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Introduction

The aim of this booklet is to introduce the students to the world of random phenomena.
The real world is plenty of random things. Without striving to completeness, for example, think
for waiting time in the post office, or the working time of a machine, the cost of the repair of an
instrument, insurance, stock market and rate of exchange, damages caused by computer viruses
and so on. It is obvious that these random phenomena have economic significance as well;
consequently their random behaviour has to be handled. The method of handling is served by

probability theory.

The concept of probability was developing during centuries. It originates in gambles, for
example playing cards, games with dice but the idea and the developed methods can be applied
to economic phenomena, as well. Since medieval ages people realized that random phenomena
have a certain type of regularity. Roughly spoken, although one can not predict what happens
during one experiment but it can be predicted what happens during many experiments. The
mentioned regularities are investigated and formed by formal mathematical apparatus. The
axiomatic set up of probability was published by Kolmogorov in 1933 and since then the theory
of probability, as a branch of mathematics, has been growing incredibly. Nevertheless there are
problems which are very simple to understand but very difficult to solve. Solving techniques
require lots of mathematical knowledge in analysis, combinatory, differential and integral
equation. On the other hand computer technique is developing very quickly, as well; hence
great immense of random experiences can be performed. The behaviour of stochastic
phenomena can be investigated experimentally, as well. Moreover, difficult probabilistic

problems can be solved easily by simulation after performing a great amount of computations.

This booklet introduces the main definitions connected to randomness, highlights the
concept of distribution, density function, expectation and dispersion. It investigates the most
important discrete and continuous distributions and shows the connections among them. It
leads the students from the properties of probability to the central limit theorem. Finally it ends

in the basis of statistics preparing the reader for further statistical studies.
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a. Basic concepts and notations

The aim of this chapter

This chapter aims with getting acquainted with the concept of outcome of an
experiment, events, occurrence of an event, operations with event. We
introduce o algebra of events.

Preliminary knowledge

The applied mathematical apparatus: sets and set operations.

Content

a.1. Experiments, possible outcome, sample space, events

a.2. Operations with events

a.3. o algebra of events
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a.l. Experiments, possible outcome, sample space, events

The fundamental conception of the probability theory is experiment.
Experiment is observation of a phenomenon.
This phenomenon can be an artificial (caused by people) one or a phenomenon in the nature, as
well. We do not bother whether the experiment originates from home made or natural
circumstances. We require that the observation should be repeated many times.
Actually we list some experiments:
e Measure the water level of a river.
Measure air pollution in a town.
Measure the falling time of a stone from a tower to the ground.
Measure the waiting time at an office.
Measure the amount of rainfall at a certain place.
Count the number of failures of a machine during a time period.
Count the number of complains connected to a certain product of a factory.
Count the infected files on a computer at a time point.
Count the number of shooting stars at night in August.
Count the number of heads if you flip 100 coins.
Investigate the result of flipping a coin.
Investigate if there is an odd number among three rolls of a die.
Investigate the energy consumption of a factory during a time period.
Investigate the demand of circulation of banknotes at a bank machine.
Investigate the working time of a part of a machine.
Investigate the cost of the treatment of a patient in a hospital.
Sum the daily income of a supermarket.
Sum the amount of claims at an insurance company during a year.
List the winning numbers of the lottery.

If one “takes measure”, ‘“counts”, “investigates”, “sums” and so on, one observes a
phenomenon.

In some cases the result of the observation is unique. These experiments are called
deterministic experiment. In other cases the observation may end in more than one results.
These experiments are called stochastic or random experiments. Probability theory deals with
stochastic experiments.

If one performs an experiment (trial), he can take into consideration what may happen. The
possible results are called possible outcomes, or, in other words, elementary events. The set
of possible outcomes will be called as sample space.

We denote a possible outcome by ®, and the sample space by Q.

What is considered as “possible outcome” of an experiment? It is optional. First, it depends on
what we are interested in. If we flip a coin, we are interested if the result is head (H) or tail (T)
but usually we are not interested in the number of turnings. We can also decide whether the
result of a measurement should be an integer or a real number. What should be the unit of
measurement? If you investigate the water level of a river, usually the most important thing is
the danger of flood. Consequently low-medium-high might be enough as possible outcomes.
But possible outcomes are influenced by the things that are worth investigating to have such
cases which are simple to handle. If we are interested in the number of heads during 100 flips,
we have to decide whether we take into consideration the order of heads and tails or it is
unnecessary. Therefore, during a probabilistic problem the first task is to formulate possible
outcomes and determine their set.

In the examples of previous list, if we measure something, a possible result may be a

nonnegative real number, therefore Q=R . If we count something, possible outcomes are
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nonnegative integer, therefore Q= N. If we investigate the result of a flip, the possible
outcomes are head and tail, so Q= {H,T}.This set does not contain numbers. The sample
space may be an abstract set. If we list the winning numbers of the lottery (5 numbers are
drawn of 90), a possible outcome is o = {1,2,3,4,5}, and another one

is®, = {10,20,50,80,90}. Possible outcomes are sets themselves. Consequently, the sample

space is a set of sets, which is an abstract set again.

If an experiment is performed, then one of its possible outcomes will be realized. If we repeat
the experiment, the result of the observation is a possible outcome which might be different
from the previous one. This is due the random behaviour. After performing the trial we know
its result, before making the trial we are only able to take into consideration the possible results.

In practice events are investigated: they occur or not.
Events are considered as a subset of the sample space. That means, certain possible outcomes
are in a fixed event, others are not contained in it. We say that the event A occurs during an
experiment if the outcome in which the trial results is the element of the set A. If the outcome
observed during the actual experiment is not in A, we say that A does not occur during the
actual experiment. If the observed outcomes are different during the experiments, the event A
may occur in one experiment and may not in another one.
This meaning coincides with the common meaning of occurrence. Let us consider some very
simple examples.

EL Roll a single six-sided die. The possible outcomes are: 1 point is on the upper
surface, 2 points are on the upper surface, ..., 6 points are on the upper surface. Briefly,

Q= {1,2,3,4,5,6} i=1,2,3,4,5,6 indicates the possible outcomes by the number of points. Let
AcQ, A={135}. The elements of A are the odd numbers on the surface. If the result of

the roll is o, =1, then ®, € A. We say that A occurs during this experiment. On the other
side, in common parlance we usually say that the result of the roll is odd number. In case the
result of the experiment is w, =6, then ®; ¢ A, A does not occur during this experiment.
The roll is not odd. Although A is a set, A expresses the “sentence” that the result of the trial is
odd. If the trial ends in showing up ®, =6, we shortly say that the result of the roll is “six”.

E2. Measure the level of a river. Q =R . Suppose that if the level of the river is
more than 800cm, then there is danger of flood. The sentence “there is danger of flood” can be
expressed by the event (set) A = {X eR, :800< X}c Q. If the result of the measurement is

®=805cm, thenw e A. A occurs, and indeed, there is danger of flood. If the result is the
measurement is w =650 cm, thenw ¢ A. We say A does not occur, and really, there is no
danger of flood in that case.

E3. Count complains connected to a certain type of product. Now € = N. If “too
much problems” means that the number of complains reaches a level, for example 100, then
sentence “too much problem” is the set A ={n € N:100 < n}. If the number of complaints is

® =160, then m € A.The event A occurs and there are too much complains. If the number of
complains ism =86, thenw ¢ A. A does not occurs, and indeed, the result of the trial does not
mean too much problems.

The event Q is called certain or sure event. It occurs sure, as whatever the outcome of the
experiment is, it is included in Q , therefore € occurs.

The event & (empty set) is called impossible event. It can not occur, as whatever the outcome
of the experiment is, it is not the element of .

Further examples for events:
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E4. Flip twice a coin. Take into consideration of the order of the results of separate
flip. NowQ = {(H,H),(H, T),(T,H),(T, T)}, where the outcome (H,T) represents that the
first flip is head, the second one is tail.

The event “there at least one head among the flips” is the set A= {(H, H),(H, T),((T,H)}:

The event “there at most one head among the flips” is the set B = {(H, T), (T, H), (T, T)}

The event “there is no head among the flips” is the set C = {(T, T) .

The event “there is no tail among the flips” is the set D = {(H, H)} .The event “the first flip is
tail among the flips” is the set E = {(T,H),(T,T)}.

The event “the flips are different” is the set F = {(H, T), (T, H)}

The event “the flips are the same” is the set G = {(H,H),(T, T)}.

We note that the number of subsets of sample space Q is 4% =16, consequently there are 16
events in this example including certain and impossible event, as well.

E5.  Roll twice a die. Take into consideration the order of rolls. In that case
Q={11),12),13),14),15),1,6),(21),...(6,6)}=={(i,]):1<i<61<j<6, i, jare integer}.
The event “there is no 6 between the rolls” is
A={11),12),13)14)@15),(21)....(25),...(51)....(55)}

The event “the sum of the rolls is 6” is B = {(1,5),(2,4),(3,3),(4,2),(5.1)} .
The event “ the maximum of the rolls is 3” is C = {(1,3),(2,3),(3,3).(3.2),(31)}.
The event “the minimum of the rolls is at most 5” is D ={(5,5),(5,6),(6,5),(6,6)}

As the number of possible outcomes is 6-6 =36, therefore the number of events is
2% =6.87-10".

EG6. Pick one card from a pack of Hungarian cards containing 32 playing cards.
Now, = {ace of heartsace of leaves ace of acorns ace of bells, under of hearts,...,}
upper of hearts,..,kingof hearts,...,tenof hearts, sevenof hearts,...

The event “the picked card is heart” is

_ Jace of hearts upper of hearts,under of hearts,kingof hearts,

a {ten of hearts,nineof hearts,eight of hearts,seven of hearts }
The event “the picked card is ace” is
B = {ace of hearts, ace of leaves, ace of acorns, ace of bells}.

The event “the picked card is ace and heart” is C= {ace of hearts}.

E7. Pick two cards from a pack of Hungarian playing cards without replacing the
chosen card. Do not take into consideration the order of the card.
In this case the sample space is

_ [{aceof heartsace of leaves}, {ace of hearts,upper of hearts....,
| {seven of acorns,tenof acorns},..... '

containing all the sets of two different elements of cards.
The event “both cards are ace” is

{ace of hearts,ace of leaves}, {ace of heartsace of bells},
A =1 {ace of heartsace of acorns}, {ace of leaves,ace of bells}, - .
{ace of leaves,ace of acorns}, {ace of bells, ace of acorns}
The event” both cards are hearts” is
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B = {{ace of heartskingof heartd, {ace of hearts,upper of hearts},....} .

If we want to express the event the “first card is heart”, it can not be expressed actually,
because we do not take into consideration the order of cards. If we want to express this event,
we have to modify the sample space as follows:

Q™ = {(ace of hearts,ace of leaves), (ace of leaves,ace of hearts),... |.

The outcome (aceof heartsace of leaves) means that the first card is the ace of hearts; the
second one is the ace of leaves. The outcome (ace of leaves,ace of hearts) means that the first
card is the ace of leaves; the second one is the ace of hearts. To clarify the difference, we
emphasize that outcome {aceof hearts,ace of leaves} means that one of the picked playing

cards is ace of hearts, the other one is ace of leaves. In the sample space Q™ the event “first
card is heart” can be written easily. This is an example in which the formulation of the sample
space depends on the question of the problem, not only on the trial.

E8.  Choose a number from the interval [0,1]. In that case Q =[0,1].

The event “first digital of the number is 6” is A = [0.6,0.7).

The event “second digital is zero” is
C=[0,0.01)L[0.1,0.11)U[0.2,0.21)U...U[0.9,0.91). The event “all of the digital of the

number are the same” is B = {0,0.1,0. 2,...,0.9} .

In this example the number of all possible outcomes and the number of events are infinity.

a.2. Operations with events

As events are sets, the operations with events mean operations on sets. In this subsection we
interpret the set operations by the terminology of events.

e Union (or sum) of events
First recall that union of two or more sets contains all the elements of the sets.
Let A and B be events, that is AcQ andBcQ. Now AUBcQ holds as well. AuB
occurs if me AUB holds, consequently we A or meB. If e A, then A occurs, if weB,
then B occurs. Summarizing, occurrence of A B means that A or B occurs. At least one of
them must occur. That means either A and B or both events occur. We emphasize that ,,OR” is
not an exclusive choice but a concessive one. Union of events can be expressed by the word
OR.

e Intersection (or production) of events
First recall that intersection of two or more sets contains all the common elements of the sets.
Let A and B be events, that is AcQ andBcQ. Now AnBcQ holds, as well. AnB
occurs, if @e AN B holds, consequently me A and meB. If e A, then A occurs, if ©eB
then B occurs. Summarizing, occurrence of A B means that both A and B occur. Intersection
of events can be expressed by the word AND.
Two events are called mutually exclusive if their intersection is the impossible event. That
means if either of them holds the other one can not occur.

e Difference of two events
First recall that the difference of sets A and B contains all of elements of A which are not
contained by B.
Let A and B be events, thatis Ac Q andBc Q. Now A\BcQ hold, as well. A\ B occurs
if ®e A\B holds, consequently me A and m¢B. If weA, then A occurs. If @B then B
does not occur. Summarizing, occurrence of A\ B means that A occurs but B does not.

¢ Complement of an event
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Note that the complement of a set A is the set of all elements in Q which are not in A. We
denote it by A.

Let A be an events, that is Ac Q.AcQ holds, as well. e A holds, if ogA. If ogA,
then A does not occur. Consequently, A can be expressed by the word NOT A.

Remarks

e Operations on events have all the properties of operations on set: union, intersection are
commutative, associative, the union and intersection is distributive.
. Further often used equalitiy is the following one:

A\B=A B, and the de Morgan’s equalities:

AUB=ANB, and for infinite many sets UAi =nA_,
i=1 i=1
AN B=AUB, and for infinitely many sets mAi :UA_,

i=1 i=1

Actually we present some examples how to express complicated events by the help of simple
ones and operations.

E1. Choose one from the students of the Pannon University. Let A be the event that
the student is a students of economics, let B be the event that the student lives in a student
hostel. In that case the sample space is the set of all the students of the university, one of its
subset is the set of those students who are students of economics; another of its subset is
formed by the students living in a student hostel. If the chosen student belongs to the subset
mentioned first, then the event A occurs. Actually, for example, the following events can be
described by A, B and operations:

The chosen student is student of economics but does not live in a student hostel: ANB=A\B.
He/she is not student of economics and he does not live in a student hostel: AN B.
He/she is not student of economics or does not live in a student hostel: AU B.

He/she is student of economics or does not live in a student hostel: A UB.
He/she is not student of economics and he/she lives in a student hostel or he is student of
economics and does not live in a student hostel: (B\ A) U (A\B).

He/she is student of economics and he lives in a student hostel or he/she is not student of
economics and he/she does not live in a student hostel: (A ~ B)uU (A N B).

E2. In a machine two parts may fail: part x and part y. Let A be the event that part x
fails, let B the event that part y fails.
If both parts fail, then A~ B holds.
At least one of them fails: A B holds.
Part x fails but part y does not: A\ B holds.
Either of them fails: (A\B)u(B\A) holds.

Neither of them fails: A ~ B holds.
At least of them does not fail: AW B holds.

We note that in this case the sample space can be defined as follows:
Q= {(f,f),(f,n)n,f),(n,n)}, and possible outcome (f,n) represents that part x fails and part y
does not.

E3. Let us investigate the arrival time of a person to a meeting. Let us suppose that the
arrival time is a point in [-515]. (-1 represents that he arrives 1 minute earlier than the
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scheduled time, 5 represents that he arrives 5 minutes late). Let A be the event that he is late, B
the event that the difference of the scheduled time of meeting and the arrival time is less than 2
minutes (briefly small difference). Now A=[-5,0), B=(-2,2).

The event that he is late but small difference is AN B.

He is not late or not small difference is: AUB.

Both events or neither of them hold: (A ~B)uU (Z\ mE).

He is late but not small difference is: A ~B.
He is not late or not small difference is: AU B.

a.3. o algebra of events

Definition Let the set of all possible outcomes be fixed and denoted by Q. The set A
containing some of all the subsets of Qs called 0 algebra, if the following properties hold:

1. QecA.
2. IfAc A, then Ae A holds, as well.
3. IfA; e A,i=123.... then [ JA, € A holds as well.
i=1
Remarks

e Jc AasT=Qand Qe A.

e Applying the properties of operations one can see that if A, € A , then ﬂAi eA.Asa

i=1

proof, take into consideration that ifA €A, thenA; e A, consequently.| JA e A.,.

i=1

Therefore, OA_izﬁAi =ﬁAi eA.
i=1 i=1 i=

o If AcA andBe A, then A\Be A holds as well. As a proof, take into

consideration that A\B=ANB. If Be A, thenB .4 holds as well, and A~Be A is also
satisfied.

Strictly, the elements of the G algebra ‘A are called events. The above properties express that
if some sets are events, then their union, intersection, difference and complement are events, as
well.

In probability theory we would like determine the probability of events characterizing by it the
relative frequency of the occurrence during many experiments.
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b. Probability

The aim of this chapter

The aim of this chapter is getting acquainted with the basic properties of the
probability. We present the relative frequency, introduce the axioms of
probability and we derive the consequences of the axioms. Classical and
geometrical probability are also introduced and applied for sampling

problems.

Preliminary knowledge

The applied mathematical apparatus: sets and set operation. Combinatorial

counting problems. Co-ordinate geometry. Basic knowledge in any computer

program language.

Content

b.1. Frequency, relative frequency

b.2. Axioms of the probability

b.3. Consequences of axioms

b.4. Classical probability

b.5. Geometrical probability
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b.1. Frequency, relative frequency

The aim of the probability theory is to characterize an event by a number which expresses
its relative frequency. More precisely, the events which occur frequently during many
experiments are characterized by a large number. The events which are rare are characterized
by a small number. If one performs n experiments and count how many times the event A
occurs, one gets the frequency of A denoted by k,(n). Itis obvious, that 0<k, <n. If we
are interested in the proportion of occurrences of A and the number of trials, we have to divide

k() ka(m) _
S e

k 5 (n) .by n, that is take the relative frequency. It is easy to see that 0 <

Moreover, ko (n)=n, therefore M =1. If A and B are events for which AnB=, then

n
Kace (N) _ ka(n) + kg (n)
n n n
frequency depends on the actual series of experiments, hence it changes if we repeat the series
of experiments. During the centuries, people recognized that the relative frequency has a kind
of stability. As if it had a limit. To present this phenomenon let us consider the following
example.

Kaog(N) =Kk (n)+kg(n), consequently . The value of relative

Let the experiment be flipping a coin many times. Let A be the event that the result is head
during one flip.

In Table b.1, one can see the frequency and relative frequency of event in the function of the
number of experiments (n).

Result

of the T T T H T T H T H H

trial

K, (n) 0 0 0 1 1 1 2 2 3 4

n 1 2 3 4 5 6 7 8 9 10

K, (n) 0 0 0 0.25 0.2 0.17 0.27 |0.25 |0.33 0.4
n

Table b.1 Frequency and relative frequency of heads in the function of the number of
experiences

Ka(n)

Draw the graph of relative frequency —2 in the function of n. We can see the graph in the
n

following figures: Fig.b.1, Fig.b.2, Fig.b.3 show oscillations. On the top of all, if we performed
the series of experiments once again, we presumably would get other results for relative
frequencies. If we increase the number of experiments the graph changes. Although there are
fluctuations at the beginning of the graph, later they disappear, the graph looks almost constant.
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Fig.b.2 Relative frequency of heads in the function of the number of experiences
(n=1000)

The mentioned phenomenon becomes more and more expressive if we increase the number of
experiments, as Fig. b.3 shows, as well.
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Fig.b.3 Relative frequency of heads in the function of the number of experiences
(n=10000)

If we look at Fig.b.3 thoroughly, we can realize that for large values of experiments, the
relative frequency is almost constant function. Although fluctuations in the number of heads
exist, they are small as compared to the number of experiences. This phenomenon was drafted
during the centuries by the statement “relative frequency has a kind of stability”. This
phenomenon is expressed mathematically by the “law of large numbers”.

b.2. Axioms of probability

If we would like to characterize the relative frequency by the probability, the probability should
have the same properties as the relative frequency. Therefore, we require the properties for
probability presented previously for the relative frequency.

Definition Let /A be a o algebra. The function P: A — R is called probability measure if
the following three requirements (axioms) hold:

I) 0<P(A).
) PQ)=1.

1) If A; e A, i=123,...forwhich A, "A; = i#], then P(UAJ:ZP(AJ.
i=1 i=1
Remarks
e The above axioms 1), Il) and Ill) are called as Kolmogorov’ axioms of probability.
They were published in 1933.
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o Probability measure maps the oalgebra of events to the set of real numbers. The
elements of A (events) have probability. As P maps to R, P(A) is a real number. The
number P(A) is called the probability of the event A.

o We define probability by its property. It means that every function is probability measure
that satisfies 1), 1) and I11).

e Property 1), I1) and 111) correspond to the properties of relative frequency. The property
P(A) <1 is not requirement; it can be proved from the axioms. Additive property is presented
for two events in case of relative frequency, but it is required for countable infinitely many
events in axiom Il1) in case of probability.

o Property I) expresses that the probability of any event is a nonnegative number.

o Property 1) expresses that the probability of the sure event equals 1.

o Property I1) expresses additive property of the probability for countable infinitely many
mutually exclusive events.

e As A isa o algebra, the property I1) is well defined. If A, € A, i1=12,3,...hold, then

(U A, J e A isalso satisfied, consequently it has probability.

i=1
If a function P satisfies axiom 1), 1) and I11), it satisfies many other properties, as well. These

properties are called as consequences of axioms. These properties serve to express probabilities
of “composed” events by the help of probabilities of “simple” events.

b3. Consequences of the axioms

We list the consequences of the axioms and we present their proofs. During this we do not use
any heuristic evidences, we insist on strict mathematical inferences.

Cl.|P(QD)=0.
D=ududu...and I =. That means that the impossible event can be written as
the union of infinitely many pair-wise mutually exclusive events. Consequently, axiom IlI) can

n

be applied and P() =) P(Q). Recalling that » x; =1im>» x;, we can conclude that
i-1 i-1 =i

P(@)zZP(@)zr!iﬂln-P(@). If 0<P(Z) holds, then the limit is infinite, which is a
i=1

contradiction, as P(Z) is a real number. If P(&)=0, then n-P(Z)=0 also holds for any
value of n, therefore the limit is 0. In that case 0=P(J) = ZP(@) =0 holds, as well. Finally,

i=1
P(&) can not be negative, remember axiom I). Hence P(J) =0 must be satisfied.

C2. (finite additive property) If A, € A, i=12,...,n and A, mAj =, i#],then

n
P(A;U...UA,)=D P(A)=P(A)+...+P(A,)|
i=1
We trace this property to axiom Ill). Let A, =<, A, =9,.... Now we have infinitely
many events and A; NA; =9, i=12,..., j=12,..., i=]If i<n and j<n, this is our

assumption, if n<i or n<j holds, then A; =& or A; =&, consequently their intersection is
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the impossible event. Now axiom 1) can be applied and

P(UAi)zP(CJAi)=iP(Ai)=ZP(Ai)+P(®)+P(®)+...

As P(Z)=0, we get P(UAi )= ZP(Ai) and the proof is completed.

i=1 i=1

C3. LetAeAand BeA.|f AnB=@,then P(AUB)=P(A)+P(B)|
This is the previous property for n=2 with notation A, =A and A, =B. We emphasize it
because the additive property is frequently used in this form.

C4.Let Ac A.|P(A)=1—P(A)
This connection is really very simple and it is frequently applied in the real world.

It can be proved as follows: Q=AUA, and AnNA=0. Applying C3 we can see, that
P(Q) =P(A) + P(A) . Taking into consideration axiom 1) P(Q)=1, we get 1=P(A) + P(A).
Arranging the equality, it is easy to get C4. We mention that ‘A is o algebra, consequently if
Ac A then Ae A, which means that A has also probability.

C5.Let Ac A and Be A.[If BC A, then P(A\B)=P(A)—P(B) |

This formula expresses the probability of the difference of A and B by the help of the
probability A and B.

Take into consideration that Bc— A implies the equality A:(A\B)uB, moreover
(A\B)nB=. Consequently C3 can be applied and results in P(A)=P(A\B)+P(B).
Arranging the formula we get C5.

C6.Let Ac A and Be A.[If BC A, then P(B)<P(A)|

Recall C5, and take into consideration axiom ). These formulas imply
0<P(A\B)=P(A)—P(B). Non-negativity of P(A)—P(B) means C6.

C7.Let Be A.[P(B)<1].

This inequality is straightforward consequence of C6 withA=Q.
The formula expresses that the probability of any event is less than or equal to 1. This property

kA(n)<l
— =L

coincides with the property of relative frequency

C8.Let Ac A and Be A.|P(A\B)=P(A)-P(ANB)]
It is obvious that A=(A\B)U(ANB) and (A\B)n(ANB)=0.
Using C3 they imply P(A)=P(A\B)+P(ANB). Subtracting P(A~B) from both sides we

get C8.

We emphasize that in this formula there is no extra condition for the event A and B, but C5
contains condition B< A. Consequently C8 is a more general statement than C6. We mention
that if Bc A, then AnB=B, therefore C6 coincides with C8.

C9.Let Ac A and Be A.[P(AUB)=P(A)+P(B)-P(ANB)]

This formula expresses the probability of the union by the help of the probability of the events
and the probability of their intersection.

To prove it, take into consideration the identity AUB=(A\B)UB. Now (A\B)nB=0.

