributor. In the pop-up menu of Replication select Disable
Distribution and Publishing. When the Principal has been disabled as a distributor, the pop-up
menu changes. Select now Configure distribution and specify the Third instance as the distributor
of Principal:

2. On the next pane, enter the same password as before.

3. The distribution is now set up.

Adding the publication and the subscription
1. Go on creating the transactional publication on Principal in the usual way.

2. Create a new subscription on the Third instance. Select Principal as the publisher and select the
publication that you created in the previous step. You can have the replication database created
on Third by the wizard.

3. Open a query editor on the Principal and update a record in a table that is part of the publication.

4. Open a query editor on the Third and verify that the change is propagated to the replicated table
within 10 seconds.

5. Delete the publication and the subscription.

Merge replication

Scenario: our sales employees are traveling and making new orders for their clients. Occasionally they also
need to change previous orders when, for example, a shipping address changes. It may also happen that
two employees modify the same order. The employees are not continuously connected to the internet.
We must design a replication solution that merges all such changes with each other and with the central
Northwind database.

In merge replication, the duty of the log reader agent is taken by triggers, tables, and views which are
created automatically in each subscriber database and also in the publisher database. The triggers log
changes in special metadata tables named ‘MSmerge_*’ that are created in the same database as the
replicated table. There are three triggers named ‘MSmerge_[ins, upd, del]_*’ created for each table. There
are also database level schema triggers that log the changes in the schema of the replicated tables.

Merge replication starts with an initial snapshot created by a snapshot agent. By default, the snapshot
agent is configured to run every 14 days. Then the duty of the merge agent is similar to the distribution
agent in transactional replication with the difference that merge replication can be configured bi-
directional. This means that the agent applies changes on the subscriber and publisher sides as well. There
is a separate merge agent for each subscription. The merge agent runs on the distributor in case of a push
distribution and on the subscriber in case of a pull subscription.

In order to support the bi-directional data synchronization, articles in merge replication must have a
uniqueidentifier (GUID) type column that is similar to the identity data type but it produces globally unique
IDs4. If such a column does not exist, it is added automatically to the tables—which can potentially crash
the legacy applications already using the table.

4 Use this data type like this: CREATE TABLE test (my_guid uniqueidentifier DEFAULT NEWSEQUENTIALID()
ROWGUIDCOL,… etc

The publication
In order to develop the merge solution, first configure the Third instance as the distributor of the Principal
(see the previous section). After that, this is what you should see on the Principal:

Now add the publication on Principal as follows.

1. Enable the nw database for merge replication. Select Publisher properties from the pop-up menu
of Replication:

2. Select the nw database for the publication database and select the publication type:

3. Accept the default subscriber types and select the Orders table as the single article of the
publication.

4. You can set various properties for each article by selecting Article Properties, including the
resolver to be used for various conflict types. You could also add your own resolver. However, we
do not go into the details of conflict resolution in this course.

5. The next panel warns that a new GUID will be added to the table. This does not change the primary
and foreign key constraints of the table.

6. For the snapshot agent scheduling, accept the defaults, then define the agent security in the usual
way.

7. Name the publication nw_merge and create it.

The subscription
We add two subscribers to see the merge process in action.

1. On the Third instance, select New subscription and specify the Principal as the publisher:

2. On the next pane, select pull subscription. This is in line with the usual expectation that the
subscribers will want to schedule their synchronization.

3. Add the two subscribers, one on the Third instance and one on the Principal, with newly created
databases nw_merge_1-2.

4. Set the security on the agents in the usual way.

5. We set the synch schedule for both merge agents to Run continuously. Note: this setting is only
for test and demo purposes. In a real life scenario, the merge process would start either at specified
intervals or on demand, when a specific event, e.g. a VPN connection occurs on the subscriber.

6. Initialize the subscriptions immediately.

7. In merge publication, the subscribers may be allowed to republish the publication to which they
are subscribed (Server type subscription), thus creating a hierarchical subscribing architecture.
Since we do not want to create a hierarchy of subscribers, we select Client type—no republication.

8. Finalize and start the replication.

9. In the object browser, verify that the triggers have been created:

10. Verify that the changed values are propagated from any subscriber or the publisher to all the
other by editing the Orders table in three separate editors. Be patient: It can take up to 2 minutes
for the synchronization to complete. Note the first-come-first-served style default conflict
resolution when the two subscribers update a record ‘simultaneously’.

11. You can review the current state of the merge process by selecting View synch status from the
pop-up menu of the subscription. You can also start the process manually.