Applying C3 we get P(AUB)=P(A\B)+P((B). Now C8 implies the identity
P(AUB)=P(A)—P(ANB)+P(B) and the proof is completed.
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We note that C9 does not require any assumption on the events A and B. C3 holds for mutually
exclusive events. If ANnB=YJ, then P(AnB)=0 and

P(AuB)=P(A) +P(B)-—P(AnB)=P(A) +P(B) coinciding with C3.
We emphasize that probability is not additive function. It is only in case of mutually exclusive
events.

C10. LetAeA and Be A.P(AUB)<P(A)+P(B)|
This formula is straightforward consequence of C9 taking into account that 0<P(ANB). If
we do not subtract the nonnegative quantity P(A~B) from P(A)+P(B), we increase it,

consequently C10 holds. We note that C10 is not an equality, it serves an inequality for the
probability of union.

Cll. Let AcA,BeA and CeA.

Now,

\P(AuBuC)= P(A)+P(B) + P(C)—P(ANnB)-P(ANC)-P(BNC) + P(AmBmC).\
This formula is generalization of C9 for three events.

It can be proved as follows. Let X=AuUB and Y=C. Now AuBuUC=XuY. Applying
three times C9, first for X and Y, secondly for A B thirdly for AnC and BN C we get
P(AUBUC)=P(XUY)=P(X)+P(Y)-P(X"Y)=P(AUB)+P(C)-P((AUB) " C)=
P(A) +P(B) —P(AnB) +P(C) - P((AnC)u(BNC))=P(A) + P(B) + P(C) -P(ANB) —
~(P(ANC)+P(BNC)-P(ANCNBNC))=P(A) +P(B) + P(C) - P(ANB) -P(ANC) -
-PBNC)+P(ANBNC).

We note thatif AnB=BnC=ANnC=0,then AnBNC=J, and
P(ANB)=P(ANC)=P(BNC)=P(ANCNBNC)=0. Hence in this case Cl11 is
simplified to P(A UBuUC)=P(A) +P(B) + P(C) coinciding with C2.

Cl2. Let A €A i=12...,n.

P[OAij:Zn:P(Ai)— D PA NAD+ D PANA NA) - +(1)PA N LLNA)
i=1 i=1

I<i<j<n I<i<j<k<n

The formula can be proved by mathematical induction following the steps of the proof of C11
but actually we omit it.

It states that the probability of the union can be determined by the help of the probability of the
events, the probability of the intersections of two, three,...., and all the events.

The relevance of the consequences is the following: if we check that the axioms are satisfied
then we can use the formulas C1-C12, as well. By the help of them we are able to express the
probability of “composite” events if we determine the probability of “simple” events.

Actually we present examples how to apply C1-C12, if we know the probability of some
events. Further examples will be listed in the next subsection as well.

E1l. In a factory two types of products are manufactured: Type | and Type II.
Choosing one product, let A be the event that it is of Type I.. According to quality, the products
are ranged into two groups: standard and substandard groups. Let B be the event that the
chosen product is of standard quality. If we suppose that P(A)=0.7, P(B)=0.9 and

P(A " B) =0.65, give the probability of the following events:
The chosen product is of Type II.: P(K) =1-P(A)=0.3. (apply C4)
The chosen product is of substandard quality: P(E) =1-P(B)=0.1.(apply C4)
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The chosen product is of Type | and it is of substandard quality:
P(A N B)=P(A\B)=P(A)— P(ANB)=0.7—0.65=0.05. (apply C8)

The chosen product is of Type Il and it is of standard quality:
P(BNA)=P(B\A)=P(B)-P(AnB)=0.9-0.65=0.25. (apply C8)

The chosen product is of Type | or it is of standard quality:

P(AuB)=P(A)+P(B)-P(AnB)=0.7+0.9-0.65=0.95. (apply C10)
The chosen product is of Type Il or it is of substandard quality:
P(AuUB)=P(AnB)=1-P(AnB)=1-0.65=0.35.(apply the de Morgan’s equality and

C4)
The chosen product is of Type Il and it is of substandard quality:
P(AnB)=P(AuB)=1-P(AuUB)=1-0.95=0.05. (apply the de Morgan equality and
C4)

The chosen product is of Type | and of standard quality or it is of Type Il and of substandard
quality.
P(AnB)U(ANB)=P(AB)+P(A~B)-P(ANB)~(ANB)=065+005-0=07.
(apply C10, and Cl as (AN B)N (K m§)= D).

The chosen product is of Type | and of substandard quality or it is of Type Il and of standard
quality.

P(ANB)u(AnB)=P(ARB)+P(ANB)-P(ARB)(ANB)=P(A\B) +P(B\A)=
P(A)-P(AnB)+P(B)-P(AnB)=0.7-0.65+0.9-0.65=0.3. (apply C10, C8 and C1
taking into account that (A A E)m (K A B)z )

E2. Choose a person from the population of a town. Let A be the event that the chosen
person is unemployed, let B be the event that the chosen person can speak English fluently. If
P(A)=0.09, P(B)=0.25 and P(AnB)=0.02, then determine the probability of the

following events:

The chosen person is not unemployed: P(A) = 0.91. (apply C4)

The chosen person can not speak English fluently and he is unemployed:
P(BNA)=P(A\B)=P(A) - P(An B) =0.09-0.02=0.07. (apply C8)

The chosen person can speak fluently English and he is not unemployed:
P(BNA)=P(B)-P(BNA)=0.25-0.02=0.23. (apply C8)

The chosen person can speak fluently English or he is not unemployed:
P(BUA)=P(B)+P(A)-P(BNA)=1-0.25+0.09—0.07=0.77 (apply C10 and C8)

The chosen person can not speak fluently English or he is unemployed:
P(AUB)=P(A) +P(B) - P(A " B)=1—0.09+0.25—0.23=0.93 (apply C10 and C8)

The chosen person is not unemployed or can not speak fluently English:
P(AUB)=P(ANB)=1-P(ANB)=1-0.02=0.98 (apply the de Morgan’s equality and
Cc4

Tht)a chosen person is not unemployed and can not speak fluently English:
P(ANB)=P(AUB)=1-P(AUB)=1-(P(A) + P(B) - P(ANB))=
1-(0.09+0.25—0.02)=0.68 (apply the de Morgan’s equality C4 and C10)

E3. Game two types of races. Let A be the event that you win on the race of first type, let B be
the event that you win on the race of second type. Suppose P(A)=0.01, P(B)=0.03,

P(A " B)=0.002. Determine the probability of the following events:

You win on the race at least one of types:
P(AuB)=P(A)+P(B)-P(AnB)=0.01+0.03—0.002=0.038 (apply C10)
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You win on neither of them:

P(A N B)=P(AUB)=1—(P(A) + P(B) — P(A " B))=1-0.038=0.962 (apply C4 and C10)
You do not win on at least one of them:
P(AUB)=P(ANB)=1-P(AnB)=1-0.002=0.998 (apply the de Morgan’s equality and
C4

Yo)u win on the first type race but do not win on the second type race:

P(AN E) =P(A)-P(A " B)=0.01-0.002=0.008. (apply C8)

You win on the first type race or do not win on the second type race:

P(AUB)=P(A) + P(B) - P(A " B) =0.01+(1—0.03)— (0.01- 0.002)=0.978.(Apply  C10,
C4 and C8)

You win on both of them or you win on neither of them:
P(ANB)U(ANB)=P(ANB)+P(ANB)-P(ANBNANB)=
0.002+0.962—-0=0.964. (apply C10 and de Morgan’s equality)

You win on one of them but not on the other one:
P(A\B)U(B\A)=P(A\B)+P(B\A)-P(A\B)n(B\A)) =

P(A) —P(ANB) +P(B)— P(AB)=0.01-0.002+ 0.03—0.002=0.036 (apply C10)

b.4. Classical probability

In this subsection we present the often used classical probability. We prove that it satisfies
axioms 1), 1) and I11.).

Definition Let Q be a finite, non empty set, let |Q| =n.Let A =22, the set of all the subsets of

A
Q. The classical probability is defined as follows: P(A) :=%

Theorem Classical probability satisfies axioms 1), 11) and I11).
Proof First we note that “A is o algebra, consequently P maps the elements of a ¢ algebra to

the set of real numbers. Since 0<|A| and |Q|=n, P(A) ::%20 is satisfied, as well.
P(Q) ey
(9)

Finally, if A, cQ, i=1,2,...with A, NA; =0, i#], then A, =& except from finite indices
i,as Q has only finite different subsets. If A; #< 1=12,...k, and A mAJ— = i#]j,then

k K
in Z|Ai|
=! =1

k k
A=A, therefore ! = . We can conclude
Unj=2 0 G

k Kk
k gAi Z|A'| n

that P(|_JA;) = '*|Q| = i:1|Q| =>"P(A,). If we supplement the events A; by empty sets,
i=1 i=1

neither union nor the sum of the elements of the sets change. This means that axiom I11) holds,

as well.

Remarks
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e In the case of classical probability P({m}):'f%}':%, for anymeQ. This formula

expresses that all outcomes have the same probability. Conversely, if P({w})=x, for anyw e Q,

1
then 1=P(Q) =P(U(oi =Nn-X, which implies x=£. Furthermore,
i n
1 A .
P(A)=P(Um):ZP({co})=Z—=ﬁ. Consequently, if all the outcomes are equally
weA weA weAn
probable, we can use the classical probability.
e In many cases, the number of elements of Q and A can be determined by
combinatorial methods.

Examples
El. Roll once a fair die. Compute the probability that the result is odd, even, prime,

can be divided by 3, prime and odd, prime or odd, prime but not odd.

A fair die is one for which each face appears with equal likelihood. The assumption “fair”
contains the information that each outcome has the same chance, consequently we can apply
classical probability. We usually suppose that the die is fair. If we do not assume it, we will
emphasize it.

Returning to our example, Q=1{1,2,345,6}. |0/=6. P({i}):%, i=1,2,3,4,5,6.
_ o A3
A=the result is odd = {1,35}, |A|=3, P(A) 2@2320'5'
= i = = :EZEZ
B=the result is even=1{2,4,6}, B=3, P(B) o6 0.5.
C=the result is prime= {2,35}, |C|=3, P(C) :E _3_05
98 (03 PO 7jg g0
_ . _ D] 2
D=the result can be divided by 3= {3,6},|D|=2, P(D) =@=€: 0.333.

E=the result is prime and odd = {35}, |[E|=2, P(E) =§: 0.333.

F=the result is prime or odd = {1,2,35}, |[F=4, P(F) = % =0.667.

G= the result is prime but not odd = {2}, |G|=1, P(G) =%= 0.167.

We draw the attention that P(F) can be computed also by the following way: F=CUA,

consequently P(F)=P(C)+PA)-P(CnA) =§ + g —% =% ,

Similarly, G=CAA=C\A, P(C\A):P(C)—P(AmC)zg—

oN

1
-

We note that these latest computations are unnecessary in this very simple example but can be
very useful in complicated examples.

E2. Roll twice a fair die. Compute the probability of the following events: there is no six
between the rolls, there is at least one six between the rolls, there is one six between the rolls,
the sum of the rolls is 5, the difference of the rolls is 4, both rolls are different.
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Q= {(l j):lg i<61<j<6,i,] integers}. The outcome (i,j) can be interpreted as the result of the
first roll and the result of the second roll. For example (1,1) denotes the outcome, when the first
roll is 1, and the second roll is also 1. (3,1) denotes the outcome that the first roll is 3, the
second one is 1. (1,3) means that the first roll is 1, and the second roll is 3, which differs from
(3,2). If the die is fair, then (i,j) has the same probability as another pair, whatever are the
values of i and j (integers between 1 and 6). Consequently, each outcome has equal probability.
|Q]=6-6.

A=there is no “six” among the rolls = {(11), (1,2).....(,5), (2,1),...,(2,5),.....(6,),(5,2),...6.,5)}
|A|=5-5=25, P(A) = 2

B= there is at least one ,,SIX” between the rolls

={16).(26).(36).(4.6).(56).(6.1).(6,2).(6,3).(6,4).(6,5).(6,6)}. [B|=11, P(B)——
Another way for solving this exercise if we realize that B=A. Therefore,
25 11
P(B)=1-P(A)=1-"—"=",
(B)=1-P(A) = 3636
C=there is one ,,six” between the rolls
{16).(2,6).(36).(4,6).(56),(6.1),(6.2).(6,3).(6,4),(6,5)}. |c| =10, P(C) = —g =0.278.
D=the sum of the rolls is 5 = {(1,4),(2,3),(3,2), {4.1}}. |D|=4, P(D)_—G:%=0.111.

E=the difference between the two rolls is 4=1{(15),(2,6),(6,2) (5.1)}. |E[=4, P(E):%:

0.111

F=the results of the rolls are different = {(1,2),(2,1)....(6,5),(5,6)}. |F =30, P(F) ——2 =0.833.

Roughly spoken, the key of the solution is that we are able to list all the elements of the events
and we can count them on the finger.
Of course, if the number of possible outcomes is large, this way is impracticable.

E3. Roll a fair die repeatedly five times. Compute the probability of the following
events: there is no ,,six”” among the rolls, there is at least one ,,six”” among the rolls, the there is
one ,,six” among the rolls, all the rolls are different, all the rolls are different and there is at
least one ,,six” among the rolls, there is at least one ,,six” or all the rolls are different, there is at
least one ,,six” and there are equal rolls.

_{(ll, iy,05,04,05): 1<| 6,integers,j=],2,3,4,5}. Now i, denotes the result of the first
roll, i; denotes the result of the jth roll. If the die is fair, then all the outcomes are equally
likely. |Q|=6-6-6-6-6=65:7776
A=there is no “, six”” among the rolls = {(ll, iy,0q,0,,0c): 1<| 5,integers,j:],2,3,4,5}.

|A|=5° =3125. P(A)—%—OAOZ.
7776

B=there is at least one ,,six” among the rolls = A . P(B) =1— P(A) =1—0.402=0.598.
C=there is exactly one “six” among the rolls ={11116)(1112,6)...,(6,5555)}.

5
|c|=( ] .1.5.5.5.5=3125. P(C)—B;—iz—OAOZ.
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D=all the rolls are different = {(1,2,345),(1,234,6)....,(65432)}. |D|=6-5-4-3-2=720,
P(D) = 7206—0.093.

E= all the rolls are different and there is at least one “six” among the rolls =D NA=D\A.
P(E)=P(D) —P(A D). As we need the value of P(D n A), we have to compute it now. The
set D A contains all the elements of Q in which there is no “six” and the rolls are different.
|AnD|=5-4-3-2-1=120, P(AN D)_%_O.MS. Finally,
P(E)=P(D) — P(AnD)=0.093-0.015=0.078.

F= there is at least one “six” or all the rolls are different=AUD.

Applying P(A U D) =P(A) + P(D) — P(A ~ D) we get

P(F)=P(AUD)=1-P(A)+P(D) - (P(D) - P(D n A))=1-0.402+0.093—-0.015=0.676.
G=there is at least one “six” and there are equal rolls= AND=AUD.
P(G)=P(AUD)=1-P(AuUD)=1-(P(A)+P(D)-P(AND))=
=1-(0.402+0.093-0.015)=1-0.480=0.502

E4. Choose two numbers without replacement from a box containing the integer numbers
1,2,3,4,5,6,7,8,9. Compute the probability that both of them is odd, both of them is even, the
sum of them is at least 15, one of them is less then 4 and the other is greater then 7, the
difference of the numbers is 3.

If we take into consideration the order of drawn numbers, then the possible outcomes are
(i) iy iy, 1<i, <9, 1<i, <9, iy, are integers.
Q={(iy,i,):iy #i,1<i; <91<i, <9,integers}. |Q)=9-8="72. If we draw each number being
in the box with equal probability, all possible outcomes have the same chance. Consequently,
classical probability can be applied. Now contract those outcomes which differ only in the
order. For example, (1,2) and (2,1) can be contracted to {1,2}.

Actually, @*={{i,,i,}:1<i, <i, <9,integers}. As two possible outcomes were contracted,

consequently each possible outcome (without order) has equal chance in this model, as well.
Roughly spoken, one can decide whether he wants to take into consideration the order or no,

9 I
j o 98

classical probability can be applied in both cases. Q* = —
2) 27 2

Consider the event: both of them are odd:
If we take into consideration the order, then

A={((24)(26).(28).(4.2).(4,6). (48).(6.2).(6.4).(68).(8.2).(8.4). (8.6)}
|A|=4-3=12, P(A) =%=0.167.

If we do not take into consideration the order, then
A*=1{{2,4},{2,6},{2,8},{4,6} 14,8}, {6.8}}. |A*= ( j 6, P(A*):%:O.lG?.

Finally, we can realize that we get the same result in both cases.
Both of them are even:

B={13).(15).(17).(19).(31)....(9.7)}, |B|=5-4=20, P(B) =% =0.278.

B*={{1,3},{1,5},...,{7,9}},|B*|=(] 10, P(B*)—1—2—0.278.

The sum of them is at least 15:
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Cc={69)(7.8).(7.9).(87).(89).(96).(9,7).(98)}.|C|=8, P(C) = % =0.111.

C*=16.9}, 7.8, {7,989}, [C*=4, P(C¥)= % =0.111.

One of them is less than 4 and the other one is greater than 7:
D={18).(81).(19).(9,1).(28).(8,2),((2.9).(9,2),(38),(8,3).(39),(9.3)} , ID|=12=2-3-2,

P(D) =12~ 0.167.
72

D*={fi,.i, }:1<i, <3,8<i, <9,integers}. D4 =326, P(D*)=%=0.167.

The difference of the numbers is 3:
E={(14)(41).(25)(52),(36).(6:3).(4.7).(7.4) (58).(85).(96).(6.9)}. E|=12,

P(E) =22 _0.167.
72

E*={{L.4},12.,5},13.6},14,7},5.8},16,9}} [E* =6, P(E*) = % =0.167.

E5. Pick 4 cards without replacement from a pack of French cards containing 13 clubs (),
diamonds (¢), hearts (¥) and spades (4). Compute the probability that there is at least one of
spades or there is at least one of hearts, there is no spade or there is no heart, there is at least
one of spades but there is no heart, there are 2 spades, 1 hearts and 1 other, there are more

hearts than spades.
If we do not take into consideration the order of the picked cards, then

5
4
Actually the appropriate possible outcomes can not be listed and it is difficult to count them.

The operations on the events and the consequences of axioms help us to answer the questions.
Let X*be the event that there is no spade, Y * the event that there is no heart among the

. 39
picked cards. Now, [X* = =9139=|Y ¥, P(X*) =P(Y*) = 9139 _ 304

4 270725

A= there is at least one of spades or there is at least one of hearts:

A=X*UY*=X*"Y*, consequently P(A)=1—P(X*~Y*). We need the value of
P(X*NY*). X*NY * means that there is no spade and at the same time there is no heart,

Q*={{aceof hearts7 of diamondskingof spades 8 of spades}..... . |Q*|=( 2]:270725.

26
therefore all of the picked cards are diamonds or clubs. |X*mY*1 = (4 j=14950,

14950

270725
B=there is no spade or there is no heart:
B=X*UY*,
P(B) = P(X* UY*) = (P(X*) + P(Y*)- P(X* "Y*))=0.304+0.304—0.055=0.553.
There is at least one of spades but there is no heart:
C=X*NY*=Y*\ X*, P(C)=P(Y*)—P(X*NY*)=0.304—0.055=0.249.
D= there are 2 spades, 1 hearts and 1 other card.

13) (1326
D|=|"| =26364, P(D) = 26304 _ 5097
2 )1 1 270725

E=there are more spade than hearts = there is at least one of spades and there is no heart or
there are 2 spades and 0 or 1 hearts or there are 3 spades and O or 1 heart or each card is of
spades. These events are mutually exclusive therefore their probabilities can be summed up.

P(X*AY*) = =0.055, P(A)=1-0.055=0.945.
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FHEE-CE) PR, ()
. 6@

The reader is kindly asked to compute it numerically.

P(E)=P(C)+

b.5. Geometrical probability

In this subsection we deal with geometrical probability. It is important to understand the
concept of continuous random variable.

Definition Let Qbe a subset of R,R?, R® or R", 4<n, and let p be the usual measure on the
line, plane, space,... Let us assume that p(Q) =0, and p(Q)=«. Let A be those subsets of

Q that have measure. Now geometrical probability is defined by P(A) ::%.
u
Remarks
e Axioms I) hold as 0<p(A), and 0< p(Q).
o Axiom Il) is the consequence of the definition P(Q) ::% =1.
[

o Axiom III) follows from the measure-property of . Measures hold that

u(UAi)=Zp(Ai) supposing A; NA; =, i# ). Therefore, under the same assumption

i=1 i=1

. u(UA) ZM(A) .

__ =l _ rA) N )
LY e e SR S

e Usual measure on R,R? ,R3 is the length, area, volume, respectively. The concept of
them can be generalized. For further knowledge on measures can be found in the book of
Halmos.

o Definition P(A):% expresses that the probability of an event is proportional to its
n

measure. In the case of classical probability the “measure” is the number of the elements of Q.
Actually the number of the elements of Q can be infinity.

o If n(Q)=1, then P(A)=u(A). The consequences of axioms are frequently used
properties of measure. See for example C8 and C9.

e The proof of the fact that the set of those subsets of Q that have measure is a o algebra
requires many mathematical knowledge, we do not deal with it actually.

o Random numbers of computers are numbers chosen from interval [0,1] by geometrical
probability approximately. That is the probability that the number is situated in a subset of [0,1]
is proportional to the length of the subset. As the length of the interval [01] equals 1,
probability coincides with the length of the set itself.

Examples
E1. Choose a point from the interval [0, x] by the geometrical probability. Compute

the probability that the second digital of the point equals 4.
Q=[0,7], lenght is abbreviated by p. u(Q)=r.
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A= the second digital is 4 =  [0.040.05)U[0.140.15)U...u([3.14,7].
1(A)=31.0.01+ n—3.14=0.3116, P(A) =*A) _0.0992.
T

E2. Fire on a circle with radius R. The probability that the hit is situated in a subset
of the circle is proportional to the area of the subset. Compute the probability that we have 10,
9 scores.

Q s the circle with radius R. area(Q) =pu(Q) =R? - n.Let A be the event that the hit is 10
scores. 10 scores means that the hit is inside the inner circle lined black, which is a circle with

R 2
radius — R . Consequently, pu(A)= RJZTE p(A)_[lo) n_i
10 * 10 ’ R’z 100

N e
\_/

Fig.b.4 Events A and B

Let B be the event that the hit is 9 scores. It means that the hit is not in the inner part but in the
following segment. As the hits are between concentric circles,

2 2
2R R 3R 3
B —| — = . Consequently, P(B) =—.
n(B)= (10}” (10)7E 100 quently. P(®) =150

Compute the probability that the distance of the hit and the centre of the circle equals % :
Let C be the event that the distance between the hit and centre of the circle equals %. The

. . R . . R
points whose distance from the centre equals 0 are situated on the curve of the circle of 0
radius drawn by red line in Fig.b.5.The area of the curve is zero, as it cab be covered by the

section which is the difference of the open circle with radius %+AR , and the circle with

radius % for any positive value of AR .
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Fig.b.5 Event Cg,, and event {u):

R o <R+ AR}
2 2

2 2
Consequently, p(C)s[%+ARj -n—(gj -n:(R-AR+(AR)2)n, which tends to zero if

AR tends to zero. That implies pu(C)=0. Therefore, P(C):?:O.
T

We draw the attention that despite of C= &, P(C) =0 holds. Moreover, if we use the notation

C, ={Q:d(Q.0)=x, then P(C,)=0, for any value of 0<x<R.Now Q= [ JC, holds.

0<x<R

Moreover, if x=y, then C, nC, =0. P(Q)=1 but P(Q);tZP(CX). The reason of this

paradox phenomenon is that the set {x:0<x <R} is not finite and is not countable. This is a
very important thing to understand the concept of continuous random variables.

E3. Choose two numbers independently of each other from the interval [—1,1] by

geometrical probability. Compute the probability that the sum of the numbers is between 0.5
and 1.5.
To choose two numbers from the interval [—1,1] by geometrical probability independently of

each others means to choose one point from Cartesian coordinate system, namely from the
square [-11]x[-11] by geometrical probability. If the first number equals x, the second number

equals y, then let the two dimensional point be denoted by Q(X,y). Roughly spoken, let the
first number be put on the x axis, the second number be put on y axis. Now Q=[-11}x[-11],
n(Q) =4. Let A be the event that the sum of the numbers is between 0.5 and 1.5. We seek the
points Q(x,y) for which 0.5<x+y<1.5.



Probability theory and mathematical statistics— Probability 25

1 08 06 04 02 0 02 04 06 08 1

Fig.b.6. The set of all possible outcomes Q and the set of appropriate points

These points are in the section between the red straight lines given by x+y=0.5 and
X +Yy =15 presented in Fig.b.6.

[3 2 (1Y

) 3 1

A)= - =1, P(A)==.

n(A) 5 5 (A) 2

Compute the probability that the sum of the numbers equals 1.

Let B be the event that the sum of numbers equals 1. The points of B are the points of the

straight line given by x +y =1 (see Fig.b.7)

08 A
06 \

04 AN

02 \,
o 1

Fig.b.7. The set of points given by the equation x +y =1
u(B) =0, consequently, P(B) =0.

E4. Choose two numbers independently from each other by geometrical probability
from the interval [0,1]. Compute the probability that the square of the second number is less

than the first one or the square of the first one is greater than the second one.

Q=[01)x[0,1], n(Q)=1. We seek those points Q(x,y) for which y<x? or x<y?, that is
VX <y. The appropriate points are bellow the curve given by y=x?2, furthermore above the
curve given by y=+/x (see Figure b.8.)
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Fig.b.8. Those points for which y <x? or x <y? holds

If A is the set of appropriate points, then

! L 3 T WGl 1 2 2
“(A): dex+ (1_\/;)1X:|:X_j| +| X — =—+1——=—=0.667and
o] N R
0

P(A) :ﬁ:o.em.

E5. Use the random number generator of your computer and generate N=1000,
N=10000, N=100000, N=1000000 random numbers. Divide the interval [0,1]] into 10 equal

parts, and count the ratio of the random numbers situated in the sub-intervals [i’_lfol}’

i=0,1,2,...,9. Draw the figures!

Relative frequencies of random numbers being in the above intervals are shown in Figs.b.9.
b.10. b11. and b.12. for the simulated random numbers N=1000, 10000, 100000, 1000000,
respectively. Pictures shows that increasing the number of simulations, the relative frequencies
become more and more similar, the random numbers are situated more and more uniformly. If

the probability of being in the interval is really 0’ then relative frequencies are closer and

closer to this probability.
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Figure b.9. Relative frequencies of random numbers in case of N=1000

Relative frequency

Figure b.11. Relative frequencies of random numbers in case of N=100000
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Relative frequency
o

Figure b.12. Relative frequencies of random numbers in case of N=1000000

E6. Approximate the probability of event A in E3) by relative frequency of the
event A applying N=1000, 10000, 100000, 1000000 simulations. Give the difference between
the approximate values and the exact probability.

First we mention that if a number is chosen from [0,1] by the geometrical probability, then its
double is chosen from [0,2] by geometrical probability and the double and minus 1 is chosen
from the interval [-1,1] by geometrical probability.

The relative frequencies of A and their differences from the exact probability 0.25 can be seen
Table b.2. One can realize that if the number of simulations increases, the difference decreases.

N=1000 N=10000 N=100000 N=1000000
Relative 0.2670 0.2584 0.2517 0.2502
frequency
Difference 0.0170 0.0084 0.0017 0.0002

Table b.2. Relative frequencies of the event and their differences from the exact probability

The relative frequencies of the event that the sum is in [— 2 +Ig,—2 + %} , 1=0,...19 can be

seen in Figs.b.13,b.14. One can see that the shapes of the graphs are getting similar to a roof.

Fig.b.13. The relative frequencies of the event that the sum is in [— 2+ é —2+ %} :

i=0,...19 for N=1000 and 10000
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Fig.b.14. The relative frequencies of the event that the sum is in (— 2+ é —2+ %} ,

i=0,...19 for N=10000 and 100000
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c. Conditional probability and independence

The aim of this chapter

The aim of this chapter is to get acquainted with the concept of conditional
probability and its properties. We present the possibilities for computing non-
conditional probabilities applying conditional ones. We also define

independence of events.

Preliminary knowledge

Properties of probability.

Content

c.1. Conditional probability.

c.2. Theorem of total probability and Bayes’ theorem.

c.3. Independence of events
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c.1. Conditional probability

In many practical cases we have some information. We would like to know the probability of
an event and we know something. This “knowledge” has effect on the probability of the event;
it may increase or decrease the probability of its occurrence.

What is the essence of the conditional probability? How can we express that we have some
information?

Let Q be the set of possible outcomes, ‘A the set of events, let P be the probability. Let
A,Be A. If we know that B occurs (this is our extra information), then the outcome which is
the result of our experiment is the element of B. Our word is restricted to B. If A occurs, then
the outcome is common element of A and B, therefore it is in A B. The probability of the
intersection should be compared to the “measure” of the condition, i.e. P(B). Naturally,

0<P(B) has to be satisfied.
Definition The conditional probability of event A given B is defined as

P(A|B):=%,ifow(s).

Remarks
e Notice that definition of conditional probability implies the form
P(AnB)=P(A|B)-P(B), called multiplicative formulae.

e The generalization of the above form is the following statement: if
0<P(A;n...nA, ; nA,) holds, then

P(A, NA, N..nA,)=P(A)-P(A, |A) -P(A;|A, NA,)-....P(A, |A N..nA, ;).
It can be easily seen if we notice that P(A,) - P(A, | A;)=P(A; NA,),
P(A; A, NA,)-P(A,nA,)=P(A;nA, "A;), and finally,
PAA, A, N..0A L) -PA Nn..nA L) =PA Nn..nA 1 NA,).
o If we apply classical probability, then

IANB|
P(A|B)= P(ANB) = |Q| :|AmB|. Roughly spoken: there are some elements in B,
P(B) |8l 8|
]

these are our “new (restricted) world”. Some of them are in A, as well. The ratio of the number
of the elements of A in our “new world” and the number of the elements of the “new world” is
the conditional probability of A.

Theorem Let the event B be fixed with 0 <P(B). The conditional probability given B satisfies
the axioms of probability 1), I1), I11).

Proof:

1) 0<P(A|B),as 0<P(AnB),and0<P(B).

P(QNB) P(B) _1

1) P(Q|B) =1, as P(Q|B) = o@ P L

) If A e A,i=123...A;nA; =@, i=],then P(JA, [B)=D P(A |B).
i=1 i=1
The proof can be performed by the following way: notice that if A;"A;=J, then

(A, nB)~(A; nB)=2 hold as well. Now



Probability theory and math. statistics— Conditional probability and independence 32

[[UAJGBJ (U(AiﬁB)] if)(A‘mB) £ P(A, NB)

P(UA'B)‘ e e re X @ XTAIE

i=1

This theorem assures that we can conclude all of the consequences of axioms.We can state the
following consequences corresponding to Cl1,..., C12 without any further proof.
e P(@|B)=0.

o If A eAi=12..n forwhichA; "A; =, i#j, then P(UA |B) = ZP(A |B).
i=1

e If CcA,then P(C|B)<P(A|B)

e P(A|B)<1.

e P(A|B)=1-P(A|B).

e P(A\C|B)=P(A|B-P(ANC|B).

e P(AUC|B)=P(A|B)+P(C|B)-P(ANC|B).

e P(AUC|B)<P(A|B)+P(C|B)).

e P(AUCUD|B)=P(A|B)+P(C|B)+P(D|B)-
P(ANC|B)—P(DNC|B)-P(AND|B)+P(AnCAD|B).

P[UAJBJ ZP(A |B)- D _P(A;nA;|B)+

I<i<j<n

+ D PATNA NA[B)—...+(-1)"P(A, n...nA, |B).

I<i<j<k<n

These formulas help us to compute conditional probabilities of “composite” events using
conditional probabilities of “simple” events.

Examples
E1l. Roll twice a fair die. Given that there is at least one “six” among the results,

compute the probability that the difference of the result equals 3.
Let A be the event that the difference is 3, B the event that there is at least one “six”’.
P(ANB)

The first question is the conditional probability P(B|A). By definition, P(B|A) = P(A)

AnB={63),(36)}, P(ANB) =3—26 ,

A={(1.6)(26).(36).(46)(56).(66) (61).(6,2).(6:3) (64).(65)}, P(A)= % -

2
P(B|A) =m 36 _ Roughly spoken, our world is restricted to A, it contains 11
P(A) E 11
36

elements. Two of them have difference 3. If all possible elements are equally probable in the
entire set Q, then all possible outcomes are equally probable in A, as well. Consequently, the

conditional probability is 131 .

Given that the difference of the results is 3, compute the probability that there is at least one

(TP 1)

S1X™.
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The second question is the conditional probability P(A|B). By definition,

_PANB) 5_ _6
P(A|B) = B B={(L4),(4.)),(25),(5,2),(356),(6,3)}, P(B)—36.
2
Consequently, P(A|B) =% =% =% .
36

Roughly spoken, our world is restricted to the set B. Two elements are appropriate among
them. If all possible elements are equally probable in the entire set Q, then all possible
outcomes are equally probable in B, as well. Consequently the classical probability can be

applied, which concludes that the conditional probability equals %:% :

E2. Roll a fair die 0 times, repeatedly. Given that there is at least one “six”,
compute the probability that there is at least one “one”.
Let A be the event that there is no “six” among the results, and B the event that there is no

“one” among the results. The question is the conditional probability P(B|A).
P(ANB) P(AUB) 1-P(AUB) 1-(P(A)+P(B)-P(ANB)
P(A) P(A) 1-P(A) 1-P(A) '
Now we can see that we have to compute the values P(A), P(B) andP(ANB).
510 510 410
P(A) 2@20'161' P(B) ZFZ 0.161, P(ANB) :FZ 0.017.
P(B|A) 1-(P(A)+P(B)-P(AnB) _1-(0.161+0.161-0.017) _ 0.695 _ 0.828.
1-P(A) 1-0.161 0.839

E3. Choose two numbers independently in the interval [0,1] by geometrical
probability. Given that the difference of the numbers is less than 0.3, compute the probability
that the sum of the numbers is at least 1.5.
Let A be the event that the difference of the numbers is less than 0.3. The appropriate points in
the square [0,1]x[0,1] are situated between the straight lines given by the equation X —y=0.3

andy —x=0.3. It is easy to see thatP(A)=1—0.72 =0.51. AN B contains those points of A
which are above the straight line given by x+y=1.5. This part is denoted by horizontal lines in
Fig.c.1. The cross-points are Q,(0.6,0.9) and Q,(0.9,0.6). The area of the appropriate points

P(B|A)=

2
is u(A) =(Jo.32 +o.32j-(\/o.12 +o.12j+ O'j —0.06+0.045=0.105, P(A A B) = 0.105.

1

><+y>1 5/ 0

xy70.3

Fig.c.1. The points satisfying conditions 1.5<x+y and [x —y|<0.3
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P(ANB) 0.105
P(A) 051

P(B|A) = =0.206.

E4. Order the numbers of the set {1,2,3,4,...,10} and suppose that all arrangements

are equally probable. Given that the number “1” is not on its proper place, compute the
probability that the number 10 is on its proper place.
Let A, the event that the number “i” is in its proper place. The question is the conditional

probability P(A,,|A,). Now
P(A1g A _PAL\A) _P(Aw) ~P(Ay, N A)

P(A;) P(A;) 1-P(A,)
We can see that we need the values P(A;), P(A,,) and P(A;; NA,).
Q={(iy,ip,i10):1<i; <10,integers, j=12,...10,i; =i if j=k|, for example
(1,2,345,6,7,8910), (52,34,7,91081,7) and so on. |Q =10=362880C.

P(A,lA;)=

A ={Lig,niy): 2<i; <10,integers, j=2,...10,i; =i, if j=k|, [A|=9!, P(Al):%=o.1.

- ol
Similarly, P(A,,) = o 0.1.

A, N Ay ={Li,,....10):1<i; <10 integers, j=2,...9,i; =i, if j=kf, |A,NA =8 as

|
numbers 1 and 10 have to be on their proper places, P(A; N A;,) =%=ﬁ=0.011.
1 1 8
—. P(A,)-PA A 10 10. .
Therefore, P(A, | Ay) = Va0) TPAw0 N A) 10 10:9 109 8 599
1-P(A)) 9 9 1
10 10

E5. Order the numbers of the set {1,2,3,4,...;10} and suppose that all arrangements are

equally probable. Given that the number “1” is not on its proper place, compute the probability
that the number “10” or the number “5” is on its proper place.
Let A, the event that the number “i” is on its proper place. The question is the conditional

probability P(A;, U A, |A_1) . Recall the properties of the conditional probability, namely
P(Ap WAs[A)=P(A;p[A) +P(As |A) —P(Ay nAs |A)).
We can realize that the conditional probabilities P(A,,|A;), P(Ag|A;) and
P(Ap NA; |A_1) are needed. P(A;, |X1) was computed in the previous example, and
P(Ag |A_1) can be computed in the same way.
P(A1 NAs DA _P(A, NAy) ~P(A NAs NA,)

P(A,) 1-P(A,)
(Liy,i5,04.5,15,07,i5,19,10):2<i; <4,6<i; <9,
integers, j=2,3,4,6,789,i. #i, if j=k

P(Alo mAs |A1) =

Ay NA; mAlz{

|A10 NA; N A1| =7! as numbers ,,1”, ,,10” and ,,5” are on their proper places.

7! 1
Consequently, P(A;; "A; NA))=—

=———=0.001, and
100 10-9-8
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1 1 7
—  P(A,,NA)-PA,NA NA)) .9 10.9. 9.
P(A,, NA; |A)=—2 51—P(A10) 5 1) _10-9 1;)98:109982
1 1_7 v
10 10
=L=o.011.
81-8
Now

— — — — 8 8 7 121
P(A, UAG[A)=P(A,|A)+P(A|A)~P(A, NA|A)=—+————="""=0.187.
( 10 5| l) ( lOl 1) ( 5| l) ( 10 5| 1) 81 81 81-8 81-8

E6. Pick 4 cards without replacement from a package containing 52 cards. Given
that there is no hearts or there is no spades, compute the probability that there is no hearts and
there is no spades.

Let A be the event that there is no hearts, B the event that there is a spade. The question is the
conditional probability P(ANB|A U B).
P(ANB)n(AUB) P(ANB)

P(A U B) " P(AUB)’
We have to compute the probabilities P(A nB) and P(A U B). This later one requires P(A),
P(B) and P(AnB). As the sampling is performed without replacement we do not have to
take into consideration the order of the cards.
Q= {{il, i,,i5,i,}1i; arethecards fromthepackage i; j=12,3,4 aredifferentif j= K.

o[ ) i-lel=( ) lna=57)

39 26
P(A) —4 P(B)=0.304,P(ANB) —4 0.055
= = =0. , N B)= =0. ,
52 52
4 4
P(AuB)=P(A)+P(B)—P(AnB)=0.553.
P(AnB) 0.055
P(AuB) 0.553
E7. Pick 4 cards without replacement from a package containing 52 cards.
Compute the probability that the first card is heart, the second card and the third is diamond and
the fourth one is spade.
Let A be the event that the first card is heart, B be the event that the second one is diamond, C
be the event that the third card is diamond and D be the event that the last one is spade. The
question is P(ANBNCn D). Applying the generalized form of the multiplicative rule, we
can write that PANBNCND)=P(A)-P(B|A)-P(C|IAnB)-P(D|AnBNC). Notice
that conditional probabilities P(B|A), P(C|AnB), P(D|AnBNC) can be computed by
the following argumentations. If we know that the first card is heart, then the package contains

51 cards and 13 are diamond of them. The third and last ones can be any cards, consequently

P(B|A) =é—31. If we know that the first card is heart and the second one is diamond, then the

P(ANB|AUB)= as (AnB)c(AUB).

P(ANB|AUB)= =0.099.

package contains 50 cards at the third draw and 12 are diamonds of them. The last one can be
any card, consequently P(C|AnB) = % .
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Finally, if we know that the first card is heart, the second and third ones are diamonds, then the
package contains 49 cards at the last picking and 13 spades are among them. Consequently,

P(D|AmBmC)=E.AS P(A)=E, P(AmBmCmD)=1—3-1—3-E-1—3=0.004.
49 52 52 51 50 49

We present the following “simple” solution as well. As the question is connected to the order of
pickings, we have to take into consideration the order of picked cards.
Q= {(il, iy,is,0,): i; arethecards fromthepackage i; j=1,2,3 4 aredifferentif j= k}.

|Q| =52-51-50-49. If the first draw is heart, consequently we have 13 possibilities at the first

draw. If the second card is diamond, we have 13 possibilities at the second picking. If the third
card is diamond again, we have only 12 possibilities at the third picking, as the previous draw
eliminates one of diamond cards. Finally, if the last card is spade, we have 13 possibilities at

the last picking. Consequently, [ANBNCnD|=13-13-12-13,

13-13.12-13 L .
P(ANnBNCnD)=———""—"""_which is exactly the same as we have got by applying the
( ) 52.51.50.49 y got Dy applying

multiplicative rule.

c.2. Theorem of total probability, Bayes’ theorem

In the examples of the previous section the conditional probabilities were computed from
unconditional ones. The last example was solved by two methods. One of them has applied
conditional probabilities for determining unconditional one. Law of total probability applies
conditional probabilities for computing unconditional (total) probabilities. To do this, we need
only a partition of the sample space Q.

Suppose that Q, ‘A, and P are given.

n
Definition The set of events B,,B,,...,B, € A s called partition of Q, if Q:UBi and
i=1

We note that a partition cut the set of possible outcomes into some mutually exclusive events.
Every possible outcome belongs to an event and any of them can not belong to two events.

Theorem (Law of total probability) Let B,,B,,...,.B, € A be a partition of Q, and assume
0<P(B;), i=12,...,n. Then for any event A< A the following equality holds

P(A)= Y P(AIBP(E,).

Proof: As 0<P(B;), conditional probabilities are well defined.

P(A)=P(ANQ)= P(Am(o Bij) = P(U(Am Bi)J.

i=1 i=1
Notice that if B, nB; =&, then (AnB;)n(ANB;)=2. Therefore the unioned events are
mutually exclusive and the probability of the union is the sum of the probabilities.
n n
P[U(Am Bi)J:ZP(Am B,).
i=1 i=1

Recalling the multiplicative rule P(A " B;)=P(A|B;)-P(B;) we get

P(A)=3 P(A|B)P(E)).
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An inverse question can be asked by the following way: if we know that A occurs, compute the
probability that B; occurs. The answer can be given by the Bayes’ theorem as follows:

Theorem (Bayes’ theorem) Let B,,B,,...,.B, € /A be a partition of Q, and assume 0<P(B;),
i=12,....n. Then for any event AeA with 0<P(A), the following holds:
P(A|B;)-P(B;)  P(A|B;)-P(B;)

"B e rE)
P(B.NA) _P(AIB)-P(B) _ P(A|B,)-P(B,)

e RS WINENCH

P(B;|A)= i=12...n.

Proof P(B; |A) =

Remarks

e Notice that the unconditional probability is the weighted sum of the conditional
probabilities.

o Law of total probability is worth applying when it is easy to know conditional
probabilities.

o Construction of the partition is sometimes easy, in other cases it can be difficult. The
main view is to be able to compute conditional probabilities.

e The theorem can be proved for countable infinite sets B, i=12,..., as well.

e Bayes’ theorem can be interpreted as the probability of ,,reasons”. If A occurs, what is
the probability that its ,,reason” is B;, 1=12,3,...

Examples
E1. In a factory, there are three shifts. 45% of all products are manufactured by the

morning shift, 35% of all products are manufactured by the afternoon shift, 20% are
manufactured by the evening shift. A product manufactured by the morning shift is substandard
with probability 0.04, a product manufactured by the afternoon shift is substandard with
probability 0.06, and a product manufactured by the evening shift is substandard with
probability 0.08. Choose a product from the entire set of products. Compute the probability that
the chosen product is substandard.

Let B, be the event that the chosen product was produced by the morning shift, let B, be the
event that the chosen product was produced by the afternoon shift and let B, be the event that
the chosen product was produced by the evening shift. B,, B, , B, is a partition of the entire set
of all products. Let S be the event that the chosen product is substandard. Now,
P(S|B,;)=0.04,P(S|B,)=0.06, P(S|B;)=0.08. Furthermore,

P(B,)=045 P(B,)=0.35,P(B;)=0.2. Applying the law of total theorem we get
P(S)=P(S|B,)-P(B,) +P(S|B;) - P(B,) +P(S|B3) - P(B;) =
0.04-0.45+0.06-0.35+0.08-0.2=0.055.

If the chosen product is substandard, compute the probability that it was produced by the
morning shift. If the chosen product is substandard, which shift produced it most probable?
P(S|B,)-P(B;) 0.04-0.45

P(B,|S)= -0.327.
P(S) 0.055

P(B, |9) = P(S|B,)-P(B,) _0.06-0.35 .o,
P(S) 0.055

P(B;|S) = PEIB,)-P(B;) _008:02 =0.291.
P(S) 0.055

If the chosen product is substandard, the second shift is the most probable, as a ,,reason”.
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This example draws the attention to the differences between the conditional probabilities
P(S|B,)and P(B,|S), P(S|B,)and P(B, |S), P(S|B;)and P(B;|S). Although the maximal
value among P(S|B,;), P(S|B,)and P(S|B,) is the first conditional probability, the maximal
value among P(B, |S),P(B,|S) and P(B;|S) is the second one. P(S|B,) is the ratio of the
substandard products among the products produced by the morning shift, P(B, |S) is the ratio

of the products produced by morning shift among all substandard products. These ratios have to
be strictly distinguished.

E2. People are divided into three groups on the basis of their qualification: people
with superlative, intermediate and elementary degree. We investigate the adults. 25% of all
adults have elementary, 40% of all adults have intermediate and the rest of people have
superlative degree. A person having elementary degree is unemployed with probability 0.18, a
person having intermediate degree is unemployed with probability 0.12 and a person having
superlative degree is unemployed with probability 0.05. Choose a person among the adults.
Compute the probability that he is unemployed.

Let B, be the event that the chosen person has elementary degree, B, be the event that the
chosen person has intermediate degree, B, be the event that the chosen people has superlative
degree. B,,B,,B; is a partition of the entire set of Q. Let E be the event that the chosen
person is unemployed. P(B;)=0.25, P(B,)=04 and P(B;)=0.35 furthermore
P(E|B;)=0.18, P(E|B,)=0.12, P(E|B;)=0.05. Applying the law of total probability we
get P(E)=P(E|B,) - P(B,) +P(E|B,) P(B,) + P(E|B;) - P(B;) =
0.18-0.25+0.12:0.4+0.05-0.35=0.1105.

If the chosen person is not unemployed compute the probability that he has
elementary/intermediate/ superlative degree.

P(E|B,)-P(B,) _(1-P(E|B,))-P(B,) 0.82-0.25

P(B, |E)= = = ~0.230.
P(E) 1-P(E) T 1-0.1105

P(B |E):P(EIBZ)_-P(BZ):(1—P(E|BZ)).P(B )_ 08804 .o
2 P(E) 1-P(E) ~1-0.1105

o8, |5~ PEIB)-P(B) _(L-P(E|B,))-P(B;) 095035 ..,

3 P(E) 1-P(E) 1-01105

We draw the attention that P(E| B,)=1-P(E|B,) according to the properties of conditional
probability.

E3. Pick two cards without replacement from a package of cards containing 52
cards. Compute the probability that the second card is heart.
If we knew that the first card is heart or not, the conditional probabilities of the event “second
draw is heart” could be easily computed. Consequently the unconditional probability can be
also computed by the help of the conditional probabilities.

Let B, be the event that the first card is heart and B, =B, . Now B, and B, form a partition

of the entire set of Q. Let A be the event that the second draw is heart. Now, P(A|B,) = &1321

P(A| BZ):é_i’ furthermore P(Bl)zg, P(Bz)zg. Applying the law of total probability
we get

12 13 13 39 13-(12+39) 13
P(A)=P(A|B;)-P(B;)+P(A|B,)-PB,)=——+—-—=—7T"——">=—=0.25.
(A)=P(A|B,)-P(B,) (|z)()51525152 5152 52
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Given that the second draw is heart compute the probability that the first one is not heart.

13 3
P(A|B,)-P(B,) 51 4 39
P(A) 025 51
Given that the second draw is not heart compute the probability that the first one is heart.
39 1
P(B,|A) = P(AIB,)-P(B,) _51 4 _13 , taking into account that P(A|B,)=1-P(A|B,).
P(A) 3 81
4

c3. Independence of events

Conditional probability of an event may differ from the unconditional one. It may be greater,
smaller than the unconditional probability, and in some cases they can be equal, as well. Let us
consider the following very simple examples.

Roll two fair dies. Let A be the event that the sum of the rolls is 7, let B be the event that the
difference of the rolls is at least 4, let be C the event that the difference of the roIIs is 0, finally

let D be the event that the first roll is 1. Now P(A) = 66 P(B)_ 36 P(C)_ , P(D )_
2
One can easily see that P(B|A) =m 36 1 >P(B),
P(A) 6 3
36
1
pc|A)=PEA) _PE) 4 by pda)y=PLOA) 36 _ppy . This latter case is
P(A) 1 P(A) 1
6 6
the case when the information contained in A does not change the chance of D. It can be
computed that P(A| D):%:%: P(A) also holds, which means that the information
in D does not change the chance of A. Relation is symmetric. Similarly,
p(A[B)=PBOA) 1 beay andp(ajc)=PACE) o pay.
P(B) 3 P(C)

Definition The events A,Be A are called independent if P(A nB) =P(A) - P(B).

Actually we present that this definition is generalization of the previous concept.

Theorem Let A and B be events for which 0<P(A) and 0<P(B). A and B are independent if

and only if P(A|B)=P(A) and/or P(B|A)=P(B).

Proof Recalling the definition of conditional probability, we can write that

p(A|B) =FACB) g e a)=PEA)
P(B) P(A)

definition, P(AnB)=P(A)-P(B). Dividing by P(A) and P(B) we get the equalities

. If A and B are independent, then, by
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P(ANB) P(ANB) . P(ANB) _ N
W_ P(B) and —P(B) =P(A), respectively. Conversely, —P(A) P(B) implies
P(A ~B)=P(A)-P(B), and so does % —P(A).

Remarks

o Definition of independence is symmetric.

o Definition of independence is given even in the case of 0=P(A) or P(B)=0.

o If 0=P(A) or P(B)=0, then A and B are independent. Take into consideration that
P(ANB)<P(A), P(ANB)<P(B), consequently P(AnB)<min(P(A),P(B))=0.
Therefore, P(ANB)=0=P(A) - P(B).