12. Generate and review replication scripts on both instances by selecting Generate scripts from the
pop-up menu of the Replication group.

13. Delete all replication objects.

Log shipping

While the primary application area of replication is business process management, log shipping is
designed to support disaster recovery of a database, by creating and synchronizing an exact, usually read-
only copy of the database also known as a ‘warm’ standby database. A log can be shipped from the primary
sever to multiple secondary servers.

The three steps involved in log shipping are as follows.

1. A backup job running on the primary server backs up the database transaction log to the local
server

2. A copy job running on the secondary server copies the log to a configurable destination (e.g. a
network file server)

3. A restore job running on the secondary server restores the backup to the secondary database

An alert job may also be running monitoring whether each step is performed as expected and on time.

Depending on the scheduling of the jobs, there is a latency between the two databases. This latency can
be exploited when the primary database is modified by mistake.

In our scenario, we create a warm backup of the nw database as follows. The primary and secondary
servers run normally on different machines, but in our demo we will use the same machine and two server
instances, the Primary and the Secondary.

1. Create a folder for the storing of the logs and another where the copy will be placed.

2. Set sharing for both folders to shared to everyone (Properties/Sharing/Share). Type Everyone and
set Read/Write.

3. In the pop-up menu of the nw database on the Primary server, select Properties and verify that
the recovery model of the nw database is set to Full.

4. In the Transaction log shipping group, enable the database for shipping, and select Backup
settings. Type \\STAN\logs as the network path of the backup folder and C:\ship\logs as the local
folder path.

5. Select Edit job and set a schedule that runs the job every minute. Note: this setting is only for
demo purposes.

file://///STAN/logs

6. Return to the Database properties panel and select Add in the Secondary databases section:

7. On the Secondary database settings panel, type the new database name nw_ship. Accept the
default for initialization. In the Copy files tab, enter C:\ship\dest as the destination path. Set the
schedule for every 1 minute. Note: this setting is only for demo purposes.

8. On the Restore tab, select Standby mode and Disconnect users and also specify a restore schedule
of every 1 minute. Note: this setting is only for demo purposes.

9. Finalize and run the configuration.

10. Verify the correct operation by connecting to both databases. You may need to wait 3 minutes to
see the changes in the secondary database.

11. Disable the log shipping on both servers. Since the shipped database on Secondary is in warm
standby state, you must execute the following commands before you can drop it:

use master
alter database nw_ship set single_user with rollback immediate
restore database nw_ship with recovery

4. Database administration and maintenance

The most common tasks of relational database administration are as follows.

 Database file management

 Maintaining database performance—solving issues like file fragmentation and re-computing table
statistics

 User and security management i.e. login roles, privileges, policies, and database encryption (not
detailed here)

 Configuring alerts for critical conditions

 Implementing a backup strategy

These elements may be implemented separately, or may be combined in a single database maintenance
plan.

Database files

Each database must have at least two files associated with it, one containing the database objects (mdf
file) and the other containing the transaction log (ldf file). It is the log file that is most critical with respect
to failover recovery, so this file should be stored on redundant media, e.g. on a RAID array.

In order to avoid fragmentation, the files are best placed on volumes that no other programs use. The
initial size of the database can be estimated based on the planned application. Too small amounts of auto-
grow may also lead to fragmentation.

In order to check database integrity it is a good practice to run DBCC CHECKDB ('DB_name') WITH
NO_INFOMSGS, ALL_ERRORMSGS, as often as a full backup is created. Any output means a corruption of
the database.

Database performance

Select the right recovery mode. Use the Full mode only if it is really needed by the application. Make sure
that the following database options are set:

 Auto update statistics = TRUE

 Auto create statistics = TRUE

 Auto shrink = FALSE (if possible, do not use table or database shrinking at all)

 Page verify = CHECKSUM

Tuning a database for an application is beyond the scope of this course.

Alerts

It is a good practice to set up an alert for all severity 24 errors. Another classic critical condition is when
the volume holding the database files is running low on free space.

PRACTICE: In this demo, we check the current size of the nw database in the C:\Program Files\Microsoft
SQL Server\MSSQL12.PRINCIPAL\MSSQL\DATA folder: 6.4 MB. For the demo, we set up an alert that fires
when the size hits 150% of the current size (in our case 9 MB)

The process has 4 steps:

1. Set up a database mail profile

2. Enable the mail profile in SQL server agent that will run the alert

3. Create an operator (a person who will receive the alert and resolve the issue)

4. Set up and test the alert

Setting up database mail
Select Server -> Management node -> Database mail ->Configure Database mail, then in the New profile
panel, type principal_mail for profile name, then click Add SMTP account. Enter the name of your SMTP
server.