¢ Independent events are strongly different from mutually exclusive events. If A and B
are mutually exclusive, then AnB=J, P(AnB)=0. P(A)-P(B)=0 implies P(A)=0 or
P(B) =0.If A and B are mutually exclusive and P(A) =0+ P(B) hold, then A and B can not
be independent. Roughly spoken, if A and B are mutually exclusive and any of them occurs,
the other one can not occur. Occurrence of A is a very important piece of information with
respect to B.

¢ In the example presented at the beginning of the subsection the events A and D are
independent but the events A and B are not. So are A and C.

e Independence of A and B means that the “weight” of A in the entire set equals the
“weight” of A in B.

Examples
E1. Roll 5 times a fair die repeatedly. Let A be the event that all rolls are different

let B the event that there is no “six”” among the rolls. Are the event A and B independent?
Applying our knowledge on sampling with replacement it is easy to see that

6-5-4-3-2 5° 5-4.3-2-1
———>5—=0.093, P(B) :6_5: 042, PANB)=——_-——
P(AnB) = P(A)-P(B), A and B are not independent. If we know that there is no “six”

among the rolls then we can “feel” that the chance that all the rolls are different has been
decreased. We have only five numbers to roll instead of six ones.

P(A) = =0.015. As

E2. There are N balls in a box (urn), M of them are white N-M are red. Pick n balls
from the urn with replacement. Let A be the event that the first one is red, let B the event that
the last one is white. Are the event A and B independent?

Recalling the results in  connection with  sampling  with  replacement,

P(A):(N—M)-N"*lzN—le_M,P(B):NH-M:M,
N" N N N" N
_(N—M)-N”Z-M_(N—M)-M_(_M)M B ‘
P(ANB)= N v NN A P(ANB)=P(A)-P(B), A

and B are independent.
Roughly spoken, the result of the first picking does not effect on the result of the last picking, it
does not increase and does not decrease the chance of picking white ball.

E3. There are N balls in an urn, M of them are white N-M are red. Pick 2 balls from
the urn without replacement. Let A be the event that the first one is red, let B the event that the
second one is white. Are the event A and B independent?

Recalling the results in connection with sampling without replacement, we can write
P(AmB):(N—M)-M | P(A):(N—lvl)-(N—l):(N—M)
N-(N-1) N-(N-1) N

. P(B) can be computed by the
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help of theorem of total probability as follows:

P(B)=P(B|A)-P(A)+ P(B| A) - P(A) = N'\fl. N ;'\" . '\l\’l':ll.%: M '('E'N—_'\f)f'il\/l -1)

%. As P(AnB)=P(A)-P(B), A and B are not independent.

Roughly spoken, if we know that the first draw is red, the chance of the second one being white
has been increased. The reason is that the relative number of white balls in the urn has
increased.

E4. People are grouped into three groups on the basis of their qualification: people
with superlative, intermediate and elementary degree. We investigate the adults. 25% of all
adults have elementary, 40% of all adults have intermediate and the rest of people have
superlative degree. A person having elementary degree is unemployed with probability 0.18, a
person having intermediate degree is unemployed with probability 0.12 and a person having
superior degree is unemployed with probability 0.05. Choose a person among the adults. Are
the event A="the chosen person is unemployed” and B, ="the chosen person has superlative

degree” independent?
Recalling the law of total probability we get P(A)=0.1105, but P(A|B,;)=0.05. As

P(A|B;)=P(E), A and B, are not independent. If somebody has superlative degree, the

probability of the event that he is unemployed has decreased. The ratio of the unemployed
people in the population is higher than the ratio of the unemployed people having superlative
degree.

E5. Roll 3 times a fair die. Let A be the event that the sum of the rolls is at least 17,
let B be the event that all the rolls are the same. Are A and B independent?
Taking into account the condition, the sum of the rolls can be 17 and 18. If the sum is 17 then
we roll two “six”s and one “five”. if the sum is 18, then we have three ‘six”-S.

1111 4 . .
P(A) = 3 5 +6—3=6—3. There are four elements in A. One of them satisfies that all of the

rolls are the same, consequently P(B|A)=%. Finally, P(B)z%z%. Now we can see

that P(B|A) = P(B) , therefore A and B are not independent.

Theorem If the events A and B are independent, then A and B , furthermore A and B are
independent, as well.

Proof

P(ANB)=P(A\B)=P(A)- P(AnB) =P(A)- P(A)- P(B)=P(A)(1- P(B))=P(A)- P(B).
P(ANB)=P(AUB)=1-P(AUB)=1—(P(A)+P(B)—P(ANB))=

1—(P(A) +P(B) - P(A) - P(B))=(1- P(A) \1- P(B)).

Now let us consider independency of more than two events.
Definition The events A, iel are called pair wise independent if any two of them are

independent, that is P(A; N"A,)=P(A;)-P(A,) jkel,j=k.
Definition The events A; i< lare called independent, if for any finite set of different indices
{iy il | the equality P(A, A, N..n A ) =P(A,)-P(A,)-...-P(A,,).

Remarks

o |f the number of elements of the set of indices equals 2, the above property expresses
the pair wise independence.

e Pair wise independence of events does not imply independence of the events. We
construct the following example in which pair wise independence holds but
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P(ANBNC)=P(A)-P(B)-P(C). Let Q={,234}, P({i}):%, i=1234. Let

A={2},B={13},C={,4}. Now P(A)=P(B)=P(C) =%: 0.5,

ANB=BNC=ANC={}, P(ANB)=P(BNC)=P(ANC)=P({L) =%=o.25.

Consequently, P(ANB)=P(A)-P(B), P(ANC)=P(A)-P(C), P(BNC)=P(B)-P(C). It
means that A, B and C are pair wise independent. But
P(ANBNC)=P({L}) =0.25% P(A) - P(B) - P(C) =% .

Definition Experiments are called independent if the events connected to them are
independent. More detailed for two experiments: if A, is the set of events connected to an

experiment, A, is the set of events connected to another experiment, then for any A< A, and
Be A, the events A and B are independent. The experiments characterized by the set of
events A, i<l are independent if for any A; € A, the events A; are independent.

Remarks

° Sampling with replacement can be considered as a sequence of independent
experiments. If the first draw is the first experiment, the second draw is the second experiment
and so on, the events connected to different draws are independent.

o If we do sampling without replacement, then the consecutive draws are not independent
experiments, as E3) in the previous subsection illustrates.

Examples
E6. Fill two lotteries (90/5) independently. Compute the probability that at least

one of them is bull’s-eye.
Let A be the event that the first lottery is bull’s-eye, let B the event that the second one is

bull’s-eye. The guestion is P(AUB). P(A) :L P(B) :i

56

P(AnB)=P(A)-P(B) = % . % Applying P(AuUB)=P(A) +P(B) —P(A " B) we get
)
P(AUB)= 2 1 1 _4610°
90 90) (90
+) ) [s)

E7. Fill 10 million lotteries independently. Compute the probability that at least one
of them is bull’s-eye.
Let A; be the event that the ith experiment is bull’s-eye. The question is P(A; U ...uA107) .
Instead of it, let us first consider its compliment.
P(A,L...UA ;)=P(A,nA; n..nA ;). As the experiments are independent, the

probability of the intersection of the events connected to them is the product of the
probabilities. Therefore
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107

PAA,NA, .0 A ) =P(A,)-..-P(A ;)= 1-—L | —079.

-]

Consequently, P(A; U...u A 7)=1-0.796=0.204.

E8. How many lotteries are filled independently, if the probability that there is at
least one bull’s-eye among them equals 0.5?
Let A; i=12,...,nbe the event that the ith experiment is bull’s-eye. The question is the value

of n if P(A,u...0UA,)=0.5. Following the argumentation of the previous example E7

n

P(A, U..UA )=P(A, "A, N..NA )= 1--1 | —1-05-0s5.

)

=30463322, which is much more than the half of

Take the logarithm of both sides, we get

n'Iog(l—%)zlogO.S, n =M

1
logll-——
[5 J o~ o)
5
possible fillings. But if you fill 30 million lotteries the probability that there are same fillings is

almost 1. If you fill them independently, it may happen that the first one and the second one
contain the same numbers crossed.
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d. Random variable

The aim of this chapter
This chapter aims being acquainted with the concept of random variables
as random valued functions. We introduce the concept of distribution,
cumulative distribution function and probability density function. We

present how to use cumulative distribution function to express

probabilities. We introduce the concept of independent random variables.

Preliminary knowledge

Properties of probability. Analysis, taking derivative and integrate.

Content

d.1. Random variables as random valued functions.

d.2. Cumulative distribution function.

d.3. Continuous random variable.

d.4. Independent random variables.
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d.1. Random variables as random valued functions

In this section we introduce the concept of random variables as random valued functions.
We suppose that Q, A and P are given.

First we introduce a simple definition and later, after presenting lots of examples, we make
it mathematically exact.

Definition The function &:Q — R is called random variable.

Remarks

¢ Random variables map the set of possible outcomes to the set of real numbers. The
values of random variables are numbers. If we know the result of the experiment, we know
the actual value of the random variable. Before we perform the experiment, we do not know
the actual outcome; hence we do not know the value of the function. “Randomness” is
hidden in the outcome.

e Although we do not know the value of the function, we know the possible outcomes
and the values assigned to them. These values are called as the image of the function in
analysis. We will call them possible values of the random variable.

e If we know the possible values of the function, we can presumably compute the
probabilities belonging to these possible values. That is we can compute the probability that
the function takes this value. Additional refinement is needed to be able to do this in all
cases.

e Asthe elements of Qare not real numbers in some cases, the function & may not be

drawn in a usual Cartesian frame.

Examples
E1l. Flip a coin. If the result is head we gain 10 HUF, if the result is tail we pay

5 HUF. Let & be the money we get/pay during a game.

Q={H,T}, A=2% P is the classical probability. £&:Q—>R, &H)=10, &(T)=-5.
Possible values of & are 10 and -5, and P(&=10)=P({H})=0.5, P(=-5)=P({T})=0.5.
Before performing the experiment we do not know the value of our gain, but we can state

that it can be 10 or -5 and both values are taken with probability 0.5.
E2. Roll a fair die. We gain the square of the result. Let & be the gain playing one

game.
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Q={,23456}, A=2%, P is the classical probability.£:Q >R, &(@i)=i%.g1)=1% =1,

£(2)=2%=4, £(3)=3"=9 §4)=4°=16, £(5)=5%=25£(6)=6%=36. Moreover,

P(E_,:iz)zP({i})zé. Summarizing, possible values of & are 1,4,9,16,25,36, and the

probabilities belonging to them are % Before we roll the die we do not know how much
money we gain, but we can state that it may be 1,4,9,16,25 or 36, and all of them have
o1
probability —.
6
E3. Roll afair die twice. Let & be the sum of the rolls.
Q={11),12),....6,6)}, A=2°, P is the classical probability.£:Q—R, &((i,j))=i+]j.
For example, &(@L1))=2, &((25))=7, &((6,6))=12. Possible values of ¢ are

2,3,4,5,6,7,8,9,10,11,12.

P(z=2)=P({a, )})%,

(=39 =P(0.2). D) == PE =4 =P((L3). (D). 22) ~ .

P(a=5)=P({(1,4),(2,3),(3,2),(4,1)})=%, P(&=6)= P({(1,5),(2,4),(3,3),(4,2>,(5,1)})=%,

P(=7)=P({L6).(25). 34, (43,52, (6D) -

P(5=8)=P(((26,(35).(4.4),(59), (62)) =, PE=9) =P({(36).(49).54). (69— .

P(e=10) =P({(46).(69).(64)) = =, PE=1) =P((56). 65) - .

P(:=12)=P({(66)) = .

We mention that the sets B; = {w:&(w)=i} i=23,...12 are mutually exclusive and the
union of them is Q. They form a partition. Consequently, the sum of the probabilities
belonging to the possible values equals 1.

E4. Choose two numbers without replacement from the set {0,1,2,3,4}. Let & be
the minimum of the chosen numbers.

Actually,  Q={fi,.i,}:0<i, <i, <4integers}, &:Q—>R, &({i,i,)=minfii,},

|Q|:(€2)j=10. £({0,4) =0, £({2,3})=2 and so on. Possible values of & are 0,1,2,3 and
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P(&=0)=P({01},{0.2}, 0.3}, {0.4)) = % , PE=1)=P({2}, {13}, {L4) = % !

P(e=2)=P(23} 24) - =, PE=9)=P(34) -+

E5. Pick two numbers with replacement from the set {0,1,2,3,4}. Let & be the
minimum of the picked numbers.
Actually,  Q={i,,i,):0<i,,i, <4,integers}, &:Q—>R,  &((i,i,))=minfi,i,},
|0|=5-5=25. £((0,4)) =0, £((33)) =3 and so on. Possible values of & are 0,1,2,3,4 and

P(=0)=P(({(0.0).(01).(0.2).(0:3),(04),(10).(20).(30). 4.0)) =

P(e=1)= P((l,l),(1,2),(1,3>,(1,4),(4,1),<4,2),(4,3))=%,

P(=2)=P((2.2).(23).(24),(32).(4.2) =% P(E=3)=P((33).(34).(43) =% ,

P(e=4)=P(44) =

E6. Choose two numbers with replacement of the set {0,,2,3,4}. Let & be their
difference.
Actually, the elements of the sample space are as in the previous example, but the mappings

differ. &((LD))=0, &((4,1))=3, and so on. Possible values of & are 0,1,2,3,4 and

P(£=0)=P({(0,0),(1D(2.2),(33).(44)}) = % ’

P(£=1)=P({(01),1.0)(21),(1.2),(3.2).(23).(34),(43)}) :2% |

P(&=2)=P({(O,Z),(2,0)(3,1),(113)v(4’2)’(2’4)}):%’

P(§=3)=P({(0,3),(3,0),(1,4),(4,1)})=%, P =4) = P({(o,4),(4,0)})=%.

E7. Fire into a circle with radius R and suppose that the probability that the hit
is situated in a subset of the circle is proportional to the area of the subset. Let & be the
distance of the hit from the centre of the circle.

Actually, Q is the circle and ‘A are those subsets of the circle which have area. If Q is a

point of the circle, then £(Q)=d(O, Q). Possible values of & are the points of the interval

[0,R]. Pe=0)=P({O}) = :(S) =0. P(E=R)= :ZR , where p is the area of the border
T T

curve of the circle with radius R, which equals 0. P(E=R)=0. If 0<x<R, then
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P(E=X) =F§l—zx , Where p, is the area of the border curve of the circle with radius X, which
T

equals 0, as well. Consequently, all possible values have probability 0.

E8. Choose two numbers independently from the interval [0,1] by geometrical
probability. Let & be their difference.

Now, Q= [O,l]x[O,l] , Which is a square. pu(Q2) =1. The possible values of & are the points of

[01]. Actually, P(&:O):“({Q(X’y) :1x=y}m§2). The area of the line given by the

equation x=y in the square equals 0, consequently, P(E=0)=0.

P(E=1) =M:O. Generally, If O<u<2, then

_tRex y):[x-y|=ujn Q)
1

of the lines given by x-y=u and y-x=u, and the area of the two lines equals 0. Therefore
P(E=u)=0.

P(&=u) . The set {Q(x,y):|x —y|= u} consists of the points

Remarks

e Common feature of E1, E2,...,E6 is that the set of the possible values are finite.

e Common feature of El, E2,...,E6 is that if X; is a possible value of &, then
P(E=x;)=0.

e If the possible values of ¢Eare denoted by x,,..X,, then the sets
B; ={m:&,(co) =X} form a partition of Q. Consequently,
n n
;P(&=xi)=;P(Bi)=P(Q)=1.

e Common feature of E7, E8 is that the set of possible values is uncountable infinite
and if x is a possible value then P(§=x)=0. Nevertheless, P(Ujw:&(w)=x})=1. If
B, ={o:&@) =x}, and B, ={w:&(w)=Y}, then B, "B, =, if x=y. If the set of

0

possible values were countable, then P(O{m:é(m) =X ) =) _P({w:&(@) =x;}) =0 would

i=1 i=1
hold.
e In the case of E7, E8, instead of P(§=x) the probabilities P(§<Xx) are worth
investigating, if the set {w:&(w)<x} has probability, ie. {w:&(w)<x}eA. This

requirement is included in the mathematically correct definition of random variables.
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Definition The function &:Q—>R is called random variable, if for any xeR
{o:&(@)<xje A,

Definition The function &:Q — R is called discrete random variable, if the set Im(g) is
finite or countable infinite. Those values in Im§ for which P(§ =x) =0, are called possible

values.

Definition Distribution of the discrete random variable & is the set of the possible values

together with the probabilities belonging to them. We denote is by

X1, Xy, o . X, . o X1, Xpy oo )
€~ .| or in the infinite case &~ .| with
pl! p2’ o pn p1u Pg, C
pi =P(E=X;).
Remarks

° Definition of a discrete random variable can be more general as well. In many

cases & is called discrete random variable, if there is countable subset C of Imf , for which

ZP(g =x)=1. This means that the set Imf may be uncountable, but the values out of C

xeC

have probability zero together, that is P((_J{w: &(w) =x})=0.

xgC

o0

o If{w:g(w)<x}e A, then {0:&w)=x =ﬂ{m:xs§(@)<x+%}:

n

o0
n=1

Hm:é(m)<x+i}\{o):E_,(m)<x}je A, a A is o algebra. Consequently,
n

P({o:&(w) = x}) are well defined.

° In example E1.,...E6. in the previous subsection, the distributions of random

variables & are given: namely:

10, -5
InEL. &~ .

05 05
1 4 9 16 25 36
Ing2. ¢~ 1 1 1 1 1 14
6 6 6 6 6 6
2 3 4 5 6 7 8 9 10 11 12
nE3. &= 1 2 3 4 5 6 5 4 3 2 1
36 36 36 36 36 36 36 36 36 36 36
2 3

o
[y

InE4. &~ .
“"lo4 03 02 O.J
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0 1 2 3 4)

INnES. £~
5 (0.36 028 0.2 0.12 0.04

0 1 2 3 4J

InE6. £~ .
5 (0.2 0.32 0.24 0.16 0.08

o The examples in E7. and E8. are not discrete random variables even in the

generalized sense of definition.

d.2. Cumulative distribution function

As the probabilities P(§=x) are not always appropriate for characterizing random
variables, consequently, the probability P(€ <x) is investigated. This probability depends

on the value of x. If we consider this probability as the function of x, we get a real-real
function. This function is called cumulative distribution function.

Definition Let & be a random variable. The cumulative distribution function of & is
definedas F:R >R F.(X) =P(£ <x) =P({w:&(w) < X}).
Remarks

o If the random variable & is fixed, then notation from the index is omitted.

. As F is areal-real function, it can be represented in the usual Cartesian frame.

Examples
Give the cumulative distribution functions of the random variables presented in subsection

d.l.
10, -5
El. &~ :
0.5 05
It can be easily seen that if x <-5, then P(€ <x)=P()=0.

If -5<x<10, then P(§<x)=P(&=-5)=P({T})=05.
If 10<x, then P(§<x)=P(Q)=1.

0 ifx<-5
Summarizing F(x)=P(§ <x)=40.5 if —5<x<10.
1 if10<x

The graph of this function can be seen in Fig. d.1.
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F@umdifﬂmcumMMWeMﬁﬂMMonNndbndﬂwrmﬂomvthe§~[

F(x) =

T

1
E2. g~[1
6

0if x<1

1if1<x£4
6
Eif4<x£9
6
§W9<x§16
6
%H16<x325

%W25<x£36
1lif 36<x

(o 1 2
E6. &~

F(x) =

0.2 032 0.24 0.16 0.08]

0if x<0
0.2if0<x<1
052if1<x<2
0.76if 2<x<3
0.92if 3<x<4
lif 4<x

0.6

0.4

0.2

o

0.2

‘15

ol

E7.1f 0<x<R,

9
1
6

3

L
-10

16 25 36
111
6 6 6

4

L
5

L
o

L
5

L
10

L
15

20

05
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then F(x) = P(& <x) = P({Q e Q:d(0,Q) < x}) = :(ZX) = ;Zzn =;:—22, where p(x) is the area
T T

of the circle with radius x. Of course, if x<0, then P(E<x)=P(Z)=0, and if R<X,

then P(§ < x)=P(Q)=1. Summarizing,
0 ifx<0
X2

F(X)= F if 0<x<R.
1 if R<x

which can be seen in Fig.d.2.

Figure d.2. Cumulative distribution function of the random variable presented in E7

E8. F(u)=P(&<u) =P({Q(x,y):|x —y| <u}) if 0<u<1.
Recall that [x —y|<u means, that x —u<y if y<x,and y<x+u if x<y.
Those points for which |x—y|<u are situated between the straight lines given by the
equations y—x=u and x—y=u.The area of the appropriate points can be computed by

subtracting the area of the two triangles from the area of the square. The area of a triangle is

(1-u)®

. Consequently, P(¢ <u)=1—(1-u)? if 0<u<1. Itis obvious that if u<0, then

P(x—y|<u)=P(2)=0, and if 1<u, then P(x —y| <u)=P(Q) =1.
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y-X=u

Figure d.3. Appropriate points for the |x —y| <u with u=0.35

0 ifu<oO
Summarizing, F(u)=<1-(1-u)? if0<u<l.
1 ifl<u

The graph of the cumulative distribution function cumulative can be seen in Fig. d.4.

Figure d.4. Cumulative distribution function of the random variable presented in E8

The graphs of the cumulative distribution functions presented have common features and
differences, as well. The most conspicuous difference is in continuity, namely the

cumulative distribution functions of E1, E2, have discontinuity in jumps, while the
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cumulative distribution functions of E7. and ES8. are continuous. The common features are
that they are all increasing functions with values between 0 and 1.
Let us first consider the property of cumulative distribution functions. First we note that

0<F(x)<1 forany xeR, as F(x) is a probability.

Theorem Let & be a random variable and letF:R — Rbe its cumulative distribution

function. Then F satisfies the followings:

A) F is a monotone increasing function that is in case of x <y, F(x) <F(y).
B) lim F(x)=0and lim F(x) =1.
X—>—0 X—0
C) F is a left hand side continuous function.
Remarks

° The proof of the previous properties can be executed on the basis of the properties
of probabilities but we omit it.

. The above properties can be checked easily using the tools of analysis.

The above properties characterize cumulative distribution functions, namely

Theorem If the function F:R — R satisfies the properties A) B) and C), then there exist Q

sample space, /A o algebra and P probability measure, furthermore random variable ¢

cumulative distribution function of that is the function F.

Cumulative distribution functions are suitable for expressing the probability that the value of

the random variable & is situated in a fix interval. We list these probabilities with

explanation in the following theorem:

Theorem

a) ‘P(é e(—x,a))=P(E<a)=F() ‘ by definition of cumulative distribution
function.

b) P(¢[a,>))=P(>a)=1-F(a)]

P(&e[a, ) =P(E>a)=P(&<a) =P({n:&(w) <a)) =1-F().

c) P < (—=,a])=P(<a)=F(a) + P(§=2)|
P& <a)=P({o: &) <a}u{on:&w)=a}) = P({o: &(o) <a)) + P({o: &(w) =a})
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=F@)+P(&=a).

d) [P(¢ < (a,0))=P(¢ >a) =1- F(a) - P(¢ =a)].
P(&>a) =P({o:&(w) >a}) =P({o:&(0) 2 a}) - P({w:&(w) =aj) =1-F(a) - P(¢ =a).

e) P <[a,b))=P(a <& <b) =F(b) - F(a)|
P(¢ e[a,b))=P(a<&<b)=P({w:&(w) <b}) - P{{o: &(w) <a}=F(b) — F(a).
Note that {w:&(w) <a}c {o:&(w) <b}, consequently the probability of the difference is the

difference of probabilities.
f) P <[a,b])=P(a <& <b)=F(b) - F(a) + P(=b)]

P(a<&<b)=P({n:a<&(w) <b}u{w:&(w) =b}) =P({n:a <&(w) <b}) + P(w: &(w) =b})
F(b) - F(a) + P(6=b). We note that {w:a<&(w)<b}n {w:&(w)=b}=, consequently

the probability of the union equals the sum of the probabilities.

9) P(€ € (a,b)) =P(a <& <b) =F(b) - F(a) - P(¢ =a)]
P(a<&<b)=P({n:a<&(w) <b}\ {o: () =a}) = F(b) — F(a) - P({o: &(w) =a}).
h) [P(E < (a,b])=P(a<&<b)=F(b) — F(a) - P(&=a) + P(E=D)

P(a<&<b)=P({n:a<&(w) <b}u{w:&(w)=b}) =
P{o:a <&(w) <b}) + P(o: &(w) =b}) = F(b) - F(a) - P(§ =a) + P(§ = h).
i) P(§=a)= lim F(a+Aa)-F(a)|

P(E=a)= P(ﬁ{w:a <t(w)<a +1}) _ lim P({m:a <t(w)<a +1}) _ Iim(F(a N F(a)j
nel n n—oo n n—o0 n

= r!im(F(a + %)j -F@).

Remarks
o Iim[F(a +1)J—F(a) is the value of the jump of the cumulative distribution
n—o0 n

function at ,,a”.

e IfF is continuous at “a”, then Aling F(a + Aa) =F(a), consequently P(§=a)=0.
a—0+

e If Fis continuous on R, then P(§=x)=0 for any xeR. Examples for this case

were presented in E7 and E8. Further examples can be given by the help of

geometrical probability.
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Examples
EQ. Let the lifetime of a machine be a random variable which has cumulative

0, ifx<0
distribution function F(X) =< X _g* .
——,if 0<x
¥ +e*
Prove that F(x) is cumulative distribution function.
To prove that F(x) is a cumulative distribution function it is sufficient and necessary to

check the properties A., B. and C.
A) For checking the monotone increasing property, take its derivative.