Then you must specify the name of the new mail profile that will use the SMTP account:

By making the profile public, every user can use it for sending emails:

Verify that the profile works by Database mail -> Send test E-mail. Check that the email is received as
expected.

Enabling the mail profile in SQL server agent
Select Properties from the SQL server agent node popup menu:

Creating an operator
Select Operators from the SQL server agent node and add a new operator. In the E-mail name text box
enter your own email address.

Adding the alert
Select Alerts from the SQL server agent node and add a new alert:

Set the response to Notify operator (NW system administrator) by email:

Add a custom message. If you set the Delay between responses to 0, the response will be repeated
continuously as long as the alert condition is satisfied. We only use this setting for demo purposes.

Test the alert with the following script.

select object_name(object_id) as 'tablename',
 count(*) as 'totalpages',
 sum(Case when is_allocated=0 then 1 else 0 end) as 'unusedPages',
 sum(Case when is_allocated=1 then 1 else 0 end) as 'usedPages'
from sys.dm_db_database_page_allocations(db_id(),null,null,null,'DETAILED')
group by
object_name(object_id)
--we will create a big table
go
create table big_table (a char(4000))
declare @i int=0
while @i<1000 begin
 insert big_table values ('a')
 set @i=@i+1
end
--big_table has 500 pages -> alert is fired

Check the alert history and your mailbox. The alert mails are coming repeatedly. Then drop the big_table
and disable or delete the alert.

Backups

Taking regular backups is a common way to support disaster recovery. Backup files are to be stored on a
media different form that of the database and log files. The three most common strategies

#1. The minimum: use full backups in SIMPLE recovery mode, e.g. on a daily basis in off-load periods.
The backups should be stored and re-written in a round-robin fashion. In this way the data loss
can be limited to one day. The simple recovery mode means that he inactive parts of the log are
regularly truncated.

#2. Use full backups and differential backups in SIMPLE recovery mode, e.g. a daily full backup and
differential backups every 2 hours. In this way the data loss can be limited to two hours.

#3. If the application requires that the possibility of data loss be minimized, the database must be set
to FULL recovery mode and the second strategy must be combined with transaction log backups.
Full recovery mode means that the log may grow substantially. An example strategy is a daily full
backup, differential backups every 2 hours, and a transaction log backup every 20 minutes. If the
data file is lost, all the committed transactions will be preserved.

Backup jobs can be integrated in a database maintenance plan.

PRACTICE: We simulate a disk error. We create a full backup of the nw database in file device, stop the
SQL Server Principal service, delete the database file, start the service again and restore from backup,
using the WITH REPLACE option. Check the contents.

Maintenance plans

Before the plan can be created, we must enable the use of extended stored procedures for SQL Server
agent:

use master
sp_configure 'show advanced options', 1
go
reconfigure
go
sp_configure 'Agent XPs', 1
go
reconfigure
go

PRACTICE: Implement the backup strategy #3 in a new maintenance plan by setting the right schedule for
each task. Also include index re-computing and integrity checking as tasks to be executed on a daily basis.

5. APPENDIX: SQL examples for self-learning

use NORTHWIND
select * from employees
select lastname, birthdate from employees

--the name of those customers who are located in London
select companyname, city
from customers
--where city LIKE 'L%' and (city LIKE '%b%' or city LIKE '%n%') --partial matching
where city IN ('London', 'Lander')
where city ='London' or city ='Lander'

where city IN ('London')
where city = 'London'

--who is the youngest employee? What is her name?
--1/2) the maximal birthdate
--aggregate functions: max, min, avg, std, sum, count
select max(birthdate) as max_year, min(birthdate) as min_year
--, lastname --would be an error
from employees

--2/2) embed this query
select lastname, birthdate from employees
where birthdate = ('1966-01-27 00:00:00.000')

select lastname, birthdate as "birth date" from employees
where birthdate = (
 select max(birthdate) as max_year
 from employees
)

--PROBLEM: find the ShipAddress of the first order
select orderdate, shipaddress from orders
where orderdate = (
 select min(orderdate) as min_date
 from orders
)

--ship addresses of the youngest employee
--joining tables
select distinct lastname, shipaddress
from orders o inner join employees e on o.employeeid=e.employeeid
where e.employeeid = (
 select employeeid from employees
 where birthdate = (
 select max(birthdate) as max_year
 from employees
)
)
order by shipaddress --desc