F(x)= - e))- e +e)—e* —e) (X + (- -e™) 4

= 0 if O<x,
(e"Jre’X)2 (ex+e’x)2> ! =

consequently the function F is monotone increasing for positive values. As at x=0 the

function is continuous and it is constant for negative values, then it is increasing for all

values of x.
e —e™* 1-e
B) lim F(x)= lim 0=0and limF(x)=1. lim———=1im =1.
X—>—00 X—>—00 X—>0 x—o X 4 a7X x—>w1+e‘2x
. e*—e* 0 . . i L
C) lim———=—=0=1lim 0, consequently F is continuous at x=0, and it is
x>0+ X L * 1 x—0—

continuous at any point x. Therefore F is left hand side continuous.

Compute the probability that the lifetime of the machine is less than 1 unit.

1 -1

el —e
el +e

P(E<1) =F() = =0.762.

1
Compute the probability that the lifetime of the machine is between 1 and 2 unit.
2_g2 Ql_gt

P(1£§<2)=F(2)—F(1)=e2 — ——————=0.964-0.762=0.202
e” +e e +e

Compute the probability that the lifetime is between 2 and 3 unit.

e3_e3 e2_p2
P(2<£<3)=F(3) ~F(2) =——— —————=0.995-0.964=0.031
e” +e e” +e

Compute the probability that the lifetime is at least 3 unit.

3 -3

e —e
3

P(3<g)=1-F@R)=1- —
e +e

=0.005.

- =
Compute the probability that the lifetime of the machine equals 3.
P(§ =x) =0, as the cumulative distribution function of the lifetime is continuous at x =3.

At least how much time is the lifetime of the machine with probability 0.9?
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x=? P(§>x)=0.9.1-F(X)=0.9=F(x)=0.1.

X —X

ex —e_x =0.1. Substitute €* =y, we have to find the solution of the following equation:
e’ +e
1
Ty 21 11
— Y o1, Y - _01=09y?=11.  Consequently, y? =22 =1222,
1 2 +1 9
y+= y
y

y=441.222=41.105. As y=e*, 0<y holds. e* =1.105 implies x =In1.105=0.100.
Finally, at most how much time is the lifetime of the machine with probability 0.9?
X=? PE<x)=0.9. PE<X)=PE<X)+PE=x)=F(x)=0.9. Substitute e* =y, we

1
y_i
y

y+o
y

have to find the solution of the following equation:

weget y= ‘/E ,and x=1In ,/ﬁ =1.126.
0.2 0.2

Definition: Random variables & and n are called identically distributed if F.(x)=F, (x)

=0.9. Following the above steps

for any value xeR.

Example
E10. Q ={HT}, A =2% P classical probability, &H)=-1,
g(M)=1.

Q, :{1,2,3,4,5,6}, A, = 29, P classical probability, n(i)=—1 if i is odd, n(i)=1 if i is

even. Now, & and mn are identically distributed random variables, as

0 ifx<-1
F.(X)=F,(x)=:05 if -1<x<1.
1 ifl<x

We draw the attention that the distribution functions may be equal even if the mappings are
different.

Theorem If & and n are discrete and identically distributed then they have common
possible values and P(E=x%;)=P(n=x;), i=123,...

Proof If the random variables have common distribution functions, then the jumps of the

cumulative distribution functions are at the same places. This concludes in common possible



Probability theory and mathematical statistics—Random variable 58

values. Furthermore, the values of the jumps equal, as well. Recalling that the jump equals
the probability belonging to the possible value, this means that the random variables take the

possible value with the same probability. Consequently, they have the same distribution.

d.3. Continuous random variable

Actually we turn our attention to those random variables which have continuous cumulative
distribution function.

Definition The random variable & is called continuous random variable if its cumulative

distribution function is the integral function of a piecewise continuous function, that is there

exists a f:R — R piecewise continuous (continuous except from finite points) for which

F(x) = If(t)dt. The function f is called probability density function of & .

Remarks
e The integral is Riemann integral.
o Itis well-known fact in analysis that the integral function is continuous at any point,

and at the points where f is continuous F is differentiable and F'(x) =f(x).

o If fis changed at a point, its integral function does not change. Consequently the
probability density function of a random variable is not unique. Consequently, we can
define it at some points arbitrarily. It is the typically case at the endpoints of intervals when
f has discontinuity.

e The denomination “probability density function” can be argued by the followings:

P(a<g<a+Aa)
Aa
“a” related to the length of the interval. It is a kind of density of being at the neighbourhood

of “a”. As

expresses the probability that & is situated in the neighbourhood of point

Pla<g<a+Aa) F(a+Aa)-F(a)
Aa B Aa '

Pla<g<a+Aa) F(a+Aa) - F(@)
Aa

Pla<&¢<a+Aa)=F@+Aa)—-F(),

If 0<Aa—0, then lim = |lim
Aa—0+ Aa Aa—0+

=F(a)=1(a),

supposing that the limit exists.
o F@+Aa)—F@)~F(a) -Aa=f(a)-Aa, therefore where the probability density

function has large values, there the random variable takes its values with large probability, if
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the length of the interval is fixed. If the probability density function is zero in the interval

[a,b], then the random variable takes its values in [a, b] with probability zero.

o If the cumulative distribution function is a piecewise continuous function, then at
the points of jumps the derivatives do not exist. On the open intervals, when the cumulative
distribution function is constant, the derivative takes value zero, consequently there is no
sense to take the derivative of the cumulative distribution function.

o We note that there exist random variables which are not either discrete either
continuous. They can be “mixing” of discrete and continuous random variables, their
cumulative distribution function is strictly monotone increasing continuous function in some
intervals and have jumps at some points. These random variables are out of the frame of this
booklet.

Examples
E1. In the example given in E7 in subsection d.1., the probability density function

is the following:

2X .
— if0 R
0 otherwise

We note that at x =0 the function F is differentiable, and the derivative equals 0.At x =R
the function Fis not differentiable. The graph of the probability density function for
R =1can be seen in Fig. d.5.

o8k

06

02

Figure d.5. Probability density function of the random variable given in E7.

E2. Probability density function of E8. in subsection d.1. is
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2-2u ifoO<ux<il
0 otherwise '

f(u)=F‘(u)={

The graph of f(u) can be seen in Fig.d.6.

Figure d.6. Probability density function of the random variable given in E8.

E3. Probability density function of E9. in the previous subsection
4

f(X)=F (x) = (ex e )2 .
0 otherwise

if x<0

This function can be seen in Fig.d.7.

)

Figure d.7. Probability density function of the random variable given in E9.

The above probability density function takes large values in the interval [0,1] and small

values in [2,3] and indeed, P(0<&<1)=0.723>P(2<£<3).
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Now let us investigate general properties of density functions.

Theorem If & is continuous random variable, with probability density function f, then

D) 0<f(x) except from “some” points and
E) j f(x)dx =L.

Proof F is a monotone increasing function, consequently, its derivative is nonnegative, when
the derivative exists. If we choose the values of f negative when the derivative does not
exist, these points can belong to the set of exceptions. Usually we choose the values of f at
these points zero. On the other hand, by the definition of improper integral

Tf(x)dx: limF(x) — Iirp F(x)=1-0.

—0

The properties D) and E) characterize the probability density functions, namely
Theorem If the function_f:R — R satisfies the properties D) and E) then there exist Q
sample space, A o algebra and P probability measure, furthermore a continuous random

variable & probability density function of that is the function f.

Remarks

e If the random variables & and n have the same probability density functions, then
they have the same cumulative distribution functions as well, therefore they are identically
distributed.

e If the random variables ¢ and n have the same cumulative distribution functions,
then there derivatives also equal at the points when the derivatives exist. At the points when
the derivatives do not exist we can define the probability density functions arbitrary, but
only some points have this property. Consequently, if the continuous random variables &
and m are identically distributed, then they essentially have the same probability density
functions.

o If we would like to express the probability that the continuous random variable &
takes its values in an interval, we can write the followings:

[PE<x)=PE<x)=F(X)|

P(€>X) =P(£>x) =1-F(x)|

[Pa<g<b)=P(a<g<hb)=P(a<&<b)=P(a<&<b)=F(b) - F(a)|
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The reason for this is the fact that the cumulative distribution function of a continuous
random variable is continuous at any points, consequently it takes any value with probability

0. Hence we do not have to take into consideration the endpoints of the interval.

Now, we can express the probability taking values in an interval by the help of probability

density function.

Theorem If the continuous random variable & has probability density function f, then
b

P(asgsb):jf(t)dt.
a

Proof Applying the formula concerning the cumulative distribution function and the
properties of integrals we get

b a b
P(a<&<b)=F(b) - F(a) = J.f(t)dt - jf(t)dt = jf(t)dt .

Remarks
e As the integral of a nonnegative function equals the area under the function, the
above formula states that the probability of taking values in the interval [a,b] equals the

area under the probability density function in [a, b]. For example, in the case of the random

0.5sinx if0<x<nm
0 otherwise

variable given by the probability density function f(x):{

probability of taking values between % and %ﬁ can be seen in Fig.d.8. It is the area

between the two red lines.

051 \

0.45F
0.4
0.35F
0.3f
0.251
0.2F
0.151
0.1f

0.05F

Figure d.8. Probability expressed by the area between the two read lines
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Example
E4. Let the error of a measurement be a random variable & with probability

0.5-e* if x<0

density function f(x) = .
05-e7*if 0<x

The graph of this function can be seen in Fig.d.9.

ZE o251

Figure d.9. Probability density function given by f

Prove that f is probability distribution function.
To do this, check the properties D) and E). As exponential functions take only positive

values, the inequality 0<f(x) holds. Moreover,

o 0 o0

[#00dx = [0.5e%ax + [0.5e*ax 0.5 ', +0.5]- e |} = 0.5(1— lim e* )+
- —0 0

4 0.5Qim— e —(-1))=05+05=1.
Determine the cumulative distribution function of & .

05-e* hax<0

F(X) = j f(t)dt = i .
- 1-05-e* ha0<x

Detailed computations are the following:

X—>—0

X X
If x<0, then [f(t)ct = [ 0.5e"dt —[05-¢'], =05 — lim 0.5¢* =0.5-¢* —0=05¢*.

If 0<x, then
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](.f(t)dt =i0.5etdt +IO.5-e“dt —los-ef, + [0.5(—e—X)]X ~0.5+ (~0.5¢ % —(-0.5))
—0 —0 0 0
1-05.e7%.

Compute the probability that the error of the measurement is less than -2.

P(& <—2)=F(-2) =0.5e > =0.068.

Compute the probability that the error of the measurement is less than 1.
P(e<1)=F(1)=1-05-e*=0.816.

Compute the probability that the error of the measurement is between -1 and 3.
P(-1<£<3)=F(3)-F(-1)=1-05-e2 -0.5-e*=0.975-0.184=0.791.

Compute the probability that the error of the measurement is more than 1.5.
PL5<&)=1-F15)=1-(1-05-¢%)=0.112.

Now we ask the inverse question: at most how much is the error with probability 0.9?

We want to find the value x for which P(§ <x)=0.9.

Taking into account that P(§<x)=P(§<x)=F(x), we seek the value x for which
F(x) =0.9. Namely, we would like to determine the cross point of the function F and line

y=0.9, as shown in Fig.d.10.

Figure d.10.Cumulative distribution function of & and the level 0.9

F(0)=0.5, consequently x is positive. For positive x values F(x)=1-0.5-e7*.

Consequently, 1—0.5e™ =0.9. This implies 0.5-e ™ =0.1, e* =0.2, x=-In0.2=1.61.
Give an interval symmetric to 0 in which the value of the error is situated with probability
0.9.
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Now we have to determine the value x for which P(—x<&<x)=0.9. This means that

F(X) —F(—x)=0.9.  Substituting the formula concerning F(x) we get

1-05-e7 -0.5e* =1-e* =0.9. This equality implies e =0.1, x=-In0.1=2.3.

In Fig.d.11, the area between the two red lines equals 0.9.

051
0.45[
041
0.35[
03f
goasr
0.2f

0.151
0.1r
O.OSF/K
(I

d.11. Probability expressed by the area between the two read lines

At least how much is the error of the measurement with probability 0.99?

Now we would like to determine the value x for which P(x <&)=0.99.
P(x<§&)=1-F(x), therefore F(x)=0.1. As F(0)=0.5, x is negative. Now we can write

the equality 0.5e* =0.01, x=|n%—(;1=—3.91. As Fig.d.12. shows, the area under the

density function from the red line to infinity equals 0.99.

05r
0.45
0.4
0.35
03f

E o251
0.2f
0.15

0.11

d.12. Probability expressed by the area upper the read line
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d.4. Independent random variables

In this subsection we define independence of random variables.

Definition Random variables & and n are called independent, if for any values of xeR
and yeR the events {£<x} and f{n<y} are independent, that is
P(E<xnn<y)=P(E<X)-P(m<y). For more than two variables, the random variables
&,i1=12,,...are called independent, if for any value of j and any indices
iy,ip,eni; €23, and any value of X k=12,.,]
P&, <X m...m&ij <xij)=P(§i1 <X;) P&, <xi2)-...-P(§ij <X;;)-

The independence of random variables are defined by the independence of events connected
to them.

The following theorem can be stated:

Theorem If & and n are discrete random variables, distribution of them are

a{xl X2 oo ] and n~(y1 Yoo ] then & and m are independent if and
Pr P2 - - 9 4 - - .
only if for any i=12,. and j=12. the equality

P(E=X; nn=Y))=P(E=X;)-P(n=Yy;)=p; -q; holds.

Theorem Let & and n be continuous random variables with probability density function

f(x) and g(y), respectively. & and n are independent if and only if for any xeR and

yeR where the P(E<xnn<y) is differentiable, there the following equality holds:

O*P(E <X, n<Y)
oxoy

Examples
E1l. Flip twice a coin repeatedly. Let ¢ be the number of heads, let n be the

=f(x)-9(y)-

difference between the number of head and tails. Now,

Q={HH)HT)TH).T T} g(HH)=2 &(TT)=0.8(HT)=1, &(T.H)=1.

0 1 2
Therefore, g~

025 05 o250 Moreover,  m((HH)=2=n(T.T)),  and

N(HT)=0=n((T.H)).

n~[005 025} PE=0nn=0)=P()=0#P(§=0)-P(n=0)=0.125, consequently &

and m are not independent.
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E2. Choose one point Q from the circle with radius 1 by geometrical
probability. Put the circle into the Cartezian frame and let the centre be the point O(0,0). Let
€ be the distance of the point Q from the centre O(0,0) of the circle, and n be the angle of
2

the vector 0Q . Now, 0<£<1, 0<n<2r. PE<x)=>—"—x? if 0<x<1.

1 1 1
-1 08 06 -04 -02 0 02 04 06 08 1

Figure d.13. Appropriate points for {& <x} and for {n<y}

<
a

P(n<y)= Zn“ =%, 0<y<2n.

2
x2.g. Y XY
n__2

Furthermore, P(E<xNn<y)= L 0<x<1, 0<y<2m.

1
0.8
0.6
0.4
0.2
0
0.2
0.4
0.6

0.8

1 I I I , I I I )
-1 08 06 -04 02 0 02 04 06 08 1

Figure d.14. Appropriate points for {&<x} {n<y}
These together imply that P(E<xnm<y)=P(<X)-P(n<y), if 0<x<1, 0<y<2r.
For the values out of [0,1]x[0,2x] one can easily check the equality, consequently & and n

are independent.
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e. Numerical characteristics of random variables

The aim of this chapter

In the previous chapter random variables were characterized by functions,
such as cumulative distribution function or probability density function.
This chapter aims with being acquainted with the numerical
characteristics of random variables. These numbers contain less
information than cumulative distribution functions but they are easier to
be interpreted. We introduce expectation, dispersion, mode and median.

Beside the definitions, main properties are also presented.

Preliminary knowledge

Random variables, computing series and integrals. Improper integral.

Content

e.1l. Expectation.

e.2. Dispersion and variance.

e.3. Mode.

e.4. Median.
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e.l. Expectation

Cumulative distribution function of a random variable contains all of information about the
random variable but it is not easy to know and handle it. This information can be condensed
more or less into some numbers. Although we lose information during this concentration,
these number carry important information about the random variable, consequently they are
worth dealing with.

First of all we present a motivational example. Let us imagine the following gamble: we
throw a die once and we gain the square of the result (points on the surface). How much
money is worth paying for a gamble, if after many rounds we would like get more money
than we have paid. About some values one can easily decide: for example 1 is worth paying
but 40 is not. Other values, for example 13, are not obvious. Let us follow a heuristic train
of though. Let the price of a round be denoted by x, and let the number of rounds be n.
Now, the frequency of “one”, “two”, “three”, “four”, “five”, “six” are K,, K,,..., Kg,
respectively. The money we get together equals

1% Ky +2% K, +3% Ky +4% -k, +5% -Kg +6° - K.

The money we pay for gambling is n - x . We get more money than we pay if the following
inequality holds: n-x<1? -k, +2% -k, +3? -ky +4° -k, +5% -k, + 67 -k,. Dividing by
X, we get x<1? -ﬁJrZ2 -ﬁJFS2 '§+42 -QJFS2 -ﬁ+62 ﬁ ki =1,2,...,6
n n n n n n n

express the relative frequencies of result "i". If they were about the probabilities of the

result "i", then ﬁz% and the left hand side of the previous inequality ends in
n

1 1

12'g+22'_ L

+3%.=2 1

L2 b 1. .,1 91 .1

Z +6%.=="-=15=. Therefore, if x<151 then the
6 6 6 6 6

money we get after many rounds is more than we paid for them, in the opposite case it is

+5%.

. ok 1 N T
less than we paid. Heuristic is —'zg, it has not been proved yet in this booklet, it will be
n

done in the chapter h.
How the value 9l can be interpreted? If we define the random variable & as the gain

during one round, then § is discrete random variable with the following distribution:

1 4 9 16 25 36
E~/1 1 1 1 1 1| Therighthand side of the inequality is the weighted sum of

6 6 6 6 6 6
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the possible values of & and the weights are the probabilities belonging to the possible

values. This motivates the following definition:

Definition Let & be discrete random variable with finite possible values. Let the distribution

X, X, . . X, . e C
of &~ . Then the expectation of & is defined as E(§) = in pi -
Py P2 - - Py i-1
Let & be discrete random variable with infinite possible values. Let &Z(;l 22 o J
L oP,

Then the expectation of & is defined as E(i)=Zxi -p;, if the series is absolute
i=1

convergent, that is )" |x;|-p; <oo.
i=1
Let & be continuous random variable with probability density function f. Then the

expectation of & is defined as E(§) = Ix -f(x)dx supposing that the improper integral is

—00

absolute convergent, that is J.|x| f(x)dx < oo

—00

Remarks

o If the discrete random variable has only finite values, then its expectation exists.

o If Z|Xi| -p; =0 or I|x| -f(x)dx <o, then, by definition, the expectation does not
i=1

—0

exist.

. i|xi|-pi<oo implies ixi-pi«o. Similarly, I|x|-f(x)dx<oo implies
i=1 i=1 -0

.|.x-|f(x)|dx<oo.

e Expectation of a random variable is finite, if it exists.

. in -p; can be convergent even if it is not absolute convergent. But in this case if
i=1

the series is rearranged, the sum can change. Therefore the value of the sum may depend on
the order of the members, which is undesirable. This can not happen, if the series is absolute

convergent.
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e Expectation may be out of the set of possible values. For example, if the random
variable takes values —1 and 1 with probability 0.5 and 0.5, then expectation is
-1-05+1-0.5=0.

Examples
E1l. We gamble. We roll a die twice repeatedly and we gain the difference of the

results. Compute the expectation of the gain.

Let & be the difference of the results. The distribution of & can be given as follows:

0O 1 2 3 4 5
E~1 6 10 8 6 4 2

36 36 36 36 36 36

6
NowE(&):inpi:0-£+1-E+2-£+3-£+4-i+5-£:1.24.
= 36 36 36 36 36 36

E2. We gamble. We roll a die n times repeatedly and we gain the maximum of
the results. Compute the expectation of the gain.

Let & be the maximum of the results. The distribution of & can be given as follows:

Possible values are 1,2,3,45,6. and P(F,:l):(%), P(&:Z):(gj —(EJ,

o343 |
(]3] een-(3] (3]0
w=Fonm=s 5] (& - ] ) -GV} 5 -]
{3 o) o))

E3. Flip a coin repeatedly. The gain is 10" if head appears first at the nth game.

Compute the expectation of the gain.
Let & be the gain. Now the possible values of & are 10, 100, 1000,....and

P(g:lO“):[%) . E(g):i:xi P :iloi [%) =§:5i =0,  consequently  the
i=1 i=1 i=1

expectation does not exist.
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E4. Flip a coin repeatedly. The gain is 10" if head appears first at the nth game
supposing n<m and 10™, if the we do not get head until the nth game.(The bank is able to
pay maximum a given sum, which is reasonable assumption.) Compute the expectation of
the gain.

Let & be the gain. Now the possible values of & are 10, 100, 1000,...., 10™.

P(&le")z(%)n, if n<m and P(g:lom)z(%]m_.

m m-1 i m-1 m-1
EE©) =Y -p; = 10’ 6) +10" (%j =>5'+10-5"" =
i=1 i=1 i=1

‘ 5m—1 _1

5 +10-5™* =11.25.5™* —1.25, consequently the expectation exists.

E5. We compare the expectation of a random variable and average of the result
of many experiences. We make computer simulations, we generate random numbers in the

interval [0,1] by geometrical probability. Let the random number be denoted by &. Let
n=[6-]+1. Now the possible values of n are 1234567 and

, P(n=2)=P<[6-a]=1)=P(§sa<§)=1,

P(n=1)=P([6-§]=O)=P(Og§<%)= 6

ol

P(n:6)=P([6-§]=5):P(%s@<l)=%,finally, P(n=7)=P([6]=6) = P& =1) =0.

Therefore, distribution of 1 equals the distribution of the random variable which is equal to

the number of points on the surface of a fair die. If we take the square of this random
variable, we get our motivation example presented at the beginning of this subsection.

Now repeating the process many times, and taking the average of the numbers 1.4,...,36 ,
we get the following results in Table e.1. Recall that the expectation of the gain equals
15.1667. The larger the number of simulations, the smaller the difference between the

average and the expectation.

Numbers of | 100 1000 10000 100000 100000 10000000
simulations

Average 13.94 15.130 15.0723 15.1779 15.1702 15.1646
Difference | 1.2267 0.0367 0.0944 0.0112 0.0035 0.0021

Table e.1. Averages and their differences from the expectation in case of simulation

numbers n=100,...10’
E6. Recall the example presented in E7. in subsection d.1. Compute the

expectation of the distance between the chosen point and the centre of the circle.
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Let £ be the distance. The probability density function of &, as presented in subsection d.3.

25 0<x<R
is the following: f(x)=< R .
0 otherwise

0 RX-2X 2X2 R 5
Now £(9)- 1000 [ 2P| 202

E7. Recall the example presented in E8. in subsection d.1. Compute the

expectation of the distance between the chosen points.

The probability density function of & as presented in subsection d.3. is the following:

2(1- if x<0<1
F0) = 1-x) it x |
0 otherwise

© 1 , 3 l_ 2_1
E(&)z[Ox-f(x)dx=£x-2(1—x)dx={x ——} _1—5_5.

E8. Compute the approximate value of the above expectation. Generate two

random numbers in [0,1] by geometrical probability, compute their difference and take the

average of all differences. Repeating this process many times, we get the following results:

Numbers of | 100 1000 10000 100000 100000 10000000

simulations

Average 0.3507 0.3325 0.3323 0.3328 0.3331 0.3333

Difference | 0.0174 0.0008 0.0010 0.0005 0.0002 0.00007

Table e.2. Differences of the approximate and the exact expectation in case of different

numbers of simulations

E9. Choose two numbers in the interval [01] by geometrical probability
independently. Let & be the sum of them. Now one can prove that the probability density
function is

x if0<x<1
f(X)=42—-x if1<x<2.
0 otherwise
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Now

r L L x¢ T 11 8 1
EE)= | x-f(X)dx = x-xdx+ [ x-(2=x)dx=| == | +|x*>-"—| ==+4——-1+=-=1
@L (x) j j (2-x) [3} { 31 PR

Solving this problem is also possible by simulation. Generating two random numbers,

summing them up and averaging the sums one can see the following:

Numbers of | 100 1000 10000 100000 100000 10000000

simulations

Average 0.9761 1.0026 0.99995 1.0001 0.9999 1

Difference | 0.0239 0.0026 0.00005 0.0001 0.0001 0.00001

Table e.3. Differences of the approximate and the exact expectation in case of different

numbers of simulations

Properties of the expectation

Now we list some important properties of the expectation. If it is easy to do, we give some
explanation, as well. Let & and 1 be random variables, suppose that E(§) and E(n) exist.

Let a,b,ceR.

1. If & and n are identically distributed, then E(§)=E(n). If £ and n are discrete,
then they have common possible values and P(§=X;)=P(n=Xx;), consequently the
weighted sums are equal, as well. If & and n continuous random variable, they have
common probability density function, consequently the improper integrals are equal.

2. If E=c or P((§=c)=1,then E(§)=c-1=1.

3. If 0<&,then O<E(E) holds. If & is discrete, then all possible values of & is
nonnegative, therefore so is the weighted sum, as well. If & is continuous random variable,

then 0<§& implies that its probability density function is zero for negative x values.