--which products were ordered form the youngest employee
--note: always start with the FROM part of the query
select distinct p.productname, e.lastname
from orders o inner join employees e on o.employeeid=e.employeeid
 inner join [order details] od on od.orderid=o.orderid
 inner join products p on p.productid=od.productid

where e.employeeid=9 --she is the youngest
order by productname

--PROBLEM: which are the ship cities of products with CategoryID=1?
select distinct o.shipcity
from orders o inner join [order details] od on od.orderid=o.orderid
 inner join products p on p.productid=od.productid
where p.categoryid = 1 --our search conditon
order by shipcity

--No. of orders per employee?
--1/5) GROUPING
select employeeid, count(*)
from orders
group by employeeid

--a note aside: how to test for null?
select * from orders where employeeid is null
delete from orders where employeeid is null

--2/5) DO NOT DO THIS:
select e.lastname, count(*)
from orders o inner join employees e on o.employeeid=e.employeeid
group by e.lastname
--results in logical error if there are
--2 persons with the same lastname!!!

--3/5)
select e.lastname, e.firstname, count(*)
from orders o inner join employees e on o.employeeid=e.employeeid
group by e.employeeid, e.lastname, e.firstname
--this query misses the agent with no orders

--PROBLEM: list the number of products in each Category (we need the CategoryName also)
3. select c.categoryid, c.categoryname, count(*) as no_prod
1. from products p inner join categories c on p.categoryid=c.categoryid
2. group by c.categoryid, c.categoryname
4. order by no_prod desc

--4/5)
select e.employeeid, e.lastname, e.firstname, count(*)
from employees e left outer join orders o on o.employeeid=e.employeeid
group by e.employeeid, e.lastname, e.firstname
--problem: we have a fake count of 1 for the idle agent

--5/5)
select e.employeeid, e.lastname, e.firstname, count(o.orderid) as no_ord
from employees e left outer join orders o on o.employeeid=e.employeeid
group by e.employeeid, e.lastname, e.firstname
order by no_ord desc
--all problems solved

--who is whose boss
select e.lastname, boss.lastname as boss, bboss.lastname as boss_of_boss
from employees e left outer join employees boss on e.reportsto=boss.employeeid
 left outer join employees bboss on boss.reportsto=bboss.employeeid

--No. of orders per employee?

select e.lastname, count(orderid)
--count(*) would produce an order for Lamer who has no order at all
from employees e left outer join orders o on
--from employees e inner join orders o on
e.employeeid = o.employeeid
group by e.employeeid, e.lastname
order by count(*) desc

--who has no orders?
select e.*
from employees e left outer join orders o on
e.employeeid = o.employeeid
where o.orderid is null

--which is the biggest order?
--arithmetics

4. select o.orderid,
 cast(o.orderdate as varchar(50)) as order_date,
 str(sum((1-discount)*unitprice*quantity), 15, 2) as order_total,
 sum(quantity) as no_of_units,
 count(d.orderid) as no_of_items
1. from orders o inner join [order details] d on o.orderid=d.orderid
2. where...
3. group by o.orderid, o.orderdate
--order by o.orderdate
5. order by sum((1-discount)*unitprice*quantity) desc

--in order to order by date: group by o.orderid, o.orderdate

--who's the most successful agent? with how many orders?
-- observe: having
-- count distinct
-- formatting numbers

select u.titleofcourtesy+' '+u.lastname+' '+ u.firstname +' ('+u.title +')' as name,
--select u.lastname as name,
str(sum((1-discount)*unitprice*quantity), 15, 2) as cash_income,
count(distinct o.orderid) as no_of_orders, count(productid) as no_of_items
from orders o inner join [order details] d on o.orderid=d.orderid
 inner join employees u on u.employeeid=o.employeeid
group by u.employeeid, u.titleofcourtesy, u.title, u.lastname, u.firstname

--having count(o.orderid)>200 –if we are only interested in agents with more than 200 orders
order by cash_income
--sum((1-discount)*unitprice*quantity) desc

--why do we have only 9?

select count(*) from employees

--it should be 10!
--we would also need those with 0 order
-- isnull function

select isnull(u.titleofcourtesy, '')+' '+isnull(u.lastname, '')+' '+ isnull(u.firstname, '')
+' ('+isnull(u.title, '') +')' as name,
isnull(str(sum((1-discount)*unitprice*quantity), 15, 2), 'N/A') as cash_income,
count(distinct o.orderid) as no_of_orders, COUNT(d.productid) as no_of_items
from employees u left outer join
 (orders o inner join [order details] d on o.orderid=d.orderid)

on u.employeeid=o.employeeid
--where u.titleofcourtesy='Mr.' –if we are only interested in men
group by u.employeeid, u.titleofcourtesy, u.title, u.lastname, u.firstname
order by sum((1-discount)*unitprice*quantity) desc