Consequently, E(&) = J-x -F(x)dx :jx -f(x)dx , which must be nonnegative.
—0 0

4. E(E+m)=E(E)+E(n). Additive property is difficult to prove using elementary

analysis, but is follows from the general properties of integral.
5. E(@-&+b)=a-E(E)+b. If & is discrete, then the possible values of a-§+b are

,,~ times more and b than the possible values of &, therefore so is their weighted sum. If &
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is continuous, then F,..,(x)=P(a&+b<x)=P(£< X b) —FEZ b) supposing O<a.
a a

Taking the derivative ., (X) _L f(X—_b) ,
a  a

E(at +b) =ij Foe s (X)X =[Ox Foe s (X)X :J;x%-f(XT_b)dx :[O(ay+ b) - f(y)dy =

afy -f(y)dy +b- jf(y)dy =aE(&) + b . Similar argumentation can be given for negative

value of “a” as well. If a=0 holds, then E(a-&+b)=b=aE() +b.
6. If a<&<b, then a<E()<b. As a<§, 0<&-a, holds, therefore
0<E(¢—a)=E(&)—a, which implies a <E(§) . Similar argumentation can be given for the

upper bound.
7. If £<n, that is &(w)<n(w) for any weQ, then E(E)<E(n). Take into

consideration that E<n implies 0<n-¢, consequently
0<EM-&)=EM)—E(E) = E(§) <E(n). We draw the attention that it is not enough that

the possible values of & are less than the possible values of n. For example,

o (2% 3 Now E(2)=1-0.1+4-09=37
01 09) "los 02) Balhe DR

E(m)=2-0.8+5-0.2=3.6, that is E()) <E(&).

8. Let &; i=1,2,...,n be independent identically distributed random variables with

n
expectation E(&;)=m. Then E(Zii) =nm. This is the straightforward consequence of
i=1

n n
the above properties, namely E() ;)=> E(g;)=n-m.
i=1 i=1
9. Let &; i=1,2,...,n be independent identically distributed random variables with
n n
D& 2&

expectation E(&;)=m. Then E| “==— |=m. Take into consideration that ‘:1—=—Z<‘,i :
n n  n&s

10.If & and mn are independent random variables and E(§-m) exists, then

E(€-m)=E() -E(m).
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11. If & is discrete random variable with distribution F,~()F()1 );2 S j g:1->R
L Py ..

for which {x,,X,,...f< 1, furthermore )" |g(x;)|p; <oo, then E(g(&))=> g(x;)p; . Take

i=1 i=1

into consideration that g(&):Q—>R and their possible values are g(x;), and

POE)=9(x;)=D>.p; =0;. This implies the equality

ig(xj)=g(x;)
E(g(&))=ig(xi)pi Especially, if g(x) =x?, then E(&*) =ixi2 P -

12. If & is continuous random variable with probability density function f, g:1c R for

which Im@E) <1 and T|g(x)|f(x)dx<oo, then E(g(§)=T|g(x)|f(x)dx. Especially, if

o0

g(x)=x*, then E(g(8))=E(&*) = [ x*f(x)dx

—00

Examples
E9. The latest property is able to provide possibility for computing integral by

computer simulation. If the expectation is an integral, and expectation is about the average

of many values of the random variables, we can compute the average and it can be used for

1
approximation of the integral. For example, if we want compute the integral _[sin xdx, then
0

it can be interpreted as an expectation. Namely, let ¢ be a random variable with probability

1 if0<x<1 7 h
density function f(x) = ! X_ ,and E(sing) = Isin X - f(X)dx ='[sin xdx. If § isa
0 otherwise g 0
0 if x<0
random number chosen by geometrical probability, then F(X)=P(E<x)=<x if 0<x<1,
1 if 1<x

and f(x) = F'(x) ={1 iF0<x<1

0 otherwise
Consequently, generating a random number, and substituting it into the function sinx, taking
their average we get an approximate value for the integral. This is a simple algorithm. We
draw the attention to the fact that expectation is about the average of many experiments has
not been proved yet in this booklet. It will be done by the law of large numbers in chapter h.

The following Table e.4. presents some results:
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Numbers of | 100 1000 10000 100000 100000 10000000
simulations

Average 0.4643 0.4548 0.4588 0.4586 0.4596 0.4597
Difference | 0.0046 0.0049 0.001 0.0011 0.0011 0.00002

Table e.4. Differences of the approximate and the exact value of the integral in case of

different numbers of simulations

E10. Additive property of the expectation helps us to simplify computations. For

example, consider the following example. Roll twice a die repeatedly. Let n be the sum of
the results. Now, one can check that

2 3 4 5 6 7 8 9 10 11 12
n~|1 2 3 4 5 6 5 4 3 2 1

and

36 36 36 36 36 36 36 36 36 36 36

11
E(m) =) xp, 2t 2,435 8,635,758, 85,04,
= 36 36 36 36 36 36 36 36

10-%+11-%+12-%:7. Another method is the following: n=¢&, + &, where &, is the

result of the first throw and &, is the result of the second throw. Now &, and &, are

1 2 3 4 5 6
identically distributed random variablesand £, ~| 1 1 1 1 1 1}
6 6 6 6 6 6

6 1 1 1 1 1 1
EE)=) xipi=1-=+2-=+3-=+4-=+5--+6--=35=E(E,),
! 21: 6 6 6 6 6 6 2

consequently, n=¢&, +&, =E(§; +&,)=2-35=7.

e.2. Dispersion and variance

Expectation is a kind of average. It is easy to construct two different random variables

-1 1
which  have the same expectation. For example, §l~(05 05) and

-2 -1 0 1 2
&, ~ . They both have the same expectation, namely zero.
0.1 0.3 0.225 0.25 0.125

Measure of the average distance from the expectation can be important information, as well.
As E(E-E(E))=E(E)—E(E(E))=0, therefore it is not appropriate to characterize the
distance from the average. The reason is that the negative and positive differences balance.

This phenomenon disappears if we take E(|§— E(§)|). But if we use the square instead of
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absolute value, the signs disappear again and, on the top of all the small differences become

smaller, large differences become larger. Square punishes large differences but does not
punish small ones. Consequently, it is worth investigating E((g—E(a))z) instead of
E(|F, - E(F,)|) , if it exists.

Definition Let & be a random variable with expectation E(§) . The variance of § is defined
as D2((E—E())), if it exists,

Definition Let & be a random variable with expectation E(E). The dispersion of § is

defined as D(&) =+/D? (&) , if D?(&) exists.

Remarks
e AsO0<(g- E(g))2 , SO is its expectation. Its square root is well-defined.

e By definition, dispersion of a random variable is nonnegative number. It is the
square root of the average squared difference.
e Itis easy to construct such random variable which has expectation but does not have

dispersion. We will do it in this subsection, after proving the rule of its calculation.

Theorem If & is a random variable with expectation E(&) and E(£?) exists, then

D2(g) =E(&?) - (E(®))*.

Proof Applying the properties of expectation

D?(£) =E((& - E(®))?) =E(5? - 26E(2) + (E(®))*) = E(£?) — 2E(E)E(&) + E((E(®))*)
=E(?) - 2(E@©)) +(EE)) =EE*) - (E@©)*.

Remarks

2 w " 2

o D2(8)=>xp, —[inpij ,and D?(€) = Ixzf(x)dx—[fxf(x)dxj .
i=1 i=1 —© —©

e If £ and n are identically distributed random variables, then D(&) = D(n)

e In case of discrete random variable with infinitely many possible values,

E(€%) =) x;’p; .If the series is not (absolute) convergent, then »"x,’p; =oo.

i=1 i=1



Probability theory and math. statistics—-Numerical char. of random variables 9

e In case of continuous random variables with probability density function f,

E(é:;z):J.xzf(x)dx. If the improper integral is not (absolute) convergent, then

—00

szf(x)dx =,

e If E(&?) does not exist, neither does D?(E). inzpi:oo implies

i=1
Z(Xi —¢)?p; =0 and Ixzf(x)dx = oo implies J.(x—c)zf(x)dx =oo for any value of c.
i=1 —0 —o0

e It can be proved that if E(&2) exists, so does E(£).

e Let & be a continuous random variable with probability density function

0 ifx<1

f(x)=< 2 . . Then the expectation of the random variable is
— ifl<x
X

0

E@E)= [x-f()dx :_[x-x—zsdx:z-jizdx:z-[—%l :2(@@0-%)—(—1)}2(0+1)=2

—00

E(E”) =];x2 -f(x)dx =Ix2 -X—23dx :Z-I%dx =2-[Inx]’ = 2(Qm|n x)— (—1)):oo.

Consequently, E(§) exists, but D(€) does not.
Example
El. Roll a die twice repeatedly. Let & be the maximum of the results. Compute

the dispersion of &. First we have to determine the distribution of &. It is easy to see that

1 2 3 4 5 6
-|L 3 5 7 9 1
36 36 36 36 36 36
3 5 7 9 11

E@) =1 —+2.543.2 440 5.2 6.1 4475
3 36 36 36 36 36

E(E?) =12 A 3 S L9 e 1 Ol 540
36 36 36 36 36 36 36
Applying the above theorem,

D(€) =J E(E?) - (E())? =+/21.972—-4.4722 ={1.973=1.405
E2. Choose two numbers from the interval [0,1] independently by geometrical

probability. Let & be the difference between the two numbers. Compute the dispersion of
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¢. Recall from ES8. in subsection d3 that the probability density function of & looks

£(x) = 2-2x if0<x<1
~ |0 otherwise '

We need E(&) and E(£?).

o0

1 1
E) =[x fgax =[x (- 2x)dx_{x —ZL} 1
) 3] 3

—0

ox® x| 1
E(g)—jx F(x)dx = jx (2 - 2x)dx {T——L:g.

4
D(E) = ,} \/7 0.236.

Now we list the most important properties of the variance and dispersion. As variance and

dispersion are in close connection, we deal with their properties together.

Properties of the variance and dispersion
Let & and n be random variables with dispersion D(E) and D(n), respectively, a, b, ¢ are

constant values.

1. If £=c, then D?(£)=D(&)=0. It is obvious, as E(&)=c, (E—E()) =0, and
E(0)=0.

2. If D(§)=0, then P(§¢=c)=1. Consequently, zero value for dispersion characterizes
the constant random variable.

3. D*(a¢+b)=a’D’(&) and D(at +b) =[a|D(&).
Take into consideration that E(a& + b) =aE(&) + b,
E((a + b— (aE(E) + b)) =E(a (&~ E(9))?) =a’E(E - E©)*)=a’D*(9)

D(a% +b) =+/a’D?(€) =[aD(®).

4. Let & be a random variable with dispersion D(§). Now the value of
g)=E((&-c)’) is minimal, if c=E(). Take into consideration that
g(c):E((&—c)Z) =c2—2cE(§)+(E(§))2 is a quadratic polynomial of c. Moreover, the

coefficient of c? is positive, therefore the function has minimum value. If we take its

derivative, g'(c)=-2c+2E(§). It is zero if and only if c=E() which implies our

statement.
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5. If & isarandom variable for which a <& <b holds, then its dispersion exists. If it is

denoted by D(&), then D(E) < b;a .

If & is discrete, then E(&Z):ixfpi sma\x{az,bz}-i“pi =max{a2,b2}<oo. If & is

i=1 i=1

continuous, then E(&?) = Ixzf(x)dx < max{a2 , bz}. If(x)dx = max{az,b2}<oo , which

—00 —00

proves the existence of dispersion. Applying the properties of expectation we can write for

any value of xeR,
D?(€) =E((6-E(§)*) <E(E-x)?)<(@a—Xx)*P(E<x) + (b —x)*P(E = X) =
=@-x)2—(@a-x)’PE=2x)+(b-x)’PE=>x)=(@—-x)? +(b—a)(b+a—2X)P(E>X).

2
substituting x=212 | bra—2x=0, (@-x2=[2=2]. We get that
2 2

b—a)? b-a . a b
D?(8) < therefore D)<~ We note that foe-~ ,
@<, erefore D(Z) <= e note that in case of ¢ [0.5 0.5]

D(&) =b—;a. Consequently, the inequality can not be sharpened.

6. If ¢ and n are independent, then D?(&+mn)=D?(&)+D?(n) and

D(E+n)=4D?*() +D*(n) .

D? (& +m) =E((& +n~E(©) - E)) =E(E - E(©)*) + E( - EM)*) +2-E((& - E@©) - (n~ E(m)))
Recall that if & and n are independent then E(§-m)=E(E)E(n), therefore
E((&-E()- (n—E(m))=E(E-E(©))-E(n—EM))=0.

We would like emphasize that the dispersions can not be summed, only the variances.

Namely, it is important to remember, that D(§+n) = D(E) + D(n). This fact has very
important consequences when taking average of random variables.

7. Let & i=1,2,...,n be independent identically distributed random variables with

dispersion D(§;)=c. Then DZ(Zn:é,i)zn-cs2 and D(angi)zﬁ~o. This is the

i=1 i=1

straightforward consequence of the above properties, namely

Dz(Zé)=ZD2§i)=n-02-



Probability theory and math. statistics—-Numerical char. of random variables 82

8. Let &, i=1,2,...,n be independent identically distributed random variables with

Zéi Gg Zél G
dispersion D(&;)=c. Then D?(-2—)=— and D(*—)=—=. This is again the
n n n

n

straightforward consequence of properties 3 and 7.

e.3. Mode

Expectation is the weighted average of the possible values and it may be out of the set of

possible values. A very simple example is the random variable taking values 0 and 1 with
0 1
probabilities 0.5. In that case the distribution of & is given by §~(0 5 0o 5),

E(E)=0-0.5+1-0.5=0.5, and 0.5 is not between the possible values of &. Mode is in the

set of the possible values and the most probable value among them.

Definition  Let 2 be  discrete  random  variable  with  distribution

gz(xl Xz Xa ').Themodeofais X, if p; <py, 1=1,23,....
Pr P2 - Pno

Definition Let &be continuous random variable with probability density function f(x).

Mode of ¢ is x if f has its local maximum at x, and the maximum value is not zero.

Remark

e Mode of a discrete random variable exists. If it has finite values then the maximum
of a finite set exists. If it has infinitely many values, then only the probability 0 may have
infinitely many probabilities in its neighbourhood. The remaining part of the probabilities is
a finite set, it must have maximum value, and the index belonging to it marks the mode.

e Mode of a discrete random variable may not be unique. For example, consider

0 1
&~ (0 5 0 5) . Now both possible values have equal likelihood.

¢ Mode of a continuous random variable is more complicated case, as the probability
density functions may be changed at any point and the distribution of the random variable
does not change. Consequently we usually deal with the mode of such continuous random
variables which have continuous probability function on finitely many subintervals. We
consider the maximum of these functions in the inner parts of the subintervals, and they are

the modes. Consequently, mode of a continuous random variable may not exist, see for
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example the following probability density function: f(x) ={g _f0< XO' It has its maximum
if x<

value at zero, at the endpoint of the interval [0,) and no other maximum value exists.

0.8

0.6

0.2
"1

Figure e.1. Probability density function without local maximum

e Mode of a continuous random variable may be unique, see for example

—X 34X\ 3
F(x) = 7(_e +X°e )|f0<x.
0if x<0

The graph of this probability density function can be seen in Fig.e.2.

02

0.05F

Figure e.2. Probability density function with unique local maximum

The maximum can be determined by taking the derivative of f(x) and finding where the

derivative equals zero. Namely,
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—X 2 X 34X\ i
F(x) = 7_(—e +3xe —x"e™) if 0<x
0 if x<0

3e7* =0 which means that —1+3x? —x>=0.It is

f'(x)=0 implies —e™* +3x% ™ —x
satisfied at x=2. 8794 and x=0.6527. At x=0.6527 the function takes its minimum, at x=2.
8794 the function takes its maximum. Consequently, the mode is 2.8794.

o Mode of a continuous random variable may not be unique. If the probability density

—x2 —(x-5)2

(e 2 +e 2 ), it has two maximum

function of the random variable is f(x) =

1
2421

values, one of them is about zero, the other one is about 5. Consequently, two modes exist.

Figure e.3. Probability density function with double local maximums

e.4. Median

Mode is the most likely value of the random variable, median is the middle one. Namely,
the random variable takes values with equal chance under and below the median. More
precisely, the probability of taking values at least median and at most median, both are at
least 0.5
Definition & is a random variable. Median of & is the value y, if 0.5<P(£<y) and
05<P(y<g).
Remark

e If & is continuous random variable with cumulative distribution function F(x), then
the median of § is the value y for which F(y)=0.5 holds. The inequality
05<P(y<&)=1-F(y) implies F(y)<0.5. Taking into account that & is continuous
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random variable, P(§<y)=P(§<y)=0.5, therefore 0.5<P(§<y)=F(y). Consequently,
F(y)=0.5. As the function F is continuous, and it tends to O if x tends to —oo and it tends
to 1 if x tends to infinity, therefore the median of a continuous random variable exists, but
may not be unique.

e Let & be a discrete random variable. Median of & is the value y for which
F(y)<05 and 05<F(y+). 05<P(y<g)=1-F(y) implies F(y)<05, and

0.5<P(g<y)= lim F(a) = F(y+) is the second inequality.
a—y+

Examples
E1l. Consider a random variable with cumulative distribution function
0 ifx<0

F(x)=11-(1-x)? if 0<x<1.
1 ifl<x

Determine the median of the random variable.
We have to find the cross point of F(x) and y=0.5. As the function takes the value 0.5 in

the case [01], we have to solve equation 1—(1—x)?=0.5. It implies the equality
2x —x?=0.5, therefore x, =0.293 and x, =1.707. This last number is out of interval

[0,1], consequently median is 0.293. As a checking, F(0.293) =1— (1-0.293)? =0.5001.
q y g

08k

Figure e.5.Cross point of the cumulative distribution function and line y=0.5

0 1 5
E2. Let & be a discrete random variable with distribution &:[1 1 EJ
3 3 3

Determine the median of &.
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F(x) =

Now F(x)=0.5. P(F;sl):%, P1<¢) =§, both of them are greater than 0.5. Any other

value of x does not satisfy this property. Consequently the unique median is 1.

o8k

02

Figure e.6. Cumulative distribution function of the random variable & and the line y=0.5

Median equals the argument when the cumulative distribution function jumps the level 0.5.

2 5
E3. Let & be a discrete random variable with distribution é’;~{1 1}.
2 2
Determine the median of €.
0if x<2

Now F(x) = % if 2<x<5,and F(x) takes value 0.5 in the interval (2,5]. P(§<2)=05,
1if5<x

P(£>2)=0.5, consequently x=2 is median. Moreover, P(§<x)=P(§>x)=0.5 holds

for any values of [2,5). Therefore, they are all median. Usually the middle of the interval

(actually 3.5) is used for the value of median.
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o8l

o4

o2

Figure e.7. Cumulative distribution function of the random variable & and the line y=0.5
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f. Frequently used discrete distributions

The aim of this chapter

In the previous chapters we have got acquainted with the concept of
random variables. Now we investigate some frequently used types. We
compute their numerical characteristics, study their main properties, as
well. We highlight their relationships.

Preliminary knowledge

Random variables and their numerical characteristics. Computing

numerical series and integrals. Sampling.

Content

f.1. Characteristically distributed random variables.

f.2. Uniformly distributed discrete random variables.

f.3. Binomially distributed random variables.

f.4. Hypergeometrically distributed random variables.

f.5. Poisson distributed random variables.

f.6. Geometrically distributed random variables.
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f.1. Characteristically distributed random variables

First we deal with a very simple random variable. It is usually used as a tool in solving
problems. Let Q, A, and P be given.

Definition The random variable & is called characteristically distributed random
variable with parameter 0<p <1, if it takes only two values, namely 0 and 1, furthermore

P(6=1)=p and P(&=0)=1-p. Briefly written, a~(130 3

Example
El. Let AeA, P(A)=p. Let us define &:Q—>R as follows:

1 ifoeA
&(w)_{o if ogA
parameter p.

In terms of event, & equals 1 if A occurs and & equals zero if it does not. Therefore §

characterizes the occurrence of event A. It is frequently called as indicator random variable
of event A, and denoted by 1, .

Now ¢& is characteristically distributed random variable with

Numerical characteristics of characteristically distributed random variables:

Expectation
2
E(&) =p, which is a straightforward consequence of E(&) = in pi=1-p+0-1-p)=p.

Dispersion -
D(Z) =+/p- (L—p) . As a proof, recall that D?(2) = E(£?)— (E(®))?.

2
E(§2)=in2 -p; =1 -p+0%-(1—p)=p, consequently, D?(&)=p—-p?=pd—-p). This

i=1

implies the formulaD(€) = /p(L—p) .

Mode
There exist two possible values, namely 0 and 1. The most likely of them is 1, if 0.5<p,

and 0, if p<0.5 and both of them, if p=0.5.

Median
If p<0.5, then 0.5<P({<0)=1-p and 0.5<P(0<&)=1. Consequently, the median

equals 0.
If 0.5<p,then 0.5<P(E<]) =1 and 0.5<P(<&)=p. Consequently, the median equals

1.
If p=0.5, then P(<x)=05 and P({>x)=0.5 for any value of (0,1). Moreover,

P(<0)=0.5, P(€>0)=1, and P(<1) =1 and P(§>1)=0.5. This means that any point
of [0,1] is median.
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Theorem If A and B are independent events, then 1, and 1, are independent random
variables.
Proof P(1, =1n1g =1)=P(ANB)=P(A)-P(B)=P(1, =1)-P(1; =1).

P(l, =1n1; =0)=P(ANB)=P(A)-P(B) =P(1, =1)-P(15 =0).
P, =0n1g =1)=P(ANB)=P(A)-P(B)=P(1, =0)-P(15 =1).
P, =0n1, =0)=P(ANB)=P(A)-P(B)=P(1, =0)-P(l; =0).

f.2. Uniformly distributed discrete random variables

The second type of discrete random variables applied frequently is uniformly distributed
random variable. In this subsection we deal with discrete ones.

Definition The discrete random variable & is called uniformly distributed random
variable, if it takes finite many values, and the probabilities belonging to the possible values

. Xy X, . . X, . .
are equal. Shortly written, & ~ , Pi=p;i=12,...,n, j=12,...n.
Py P2 - - Py
Remarks
n 1 Xy X, . . X,
° ASl:Zpiznpl,plzpzz...zpn —Hé_{l 1 o 1
i=1 n n n

e There is no discrete uniformly distributed random variable if the set of possible
values contains infinitely many elements. This is the straightforward consequence of the

condition 1= p, . With notation P(¢=x;)=p, if p=0 then > 0=0, if 0<p ,

i=1 i=1

Numerical characteristics of uniformly distributed random variables:

Expectation

n
1 —

E©)=) %, ==X.

izt N
Dispersion

n ) n 2
25| 2
D)= |[-2——| 2| | which can be computed by substituting into the formula
n n

concerning the dispersion.

Mode
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All of possible values have the same chance, all of them are mode.

Median
Xpq +Xng

2_if n isodd, and x, if n is even.
2

nt
2

Example
El. Throw a die, let & be the square of the result. Actually,

1 4 9 16 25 36
E=(1 1 1 1 1 1| Asallpossiblevalueshave the same chance, & is uniformly

6 6 6 6 6 6
distributed random variable. Note that there is no requirement for the possible values.

f.3. Binomially distributed random variable

After the above simple distributions actually we consider a more complicated one.

Definition The random variable & is called binomially distributed random variable with
parameters 2<n and O<p<1, if its possible values are 012...n and

P(E=k) =(D-pk(1— p)"™*, k=012,..n.

Remark
. It is obvious that 0< P(&:k):[g-pk(l—p)“k. Furthermore, binomial theorem
n n n n n
implies that » P(E=k) = -p*(L-p)"™* =1. Recalling that (a +b)" = “pnk,
p Zg(i ) kz_é(kjp( p) g that (a +b) ;[k}

and substituting a=p and b=1-p,weget a+b=p+1-p=1.

Theorem If &; i=12,...,n are independent characteristically distributed random variables

n

with parameter 0<p<1, then n:ZE_,i is binomially distributed random variable with
i=1

parameters n and p.

0
Proof Recall that &, -{

1
1-p pj . Their sum can take any integer from 0 to n.

PQY & =0)=P(E =0NE, =0N..NE&, =0) =P, =0)-P(E, =0)...- P&, =0) =(1—p)

PQE =D =n-P(& =10 &, =0N..NE, =0)=P(& =1)-P(&; =0)-...-P(, =0)=n-p-({L-p)""
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Multiplier n is included because the event A can occur at any experiment, not only at the
first one.

PE, =1n¢E, =1Nn..n§, =1nE, ,=0n..nE, =0)=

P&, =1)-P(&, =1) ... P, =1)-P(§,,, =0) .- P(€, =0)=p* - (1—p)"™

If the event A occurs k times, then the serial numbers of experiments when A occurs can be

chosen (EJ times, consequently, P(izzllgi =k) =(E] pk-@-p)"~.

Theorem Repeat n times a trial, independently of each other. Let A be an event with
probability P(A)=p, O<p<1. Let & be that number how many times the event A occurs

during the n independent experiments. Then & is binomially distributed random variable
with parameter nand p.
Proof:
Let 1! 1if A occursat theith experiment
o _{0 if A does notoccursat theith experiment

Taking into account that the experiments are independent, so are 1 Ai ,i=1,2,....n.
n .

As = ZlA' , € is the sum of n independent indicator random variable, consequently, & is
i=1

binomially distributed random variable.

Examples
E1l. Throw n times a fair die. Let & be the number of “6”. Then & is binomially

distributed random variable with parameter n and p :% .

E2. Flip n times a coin. Let & be the number of heads. Then & is binomially

distributed random variable with parameter n and p =% .

E3. Throw n times a die. Let & be the number of even numbers. Then & is

. . s . . 1
binomially distributed random variable with parameters n and p:? We note that the

random variable being in this example is identically distributed random variables with the
random variable presented in E2..

E4. Draw 10 cards with replacement from the pack of French cards. Let & be
the number of diamonds among the picked cards. Then & is binomially distributed random

variable with parameters n =10, p =% .
E5. Draw 10 cards with replacement from the pack of cards. Let & be the
number of aces among the picked cards. Then & is binomially distributed random variable

with parameters n=10, p =%.
E6. There are N balls in an urn, M of them are red, N-M are white. Pick n with
replacement among them. Let & be the number of red balls among the chosen ones. § is the
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number of events when we succeed in choosing red balls during n experiments. & is
binomially distributed random variable with parameters n and p:%.(ZsN, 1<M,

1<N-M, 2<n)

Numerical characteristics of binomially distributed random variables

Expectation

E(&) =np, which IS a straightforward consequence of
E©)=EQ 1))=Y E(1,) =) p=np.

i=1 i=1 i=1
Dispersion

D(&)=4np-@—p).

As an explanation take into consideration that, as 1iA (i=12,...,n) are independent,

D?(€)=D*(D_1;)=nD?*(%;) =n-p. This implies D(¢) =/np- (L—p) .
i=1
Mode
If (n+21)p is integer, then there are two modes, namely (n+1)-p and (n+21)p-1.

If (n+1)p is not integer, then there is a unique mode, namely [(n +1) - p].
As an explanation, investigate the ratio of probability of consecutive possible values.

(njpk .(1_p)n—k L
Pe=k) Kk __ K-k} p _n-k+1 p
P(E=k-1) L n—(k-1) n 1=p k L-p
1P d=p (k—1p(n -k +1)
k=12,...,n.
1< Pé(éik)l) implies that P(§ =k —1) <P(£=K), that is the probabilities are growing.
—PFE_%T( k)l) <1 implies that P(§ =k) <P(§ =k —1), that is the probabilities are decreasing.
PE=k)
—>= 7 -1, then P(E=k)=P(E=k-1).
koD &=k =PE=k-1)
1<V=KH L P hoids, if only if k<(n+Dp. "XL. P 1 holds, if and only if
k 1-p k 1-p

n-k+1 p
1-p
only in the case, if (n+1)p is integer. Therefore, if (n+1)p is not integer, then, up to
k:[(n +1)p], the probabilities are growing, after that the probabilities are decreasing.
Consequently, the most probable value is [(n +1)p]. If (n+Dp is integer, then
P(§=k) =P(§ =k —1), consequently there are two modes, namely (n +1)p, (n+Yp-1.

(n+1)-p<k, and =1 holds if and only if k=(n+21)-p. This is satisfied
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025

o2 *

pk)

0.5

o1l

Figure f.1. Probabilities of possible values of a binomially distributed random variable with
parameters n=10 and p=0.2

Without proof we can state the following theorem:

Theorem
If &, is binomially distributed random variable with parameters n, and p, &, is binomially

distributed random variable with parameters n, and p, furthermore they are independent,
then &, + &, is also binomially distributed with parameters n; +n, and p.

As an illustration, if &, is the number of “six” if we throw a fair die repeatedly n, times, &,
is the number of “six” if we throw a fair die n, times, then &; + &, is the number of “six” if
we throw a fair die n, +n, times, which is also binomially distributed random variable.

Theorem
If &, is sequence of binomially distributed random variables with parameters n and q,,

k
furthermore n-q, =A, k is a fixed value, then P(§, =k) =[EJ(qn )@-q, )" —>%e‘”,

if n >,
Proof

Substitute q, = * ,
n

R O e (e

TKO-KInk L n
nin-)(n-2)...0—k+1) [1_&jk ﬁ(1—&]]
iy n) kU n)-

Taking separately the multipliers,
nn-H(n-2)...n—-k+1) n-1n-2 n-k+1
v . e .

tends to 1, and k is fixed.

—1, if n—o0, as each multiplier
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K
Similarly, [11) 1,if N>,
n

n

n
As (1+5) —e* if n— o0, consequently, (1—&j et ifnoow.
n n

k
Summarizing, P(&, = k):(w(qn)"(l—qn)”k —>%e‘” supposing n — .

Example

E7. There are 10 balls and 5 boxes. We put the balls into the boxes, one after the
other. We suppose that all balls fall into any box with equal chance, independently of the
other balls. Compute the probability that there is no ball in the first box. Compute the
probability that there is one ball in the first box. Compute the probability that there are two
balls in the first box. Compute the probability that there are at most two balls in the first
box. Compute the probability that there are at least two balls in the first box. Compute the
expectation of the balls being the first box. How many balls are in the first box most likely?
Let n be the number of the balls in the first box. n is binomially distributed random

. . 1 . . .
variable with parameters n=10 and p ZE' We can give the explanation of this statement as

follows: we repeat 10 times that experiment that we put a ball into a box. We regard if the
ball falls into the first box or no. If n is the number of balls in the first box, then n is the

number of occurrences of the event A ="actual ball has fallen into the first box”. It is easy

to see that P(A):%. Therefore, the possible values of n are 0,1,2,...,10, and the

10 k 10-k
probabilities are P(m=k) :(k ](%} (1—%] , k=012,...10.

If we calculate the probabilities, we get

0 10 1 9
P‘”ZO)Z&OJ@ (1—%) =0.1074, P(nzl):[ﬂ@] (1—%) =0.2684,
P(n=2)=@0](éj [1—3 =0.3020, P(n=3)=@0j[%j [1—%) =0.2013,...,

10 10 0
P(n=10)=£ )(Ej [1—% =107". In details,
10\ 5 5

(0 1 2 3 4 5 6 7 8 9 10
7101074 02884 03020 02013 008808 00264 00055 00007 10* 10° 107 )

Returning to our questions, the probability that there is no ball in the first box is

0 10
P(n=0)=((1)OJ(%j (1—%) _ 01074,

The probability that there is one ball in the first box equals

10 1 1 1 9
P(n=1)=(1 ](EJ (1—5) =0.2684.
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The  probability that there are two balls in the first box is

2 8
P(n=2) =@Oj(%j (1-%} =0.3020.

The probability that there are at most two balls in the first box is
PM<2)=P(M=0)+P(n=2)+P(Nn=2)=0.1074+0.2684+ 0.3020=0.6778.

The probability that there are at least two balls in the first box can be computed as
P(2<n)=PM=2)+P(MN=3)+...+ P(h=10) =0.3020+ 0.2013+ 0.0088+...+ 10" =0.6242,

or in a simpler way,
P(2<n)=1-(P(n=0)+P(M=1))=1-(0.1074+0.2684) =1—0.3758=0.6242.

The expectation of the balls being in the first box is E(n) :10%= 2, which coincides with

the mode, [(n +1)p]= {11%} =2.

E8. There are 10 balls and 5 boxes, 100 balls and 50 boxes, 1000 balls and 500
boxes, 10" balls and 10" /2 boxes, n=1,2,3,.... Balls are put into the boxes and all of the
balls fall into any box with equal probability. Let us denote &, =mn,, the number of balls
being in the first box. Let k be fixed and investigate the probabilities P(&, =k). Compute

the limit of these probabilities.
Referring to the previous example, &, is binomially distributed random variable with

parameters 10" and q(n):%. The product of the two parameters equals always

k
10" -%:2, consequently, P(&, =k) —>%e2, if n—>oo.

In details,
1 1 1 o)) 2%
& (10, 5) &, (100, 50) &, (1000, 500) &, (10000, 5000) e
k=0 0.1074 0.1326 0.1351 0.1353 .|.] 0.1353
k=1 0.2684 0.2706 0.2707 0.2707 .|.] 0.2707
k=2 0.3020 0.2734 0.2709 0.2707 .|.] 0.2707
k=3 0.2013 0.1823 0.1806 0.1805 .|.] 0.1804

Table f.1. Probabilities of falling k balls in a box in case of different parameters of total
number of balls and boxes

We can see that the probabilities computed by the binomial formula are close to their limits,

if the number of experiments is large (for example 10000). Consequently, the probabilities
k
of binomially distributed random variables can be approximated by the formula %ek,

called Poisson probabilities.



Probability theory and math. statistics— Frequently used discrete distributions 97

f.4. Hypergometrically distributed random variable

After sampling with replacement, we deal with sampling without replacement, as well. The
random variable which handles the number of specified elements in the sample if the
sampling has been performed without replacement is hypergeometrically distributed random
variable.

Definition The random variable & is called hypergeometrically distributed random
variable with parameters 2<N, 1<S<N-1 and 1<n, n<S, n<N-S integers, if its

N
n
Example
E1. We have N products, S of them have a special property, N—S have not.
We choose n ones among them without replacement. Let & be the number of products with

the special property in the sample. Then, the possible values of & are 0,1,2,3,...,n, and the
probabilities  (referring to the subsection of classical probability) are

)

e The previous example shows that the sum of probabilities

possible values are 0,1,2,...,n and P(§=Kk) =

PE=K) -

Remarks
S)(N-S
ity
N
)
events ,there are k products with the special property in the sample” k=0,1,2,...n form a
partition of the sample space, consequently the sum of their probabilities equals 1.

equals 1. The

° Similarly to the binomially distributed random variable, actually, ¢ can also be

written as a sum of indicator random variables, but these random variables are not
independent.

Numerical characteristics of hypergeometrically distributed random variables:

Expectation
E)= n% . This formula can be computed by the definition of expectation as follows:

ity

E@) =) k~—tr—t=
k=0

)
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S(S-1)(S-2)...6-k+1) (N-5)-(N-S-1)-...(N-S—(n—k)+1)

. k! (n—k)!

K- =
e N!

n!(N —n)!

SE-1)(E-2)...6-k+1) (N-S)-(N-S-1)-..-(N-S—-(n—-K)+1)
. (k=1)! (n—k)!
Z; N! -

n'(N —n)!

S-1YN-1-(S-12) S-1(N-1-(S-1)
n (k—l}(n—l—(k—l)} RS né(k—l}(n—l—(k—l)}
N-1 o N N-1
[n—l) [n—lJ
S-1(N-1-(S-1)
oty
N-1
)
[S—lJ(N—l—(S—l)j
Taking into account that ni J n-1-]

Py N-1
n-1

S
n—
N

=~

=1

>
LN

S
n—
N

I
o

j

=1, we get the presented closed form

of the expectation.

Dispersion

D(&) =\/n%-(1—%)(1— lr\]l_llj . We do not prove this formula, because it requires too

much computation.

Mode

G+hn+1) if G+Hh+D is not integer and there are two modes, namely
N+ 2 N+2

S+DO+D g C+DO+D ) o0 S+DO+D (o
N+2 N+2

Similarly to the way applied to the binomially distributed random variable we investigate
P(E=k)

the ratio —————.
P& =k-1)

Writing it explicitly and making simplification we get
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Y
PE=K) _ n _5-k+1 N—S—n+k. In order to know for which
P(=k-1) (S N-S k n-k+1

k-1) \n—-k+1

N
n
indexes the probabilities are growing and the probabilities are decreasing we have solve the
inequalities
1<S—k+1_N—S—n+k S—k+1‘N—S—n+k
k n-k+1 '
After some computation we get that
1< SR N=S=0+K s if and only if k< SFDO+D
k n-k+1 N+ 2
S—k#l N=S=Nn+K 4 noigsif and only if SO+
k n-k+1 N+2

S—k+1 N-S—-n+Kk
<1, : =1.
k n-k+1 k n-k+1

1:S_k+1. N-S-n+k holds if and only if k:w. This equality can be
K n—k+1 N+2
satisfied if —(S+N1)(n2+1) is integer. Consequently, the mode is unique and it equals
+

{(S+1)(n +_1)] if SHDO+D o ot integer and there are two modes, namely
N+ 2 N+2

DO+ g S+DO+D e S+DOLD e
N+2 N+2

Theorem

Let N>, S— o0, %:p,and let k ,n be fixed integer values.

[y

W)
k) \n-k)_S(5-1)..6-k+1) (N-S)(N-S-1)..(N-S-n+k+1) n!

Proof

[Nj X (n —Kk)! "N(N-1)..(N-n+2)
n
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The number of multipliers in the numerator is k+n—k=n and so is in the denominator.
S 1

| n — NN

L , and EZ P, Ez N N

kKl(n—k)! (k N N-1 1_1

Taking into account that —->pif No>o,

k, 1 S
kN 1N —p if N—>oo, furthermore :::i II:I
N N N

S
S-k+1 N
N-k+1 1-

1-———- k+i
(N-S-n+k+) " N N N N
N-n+1 n 1

—1-p if N>oo.

The number of multipliers tending to p equals k, the number of multipliers tending to 1-p

wﬂmpk(&mnk,

N
n
Remark

e The meaning of the previous theorem is the following: if the number of all elements
is large and we choose a sample of small elements, then the probabilities of having k
elements with a special property in the sample is approximately the same if we take the
sample with and without replacement.

equals n-k, consequently

Example

E1. There are 100 products, 60 of them are of first quality, 40 of them are
substandard. Choose 10 of them with/ without replacement. Let & be the number of

substandard products in the sample if we take the sample with replacement. Let n be the

number of substandard products in the sample if we take the sample without replacement.
Give the distribution, expectation, dispersion, mode of both random variables.

& is binomially distributed random variable with parameters n=10, p =%. This means,

10
that the possible values of & are 0,1,2,3,...,10, and P(E_,zk)z[k j0.4k0.6“”‘. n is

hypergeometrically distributed random variable with parameters N=100, S=40, n=10.
40) ( 60
k ) \10-k
————= . To0
100
10

Therefore the possible values of n are 0,1,2,3,..,10 and P(n=Kk)=

compare the probabilities we write them in the following Table f.2.

k 0 1 2 3 4 5 6 7 8 9 10

P(E=k)| 0.00 | 0.040 | 0.12 | 0.21 | 0.25 | 0.20 | 0.11 | 0.04 | 0.01 | 0.00 | 0.0001
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6 1 5 1 1 1 2 0 1
P(n=k)| 0.00 | 0.003 | 0.11 | 0.22 | 0.26 | 0.20 | 0.10 | 0.03 | 0.00 | 0.00 | 0.0000
4 4 5 0 4 8 8 7 8 1 4

Table f.2.Probabilities of the numbers of substandard products in the sample in case of
sampling with and without replacement

It can be seen that there are very small differences between the appropriate probabilities,
therefore it is almost the same if we take the sample with or without replacement.

40
E(¢)=10-04=4, E(n)=10-—=4.
©) ) 100

100 100 99
Mode of & and n are the same values, namely 4, as it can be seen in the Table f.1., or

D(¢)=+/10-0.4-0.6 =155, D(n):\/10.4_0.ﬂ.(1_ij _148.

. Cha a1 S+)(n+1] [4111] [, .1
applying the formula [(n+1)-p]=[11-0.4]=4, or [ N2 }_{ 102 }_[4.42]_4,

respectively.

E2. There are N balls in a box, S are red, N-S are white. Choose 10 among them
without replacement. Compute the probability that there are 4 red balls in the sample if the
total number of balls are N, =10, N, =100, N, =1000 N, =10000, N, =100000, and

S,=4,S,=40, S; =400, S, =4000, S; =40000. Notice that % =p=0.4 is constant.

N 10 100 1000 10000 100000 limit

1 0.26431 0.25209 0.25095 0.25084 | 0.25082

Py =4)

Table f.3. Probabilities of 4 red balls in the sample in case of different numbers of total balls

One can follow the convergence in Table f.3. very easily on the basis of the computed
probabilities. We emphasize that both values n and k are fixed.

f.5. Poisson distributed random variable

After investigating sampling without replacement, we return to the limit of probabilities of
binomially distributed random variables.

Definition The random variable & is called Poisson distributed random variable with

k
parameter 0 <A, if its possible values are 0,1,2,...., and P(§ =k) =%e‘k , k=0,1,2,...
Remarks
k 0 7\.k

k!

© k
. O<k—e‘x holds obviously, furthermore Z:—e‘X =e™ -Z:k—:e‘x eh =1.
K £

k=0

e The last theorem of subsection f.3. states that the limit of the distribution of
binomially distributed random variables is Poisson distribution.
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Numerical characteristics of Poisson distributed random variables

Expectation
E(€) =A . This formula can be proved as follows:

0 k 0 }\‘kl o0 }\‘i

N o A o Caahak _
E(&)—kzzc;k-ﬁe —e Z(k 5~ Z(k 5" ;F—ke e =n.

Dispersion
D(£) =/ . Recall that D?(€) = E(gz) —(E@®)).
© ?\,k -1

) 7\,k_ 0
aﬁpé}?—; ;W X Z(kl)' ) Z(kl)'

k=1 k=1

1 _ 0 XKZ

a S S _e 2 S
e'%ilk N nlz;w DJ 3wy il ;l e

k=1

e a%-et+e-n-et=22+1. Therefore D?(E)=E(E?)-(EE)) =A% +1—-22 =A.

Finally, D(&) =/D2(&) =/A .

Mode
There is a unique mode, namely [k] if A is not integer and there are two modes, namely A

and A —1if A is integer.
Similarly to the way applied in the previous subsections, we investigate the ratio

e
e
P(é’;:k) Kl A
. Writing it explicitly and making simplification we get ———=—_ The
PE=k—1) g p y g p g Sk = K
(k =1)!

inequality 1<%, holds, if and only if k<A, the inequality %<1, holds, if and only if

A<k, and 1=%, holds, if and only if k=X . This can be achieved only in the case, if A is

integer. Summarizing, for the values of k less than A the probabilities are growing, for the
values of k greater than A the probabilities are decreasing, consequently the mode is [k]
The same probability appears at A —1, if A is integer.

Examples
E1. Number of the faults being in some material is supposed to be Poisson

distributed random variable. In a unit volume material there are 2.3 faults, in average.

Compute the probability that there are at most 3 faults in a unit volume material. How much

volume contain at least 1 fault with probability 0.99?

Let &, be the number of faults in a unit volume of material. Now the possible values of &,
A€ :

are 012,....k,... and P(g, =k)=Fe‘”. The parameter A equals the expectation, hence

k
wa=m=%%e*?quwa33=wa=m+wa=n+wa=a+wg=$=
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0 1 2 3

23 e 2% 4 23 e 2% 4 2.3 e 3 4 2.3 e 23 =0.799.
ol il 2! 3
Compute the probability that there are at least 3 faults in a unit volume material.
23° ,3 23,5 237

P& 23 =1-(P(& =0) + P(; =D) + P& =2) =1 (7 e+ e ™+ =
How many faults are most likely in a unit volume material?
A = 2.3 is not integer, consequently there is a unique mode, namely [2.3]=2.
The probabilities are included into the following Tables f.5. and can be seen in Fig.f.2.

e 2%)=0.404.

k 0 1 2 3 4 5 6 7 8 9

P(&, =k) | 0.100 | 0.230 | 0.203 | 0.117 | 0.0538 | 0.0206 | 0.0068 | 0.0019 | 0.0005 | 0.0001

Table f.5. Probabilities belonging to the possible values in case of Poisson distribution with
parameter A =2.3

0.35

031

0.251

0.2} *

0.151

0.1

Figure f.2. Probabilities belonging to the possible values in case of Poisson distribution
with parameter A =2.3

How many faults are most likely in 10 unit volume material?
Let &,, is the number of faults a 10 unit volume. &, is also Poisson distributed random
variable with parameter A*=10-2.3=23. As A* is integer, two modes exist, hamely
A*=23 and A*-1=22. It is easy to see that
p(ap 20 0 B s

221 22! 23
How much volume contains at least on fault with probability 0.99?
Let x denote the unknown volume and &, the number of faults being x volume material.

We want to know x if we know that P(1<g,)=0.99. Taking into account that
P1<g,)=1-P(E,=0), P@1<&,)=0.99 implies P(E, =0)=0.01. &, is Poisson
distributed  random  variable  with  parameter A, =X-2.3,  consequently

0
%e‘”x =0.01. As (x-2.3)° =1, 0!=1, we get e >** =0.01. Taking the logarithm

e ® =P(§,,=23).

In O'(;l ~2003~2.

of both sides, we ends in —2.3x=1In0.1, therefore x =
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E2. The number of viruses arriving at a computer is Poisson distributed random
variable. The probability that there is no file with viruses during 10 minutes equals 0.7. How
many files arrive at the computer most likely during 12 hours?

Let &,, be the number of viruses arriving at our computer during a 10 minutes period. We

do not know the parameter of &,,, but we know that P(§;,, =0)=0.7. As §,, is Poisson
7\‘0

Z et =07. It
ol

distributed random variable with parameter X, therefore P(g;,=0)=

implies A=-In0.7=0.357.

If &,,, is the number of viruses arriving at the computer during 12 hours, &,,, is also
Poisson distributed random variable with parameter A*=12-6-0.357=25.68, consequently
there is unique mode, [25.68]=25.

Theorem If & is Poisson distributed random variable with parameter 2,, n is Poisson
distributed random variable with parameter A, furthermore they are independent, then
&+ is also Poisson distributed random variable with parameter A, +X,.

Proof
As & is Poisson distributed random variable with parameter %, the possible values of &

are 012,3,... and P(é:i):@e% As n is Poisson distributed random variable with
il

i
parameter \,, the possible values of n are 0123,... and P(nzj)zge‘“. It is
J
obvious that the possible values of &+n are 0123... We prove that
k
P(E+n=Kk) MR +kfh2) e (7).

First, investigate P(§+n1=0).

PE+n=0)=P(E=0nn=0)=PE=0)-P(n=0)=

(}"I)O e (7“2)0 e — g (i) _ (M +7L2)0 o(+2)
o! o! o
Similarly,
PE+n=1)=P(E=1nn=0)+P(E=0nn=1)=P(E=1)-P(n=0)+P(E=0)-P(n=1)=
1 0 0 1 1
(7\4) e*"l . (7\42) ef}uz + (}\rl) e*M . (}\42) esz — Mefo‘fﬁ}‘?) COinCiding Wlth the
1 o o! 1 1
requirement.
Generally,

C p(E = N NP i S ) ()T
PE+n=k)=D PE=inn=k-i)=) PE=i)-Pln=k-i)=)" e 1(k_i)'e 2 =
i=0 i=0 i=0 - 3

2)k—i :e—(xﬁkz) k
—i) kKl 4

E3. The number of served people in an office is Poisson distributed random variable.
There are two attendants in the office and the number of people served by the first one and

ef(}"1+7"2)

ey

( "‘Kz)k-

o~ (hathr) IZ:: (7Li|!)i ((7;
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the second one are independent random variables. The average number served by them
during an hour is 3 and 2.5, respectively. Compute the probability that together they serve
more than 4 people during an hour.

Let &, and &, be the numbers of people served by the attendants, respectively. &, is Poisson

distributed random variable with parameter A, =3, &, is Poisson distributed random
variable with parameter A, =2.5, and according to the assumption, they are independent.
The total number of people served by them is &, + &, .Applying the previous theorem,
& +&, is also Poisson distributed random variable with parameter A=Xx, +A, =55
Consequently,

P(4<& +&,) =1_(P(§1 +8,=0)+P(E +&, =) +P(§ +&, =2) +P(&, +&, =3) +P(§, +&, 24))2

+ € € +
0] u 2! 3 4

Given that they serve 5 people together, compute the probability that the first attendant
serves 3 and the second one serves two clients.
The second question can be written as follows: P(§, =3n¢&, =2|&, +&, =5)=?

0 1 2 3 4
1-[5'5 e85 4 22 o585 OO 55 OO 55 OO e‘5'5J:1—0.358:0.642.

Recall that the conditional probability is given by P(A|B)=%. Consequently,
((61=3nE&; =2) (& +&, =5)

P((él:3ﬂ§2:2)|(§1+€2:5)):P PE, +&,=5) .

The event {& +&,=5} is the consequence of {&, =3n¢&,=2}, therefore their
intersection is the event {& =3n¢&,=2}. Now, taking into consideration the
independence of random variables &; and &, we get
3 5 25 o-25
Pl =308, =2I (6, + 8, =) =2 =200 =2) _PE I P& =2 3 2
(&1 +&2=9) P(& +&,=5) 9.9° 55

e
ol

f.6. Geometrically distributed random variable

At the end of this section we deal with geometrically distributed random variables.

In this case we perform independent experiments until a fixed event occurs. We finish the
experiments when the event occurs first. Actually we do not know the number of
experiments, in advance.

Definition The random variable § is called geometrically distributed random variable

with parameter 0<p <1, if its possible values are 1,2,3,...,k,.... and P(§=k)=p(l— p)k‘l,
k=1,2.3,...

Remarks
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e The above probabilities are really nonnegative, and their sum equals 1. It can be
seen easily if we apply the formula concerning the sum of infinite geometrical series,

i 1 .

namel x'=——if x| <1 holds.

y 2X =i
o0 o0 . o0 . o0 1

PE=K)=D PE=K)=>pl-p)*=p> @-p)*t=p> 1-p*=p——=1.
k=L k=1 k=1 k=0 1-1-p)

e The quantities p(l—p)** form a geometrical series, this is the reason of the
denomination.

e Do not confuse this discrete random variable with the geometrical probability
presented in the first chapter.

Theorem We repeat an experiment until a fixed event A occurs, 0<P(A) <1. Suppose that
the experiments are independent. Let & be the number of necessary experiments. Then, & is
geometrically distributed random variable with parameter p=P(A) .