--which is the most popular product?
-- top 1

select top 1 p.productid, p.productname, count(*) as no_app,
 sum(quantity) as total_pieces
from products p left outer join [order details] d on p.productid=d.productid
group by p.productid, p.productname
order by no_app desc

--which agent sold the most of the most popular product?
--first version
 select top 1 u.titleofcourtesy+' '+u.lastname+' '+ u.firstname +' ('+u.title +')' as name,
 sum(quantity) as no_pieces_sold
 from orders o inner join [order details] d on o.orderid=d.orderid
 inner join employees u on u.employeeid=o.employeeid
 where d.productid = 59 --we know this already
 group by u.employeeid, u.titleofcourtesy, u.title, u.lastname, u.firstname
-- having....
 order by sum(quantity) desc

/**
PROBLEM

--which agent sold the most of the most popular product, and what is the name of that product?
--in the pubs_access database: which is the most frequnted publisher of the author with the
most publications?

**/

--MULTI LEVEL GROUPING
--datetime fUNCTIONS
select 2
select getdate() --datetime data type
select DATEDIFF(s,'2013-10-10 12:13:50.370', '2013-10-10 14:16:50.370')
select DATEADD(s, 1000, '2013-10-10 14:16:50.370')
select YEAR(getdate()), MONTH(getdate())

--ORDERS BY MONTH AND AGENT
select e.employeeid, lastname, year(orderdate) as year, month(orderdate) as month,
count(orderid) as no_of_orders
from employees e left outer join orders o on e.employeeid=o.employeeid
group by e.employeeid, lastname, year(orderdate), month(orderdate)
order by lastname, year, month

--the same in another way:
select e.employeeid, lastname,
cast(year(orderdate) as varchar(4)) +'_'+ cast(month(orderdate) as char(2)) as month,
count(orderid) as no_of_orders
from employees e left outer join orders o on e.employeeid=o.employeeid
group by e.employeeid, lastname, cast(year(orderdate) as varchar(4)) +'_'+
cast(month(orderdate) as char(2))
order by lastname, month

--select case

select e.employeeid, lastname,

case
 when month(orderdate) < 10 then cast(year(orderdate) as varchar(4)) +'_0'+
cast(month(orderdate) as char(2))
 when month(orderdate) >= 10 then cast(year(orderdate) as varchar(4)) +'_'+
cast(month(orderdate) as char(2))
 else 'N.A'
end as month,
count(orderid) as no_of_orders
from employees e left outer join orders o on e.employeeid=o.employeeid
group by e.employeeid, lastname,
case
 when month(orderdate) < 10 then cast(year(orderdate) as varchar(4)) +'_0'+
cast(month(orderdate) as char(2))
 when month(orderdate) >= 10 then cast(year(orderdate) as varchar(4)) +'_'+
cast(month(orderdate) as char(2))
 else 'N.A'
end --a function serves better for this purpose
order by lastname, month

--using temp tables

select GETDATE() as ido into #uj_tabla
select * from #uj_tabla
drop table #uj_tabla

select * into #uj_tabla from employees

--drop table #tt

select e.employeeid, lastname, year(orderdate) as ev, month(orderdate) as month,
count(orderid) as no_of_orders
into #tt
from employees e left outer join orders o on e.employeeid=o.employeeid
group by e.employeeid, lastname, year(orderdate), month(orderdate)
order by lastname, month

select * from #tt

--Warning: Null value is eliminated by an aggregate or other SET operation.
--reason: an aggregate function(max,sum,avg..) exists on null values

select * from #tt

select lastname, str(avg(cast(rend_szam as float)), 15, 2) as avg_no_of_orders
--select lastname, avg(rend_szam) as avg_no_of_orders
from #tt group by employeeid, lastname
order by atlagos_rend_szam desc

--another solution for the same problem with an embedded query

select forras.lastname, str(avg(cast(forras.rend_szam as float)), 15, 2) as avg_no_of_orders
from (
 select e.employeeid, lastname, year(orderdate) as ev, month(orderdate) as month,
count(orderid) as no_of_orders
 from employees e left outer join orders o on e.employeeid=o.employeeid
 group by e.employeeid, lastname, year(orderdate), month(orderdate)
) as f –using an alias is compulsory
group by employeeid, lastname
order by avg_no_of_orders desc

--HOMEWORK PROBLEMS:

--AVG monthly number of orders for all products?

--Who had more than double order total compared to his boss?