Proof Let A, denote that the event A occurs at the ith experiment. Now, the values of &
can be 1,2,3,... , whatever positive integer. £ =1 means that the event A occurs at the first
experiment, therefore P(§=1)=P(A;)=p. £=2 means that the event A does not occur at
the first experiment, but it does at the second experiment, that is
P(E=2)=P(A, "A,)=P(A,)-P(A,)=(1-p)p, which meets the requirements.
Generally, &=k means, that the event A does not occur at the 1.,2., ...,(k-1)th experiments,
but it occurs at the kth one. Hence

P(A, N A, nn A 0 A) =P(A)P(A,)P(A,)..P(A,)P(A) =(A-p)*™" -p, which
is the statement to be proved.

Numerical characteristics of geometrically distributed random variables

Expectation
E(€) :1. This formula can be proved as follows:
p

E©)=Y x;p; =) k-p-p)* =p> k(—p)“*. k(1—p)“" is similar to derivative. If
i=1 k=1 k=1

we investigate the function D kx for values X <1,
k=1

kaklzi(xk)lz(ixkjlz(lx )z( 1)2. Substituting x=1-p, we get

P} k=1 k=1 —X 1-x

N k-1 1 1 . o

D kl-pft=—————— = This implies the formula
k=1 (1— (1- p)) p

E(2) =pd ka-p)** -5
k=1

Dispersion
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e

D(§) =————. We do not prove this formula. It can be proved similarly to the previous
p
statement, but it requires more computation.

Mode
There is a unique mode, namely always 1. This is the straightforward consequence of the
_ )k
PE=k)__ pla p)k,z =1-p<1. This
PE=k-1) p{-p)
implies that the probabilities are decreasing, therefore the first one is the greatest.

fact that the ratio of consecutive probabilities is

Example

E1l. We throw a die until we succeed in “six”. Compute the probability that at
most 6 throws are needed.
Let & be the number of necessary throws. & is geometrically distributed random variable

. 1 . .
with parameter s This means that the possible values of & are 1,2,3,... and

wen-{3 )
R O A0 RREE R Ol

o)
Generally, P(asn)zi 6 =1—[Ej .

6 5 , 6

6
Compute the probability that more than 10 throws is needed.
10
According to the previous formula, P(§>10) = (gj =0.161.
At most how many throws are needed with probability 0.9?

n
The question is to find the value of n for which P(§<n)=0.99. As P(§<n) :1—(%} ,

n n
we have to solve the equality 1—(2) =0.99. This implies (gj =0.01, that is

In0.1

n In(%) =In0.1. Computing the value of n we get n= =12.63. But we expect integer

In—
6

value for n, hence we have to decide whether n=12 or n=13 is appropriate.
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12
P(éle)zl—[g) =0.888, which is less than the required probability 0.99.

13
P(E<13) :1—(%) =0.907, which is larger than the requirement. Exactly 0.9 can not be

achieved, the series skip over this level, as it can be seen in Fig. f.3.

‘ ‘ —
P

P

0.9 =

0.8 *

0.7r

0.6 *

051

0.4F

0.3 *

0.2

0.1

I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20
k

Figure f.3. Probabilities P(§ <k) and the level y=0.9

The probabilities P(k) = P(§ = k) are presented in Fig.f.4.

0.18

*
0.16
0.14t *
0.12r ¥
_oar «
=3
o
0.08 - +
+
0.06 *
+
0.04 - *
*
* *
0.02 - *
0 .
0 5 10 15

Figure f.4. Probabilities P(§ =Kk)

Which is the most probable value of the throws? The most probable value of & equals 1, the

probability belonging to them is % All of the probabilities belonging to other value are

smaller than % We draw the attention that P(é;tl):g, which is much more than the

probability belonging to value 1.
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Theorem If & is geometrically distributed random variable, then for any nonnegative integer
values of n and m the following equality holds: P( >m+n|&>n)=P(E>m).

Proof Recall that P(¢>k)=(1—p)*. Applying the definition of conditional probability,
PE>m+n|E>n)= P> n;én)r\)(i >n)) . {&>m+n} implies {£€>n}, consequently
>n

the intersection is {€>m+n}. Therefore

P(E>m+n|E>n)=E>M*n) _=p)™ —(1—p)", which coincides with P(& > n).

PE>n)  (-p)

Remarks

o The property P(E>m-+n|E>n)=P(E>m) is the so called forever young
property. If we do not succeed until n, the probability that we will not succeed until further
m experiments is the same that the probability that we do not succeed until m. Everything
begins as if we were at the starting point.

e One can also prove that the forever young property implies the geometrical
distribution in the set of positive integer valued random variables. Consequently, this
property is a pivotal property.

e PE>m+n|E>n)=P(E>m) implies the formula P(E<m+n|&>n)=P(E<m)

as well. As an explanation recall that P(A|B)=1-P(A|B).
PE<m+n|E>n)=1-PE>m+n|E>n) =1-P(E>m)=P(E<m).

Example
E2. At an exam there are 10 tests. The candidate gives it back if the test is not from the

first three tests. Compute the probability that the candidates will succeed until 4
experiments.
Let & be the number of bids. & is geometrically distributed random variable with parameter

3
10
P(E<4)=P(E=D+P(E=2)+P(E=3)+P(E=4)=
0.3+0.3-0.7+0.3-0.7 +0.3-0.7° =1-0.7* =0.760
At most how many bids does he need with probability 0.95?
n=? P(<n)=0.95. P(§<n)=1-0.7" =0.99, which implies n=8.4. Consequently, the
candidates needs at most 9 bids until the hit.
If he does not succeed up to the 5™ experiment, compute the probability that he succeed
until the 8" one.
The question can be easily answered by applying the forever young property as follows:

P(£<8|£>5)=P(£<3)=P(E=1)+P(=2)+P(£=3)=0.3+0.3-0.7+0.3-0.72 =0.657.
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g. Frequently used continuous distributions

The aim of this chapter

In chapter d. we have dealt with continuous random variables. Now we
investigate some frequently used types. We compute their numerical
characteristics, study their main properties and we present their relationships
with some discrete distributions, as well. We derive new random variables
from normally distributed random variables. These are often used in

statistics.

Preliminary knowledge

Random variables and their numerical characteristics. Density function.

Partial integrate.

Content

g.1. Uniformly distributed random variables.

g.2. Exponentially distributed random variables.

g.3. Normally distributed random variables.

g.4. Further random variables derived from normally distributed ones.
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g.1. Uniformly distributed random variables

In this chapter we deal with some frequently used continuous random variable. We defined
them by the help of probability density function.

First we deal with a very simple continuous random variable. Let Q, ‘A, and P be given and

& is arandom variable.

Definition The random variable & is called uniformly distributed random variable with
c ifas<x<b

parameter a, b (a<b), if its probability density function is f(x) = L.
0 otherwise

Remarks

e As the area under the probability density function equals 1, c:—b ! . This value is
positive, consequently all values of the probability density function are nonnegative.

o The constant values of the probability density function express that all the values of the
interval [a, b] are equally probable.

e Uniformly distributed random variable with parameter a, b (a<b) are often called
uniformly distributed random variable in [a, b]

e The graph of the probability density function of the uniformly distributed random
variable with parameters a=-1, b=4 can be seen in Fig.g.1.

2 -1 [ 1 2 3 4 5 6

Figure g.1. Probability density function of uniformly distributed random variable with
parameters a=-1, b=4

Theorem
The cumulative distribution function of uniformly distributed random variable in [a,b] is

0 ifx<a
X—a
b-a
1 ifb<x

ifa<x<b.

F(x) =
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Proof

X
Recall the relationship F(x)= If(t)dt between the probability density function and

cumulative distribution function presented in section d.

If x<a,then F(x)= jf(t)dt: joar:o.

1 o Tl 1 . X-—a
If a<x<b,then F(x)= | f(t)dt = | Odt + | —dt =0 [t = .
(%) _[O() j +£b_a =
X a b 1 X
Finally, if b<x, then F(x) = jf(t)dt: IOdt+J.—dt+J.Odt:O+1+O:1.
—0 —o0 ab_a b

The graph of the cumulative distribution function of a uniformly distributed random
variable with parameters a=-1 and b=4 is presented in Fig.g.2.

0.9k

Fix)

0.3k

0.2k

01f

Figure g.2. Cumulative distribution function of uniformly distributed random variable with
parameters a=-1, b=4

Remarks

e Let & be uniformly distributed random variable in the interval [a,b] and a<c<d<b.

d-a c-a d-c

b-a b-a b-a

(c,d) is proportional to the length of the interval (c,d).
e Choose a number from the interval [a, b] by geometrical probability. Let & be the

chosen number. Then & is uniformly distributed random variable in the interval [a, b].

As justification take into consideration that P(E<x)=P(@)=0, if x<a,

P(&<x):P(as@<x)=S, if a<x<band P(§<x)=P(Q)=1,if b<x. F(X)=P(§<Xx),

Then P(c<&<d)=F(d)-F(c)= . The probability of being in the interval

and f(x):F'(x):bi ifa<x<b,and 0 if x<a or b<x. At the endpoints x=a and
-a

x =b the cumulative distribution function is not differentiable, we can define the probability

density function anyhow. Defining f(a) =bi =f(b), f equals to one in the definition.
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¢ Random number generator of computers usually generates approximately uniformly
distributed random variables in [0,1] .

Numerical characteristics of uniformly distributed random variables:

Expectation

E() = a ; b , which is a straightforward consequence of
F o1 1 7 1 [x2] b?-a? b+a
E(F,):_[x-f(x)dx:_[x- dx = J’xdx=—— = =——% Note that
i -~ b-a b-a b-a| 2| 2(b-a) 2
this value is the middle of the interval [a, b].
Dispersion
b-a 2 2 2
D(E£) =——— . As a proof, recall that D“(§) =E\&“ ) (E(E))°.
©=-" 9 -El?)-(E©)
0 b 37 3.3 B2 2
E(§2)=J-x2f(X)dx=J'x2idx=ix— _b-a’ b +ab+a’
c - b-a b-a| 3] 3(b-a) 3
b>+ab+a? (a+b)’ b?2-2ab+b? (b-a)
D2(&)=El£?)-(E())* = - = = :
(©)=E2)-E©) 5 ( . j > >
b-a)P |b-a b-a
Consequently, D(&) = ( = = )
quently, D(&) o NTIE

Mode
All of the values of interval [a,b] have the same chance, consequently, all the points of (a, b)
are mode.

Median

me=2+ b . We have to find the value y for which F(y)=0.5. As neither 0 nor 1 do not equal

0.5, the following equality has to be held: :)’—_a=o.5. This implies y—a=0.5(b—-a).
-a

Arranging it, finally we get y = ? .

Example

E1l. Let & be uniformly distributed random variable in [2,10]. Compute the
probability that the value of the random variable is between 5 and 8.

0 ifx<2

The cumulative distribution function of & is given by F(x) = XT_Z if 2<x<10,

1 if10<x
which is a useful tool to compute probabilities.
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P(5<&<8)=F(8)—F(5) =8;82—5;82:§=0.375.

Compute the probability that the value of the random variable is less than 5.
mg<a=F6y=5§3=§=0375

Compute the probability that the value of the random variable is greater than 8.

PB<£&)=1-F(@8)= 1—§§3:§—025

Compute the probability that the value of the random variable is greater than the half of its
expectation and less than the double of the expectation.

2+10 3-2 7
E)=

=6, PB<E<12)=F(12) - FG)l——g—:—
At most how much is the value of the random variable with probability 0.9?

8

x=? for which P(§<x)=0.9. P(§<x)=F(x), we have to solve XT_2=0.9. This implies

x=9.2.
At least how much is the value of the random variable with probability 0.9?
x=? for which P(§>x)=0.9. P(x<&)=1-F(x), we have to solve 1—XT_2=0.9. This
implies x =2.8.
Given that the value of the random variable is more than 5, compute the probability that it is
less than 8.

8-2 5-2

p(e <8|e x5~ PE<B)N(E25) PGE<£<8) F(@®)-F(E) _ 8_28:§:0.6_
1-

P(£>5) P(&>5) 1-F(5) 5 5

8
Notice that this conditional probability is proportional to the length of the interval [5,8) if the

number originates from [5,10].

Theorem If & is uniformly distributed random variable in [0,1]], O<c and deR, then
=c&+d is uniformly distributed random variable in [d,c +d].
Proof Investigate the cumulative distribution function of r, then take its derivative.

x—d x—d
):Fi[ : j

F,(X)=P(n<x)=P(cE+d<x)=P(E<

0 if X9
0 ifx<0 ; ¢ ;
Recalling that F,(x)=<x if 0<x<1, F,(x)= X; if 0< - <1.
1 ifl<x _d
1 ifl<
0 if x<d
- x—d .
Summarizing, F, (x)=1—— ifd<x<c+d .
C

1 ifc+d<x
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=i <x<
Taking the derivative of F, (x), f, (X)=1c if d<x<c+d .

0 otherwise

Remarks

e Ifcisnegative, then n=c&+d is uniformly distributed random variable in [c +d,d].

e Using the random number generator, we can get uniformly distributed random variable
in [a,b] by multiplying the generated random number by b —a and adding a.

e If & isuniformly distributed random variable in [0,1], then so is n=1-¢&. To justify it,
first take into consideration that all of values of & are in [0,1], hence so are the values of
n=1-¢&. Moreover,
F,(X)=P(n<xX)=P(l-£<Xx)=P(l-x<§)=1-F.(1-x)=1-1-x)=x, if 0<x<l.
Therefore f, (x)=F', (x)=1, if 0<x <1 and zero out of [0,1].

Theorem
Let & be uniformly distributed random variable in [0,1]. Let F a continuous cumulative

distribution function in R . Let |={XERZF(X)¢O, F(x);tl} and suppose that F is strictly

monotone in I. Then n=F (&) is a random variable those cumulative distribution function is

F.
Proof

F1:(0)—>1, PE=0)=0, P(E=1)=0.n1=F"(g) is well defined. Take any value x <1, and
investigate the cumulative distribution function of n at x. Taking into account that

0 ifx<0
F.(x)=1x if 0<x<1.
1 if 1<x

F,(x) =P <x)=PF*(©) <x).

As F is monotone increasing, {F‘1 &)< x}: {F(F‘1 E)< F(x)}: {a < F(x)} .Consequently,
P(F(8) <x)=P(E <F(x))=F. (x) =F(x).

If x<inf 1, then F(x)=0 and F,(x)=P(n<x)=P(F (&) <x)=0.

If sup 1<x, then F(x)=1 and F, (x) =P(n<x) =P(F (&) <x)=1.

Consequently, the cumulative distribution function of F‘l(a) is F(X).

Remark

e The previous statement gives us possibility to generate random variables with
cumulative distribution function F.

Example
E2. Generate random variables with cumulative distribution function
0 ifx<1
F(x) = .
%) 1—l if x<1

X
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Apply the previous statement. F is strictly monotone increasing function in the interval (1, oo),

Fl(y)zli, 0<y<1. Consequently, if & is uniformly distributed in [0,1], then F*(¢) isa
-y

random variable with cumulative distribution function F. Consequently, substituting the

random number generated by the computer into F™* we get a random variable with cumulative

distribution function F. The relative frequencies of the random numbers and the probability

density function f(x) =F'(x) :iz, 1<x, can be seen in Fig.g.3.
X

f(x)

0 2 4 6 8 10 12 14 16 18
X

Figure g.3. Relative frequencies of random numbers F* (&) situated in different
subintervals and the probability density function

g.2. Exponentially distributed random variables

In this subsection we deal a frequently used continuous distribution, namely exponential one. It
is very useful, because many examples can be computed for it due to the exponential
probability density and exponential cumulative distribution function.

Definition: The random variable & is exponential distributed random variable with
0 if0<x

parameter 0 <A, if its probability density function is f(x) = " .
re ™ if 0<x

Remarks
o 0<f(x) is obvious, furthermore,

—AX

jf(x)dx =I re ¥ dx {x e_ - } = Xll_rll(— e )— (—e%)=0+1=1. These properties imply that
—o0 0 0

f(x) is a probability density function. The graphs of probability density functions of

exponentially distributed random variables belonging to different parameters are presented in
Fig.g.4.
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Figure g.4. Probability density functions of exponentially distributed random variables with
parameters A =1 (black), A =0.5 (blue) and A =2(red)

e Exponentially distributed random variable takes its value with large probability around
zero, whatever the parameter is. All of its values are nonnegative.

Theorem The cumulative distribution function of an exponentially distributed random variable
. . 0 ifx<0
with parameter 0 <A is F(X) = N .
1-e™ if0<x
Proof

F(x):jf(t)dt:Ide:O,if x<0.

X X -t %

F(x) = jf(t)dt =jxe-“dx {e : } —e ™ (-1 =1-e™,if 0<X.
e 0 o

The graphs of the cumulative distribution function belonging to the previous probability density

functions are presented in Fig.g.5.

091
081 -
071 e

0.6

051

F()

0.4t
03} /

0.2

017/

Figure g.5. Cumulative distribution functions of exponentially distributed random variables
with parameters A =1 (black), A =0.5 (blue) and A =2 (red)
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Remark
. Simple way to generate exponentially distributed random variable to substitute the
uniformly distributed random variable into F‘l(y):@. Relative frequencies of

exponentially distributed random variables situated in the interval [0,5] are presented in

Fig.g.6. One can notice that the relative frequencies follow the probability density function
drawn by red line.

Figure g.6. Relative frequencies of random numbers —In(L—&) situated in different
subintervals and the exponential probability density function with parameter A =1

Numerical characteristics of exponentially distributed random variables:

Expectation
E(€) :% . It follows from

£(E)- on-f(x)dx =Ix e (e —I—e‘“dx 0 {ef; } =3

Taking the average of random numbers generated previously by the presented way, for A =1,
the results are in Table g.1. Differences from the exact expectation 1 are also presented:

N= 1000 10000 100000 1000000 10000000
Average 0.9796 1.0083 1.0015 1.0005 0.9996
Difference 0.0204 0.0083 0.0015 0.0005 0.0004

Table g.1. The average of the values of random variable —In(L—¢&), if & is uniformly
distributed random variable in [0,1] in case of different numbers of simulations N

Dispersion
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D(E_,)z%. As a proof, recall that D2(§)=E(E_,2)—(E(§))2. Twice partially integrating,

[ 2 2 1 1
B(E) = [XT0ou =5 D@ =) CO) = 577
Mode
There is no mode.
Median
me = In0.5 . We have to find the value x for which F(x) =0.5.In order to do this, we have to

solve the following equation 1—e™* =0.5. This implies e™ =0.5. Taking the logarithm of

both sides, we get —Ax=1In0.5, finally x = In 0};5 :

Example
E1l. Lifetime of a bulb is supposed to be exponentially distributed random variable

with expectation 1000hours. Compute the probability that the bulb breaks down before 500
hours.
Let & denote the lifetime of a bulb. As & is exponentially distributed random variable, its

cumulative distribution function looks F(x)=1—e ™, x>0.As E(&) = % =1000, A =0.001.

500
P(&£<500) = F(500) =1—e 1000 =0.393.
Compute the probability that the bulb goes wrong between 1000 and 2000 hours.

2000 1000
P(1000< & < 2000) = F(2000) — F(1000) = {1— e 1000} - [1— e lOOOJ =0.233,

At most how many hours is the lifetime of a bulb with probability 0.98?

X X
x=?, P(<x)=0.98. P(E<x)=F(x)=1—e 1900=0.98, consequently, e 1°0=0.02, and
x=-1000-In0.02=3912
At least how many hours is the lifetime of a bulb with probability 0.98?

X X

x=?, P(§>x)=0.98. P((§>x)=1-F(x)=1—e 1000=0.98, consequently, e 1900 =0.98, and
x=-1000-In0.98=20.2.

Compute the probability that, out of 10 bulbs, having independent exponentially distributed
lifetimes with expectation 1000 hours, 7 go wrong before 1000 hours and 3 operate after 1000
hours.

Let &, denote the lifetime of the ith bulb. They are independent random variables and

1000

P(, <1000) = F(1000) =1—e 10 =0.632, P(¢, >1000) =0.368. If 1 is the number of bulbs
going wrong until 1000 hours, n is binomially distributed random variable with parameters

10
n=10 and p=P(&; <1000) . Therefore P(n=7) :(7 j -0.6327 -0.368% =0.241.

Actually we present characteristic feature of exponentially distributed random variables.
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Theorem If & is exponentially distributed random variable, then for any 0<x,0<y the
following property holds: P(E>X+Yy|E=>X)=P(§>Yy).

Proof

Recall that P(§>a)=1-F(a)=1—-(1-e ) =e".

Moreover,

P(E> X1y [E5 %) PE2x+yn&>x) PE2x+y) _e™*

P(E=x) P(&=x) e

=e ™ =P(E2y).

Remark

e The previous property can be written in the form P(§<x+y|E>X)=P(E<Yy), as well.
Take into consideration that
PE<x+Yy[E2X)=1-P(E=X+Yy|E=X)=1-P(§2Yy)=P(E<Yy).

e As exponentially distributed random variables are continuous random variable, then we
do not bother if strict inequality () or > holds. We can also write
P(E>x+Yy|E>X)=P(E>Yy), which coincides with the property stated for geometrically

distributed random variable.
e The property can be interpreted as forever young property. If & is the lifetime of an

appliance, then & is the time point when it goes wrong. If it does not go wrong until x, the
probability that it will not go wrong until further y unit time is the same that it does not go
wrong until y from the beginning. This is the reason of the denomination of the property.

e The forever young property is valid essentially for the exponential distributed random
variable in the set of continuous random variables.

Theorem Let & be continuous random variable with nonnegative values, suppose that its
cumulative distribution function is differentiable and Iiry F(x)=XA, 0<X. Moreover, for any
X—0+

0<X,y PE=x+Yy|E=X)=P(E>y) holds. Then & is exponentially distributed random
variable with parameter X .

Proof Denote G(x)=1-F(x). As & is nonnegative, F(0)=0, G(0)=1. As the conditional
probability  exists, 0<P(E>x), consequently  G(x)<1. Let O<y=AX,
PE=Xx+Y|E=X)=P(E>Y) has the form PE=X+AX|E=X)=P(§=>AX).
P(E>x+AX) G(X+AX)

PE2x)  G(X)

G(X+AX) =G(AX)G(x). Subtracting G(x) and applying G(0)=1 we get
G(x + AX) — G(X) = G(X)(G(AX) — G(0)). Dividing by Ax and taking the limit of both sides if
0<AXx—0 we arrive at G'(X)=G'(0+)G(x). F'(0+)=A implies G'(0+)=-A, therefore
G'(x) =—AG(x) . This is an ordinary differential equation which is easy to solve. Dividing by
G(x) =0, Cé((:(()) =-X\, consequently In|G(x)| =-AX+cC. G(X) is nonnegative, hence
ING(x)=—Ax+c and G(X)=e ™. G(0)=e =1 implies ¢c=0 and G(X)=e ™.

Finally, 1-F(x)=e™, F(x)=1—e ™ and f(x)=F (x) =Ae ™.

PE>X+AX|E>X) =

=G(Ax). This implies the form

Remarks

e Assumptions of the previous statement can be slightly depleted.
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e Forever young property can be assumed of lifetime of appliances when the fault is not
caused by the age. For example, if & is the age of a person, then P(§>100|&>90) = P(§>10).

In other words, if he survives 90 years, the probability that he survives further 10 years is
obviously less than the probability of surviving 10 years from the birth. Exponentially
distributed random variables are punctures. Punctures are usually caused by a pin. | we do not
enter into a pin until x, the wheel do not remember the previous passage.

o Forever young property of the exponentially and geometrically distributed random
variables indicates that geometrically distributed random variable is the respective one of the

exponentially distributed random variable. This is supported by the formulas E(&,‘):l and
p
1 .
E)= o respectively.

Example

E2. The ways between the consecutive punctures are independent exponentially distributed
random variables. The probability that there is no puncture until 20000 km equals 0.6. Compute
the probability that there is no puncture until 50000 km.

Let &, the way until the first puncture. Because of the forever young property, we can suppose

that the way begins at 0. Actually we do not know the expectation and the value of the
parameter, but we know data P(&; <20000 =0.6, This is suitable for determining the value of
the parameter A as follows. P(&, <20000 = F(20000 =1-¢*°°=0.6. e 7*°=04,
In0.4
—20000
P(&, >50000 =1— ﬁ—e—4-581°’5'5°°°°)= 0.101.
Compute the expectation of the way between consecutive punctures.

E(,) =%= 21827,

which implies A= =458-107°. Returning to  the question,

Given that the first puncture is not until 50000 km, compute the probability that it is until
70000 km.

P(€, <70000| £, >50000) = P(&, <2000) = F(2000) =1—e 2 =0.6.

Given that the first puncture is until 50000 km, compute the probability that it is until 20000
km.

P(E, <10000(E, <50000 = P(&, <10000M &, <50000 P(& <10000 F(1000Q

_ - =0.408.
P(¢, <50000 P(¢, <50000 F(50000

Theorem (Relationship between the exponentially distributed random variables and Poisson
distributed random variable)
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Let &;, i=123,... be independent exponentially distributed random variables with parameter

0 if T<g,
1 if g <T<g,
2 if & +E,<T<E +E&, +&5

A, O<T fixedand n; =1.

k if Zk“aidskig,

Then, n; is Poisson distributed random variable with parameter A*=A-T .

The proof of this statement is omitted as it requires the knowledge of the distribution of the
sum of exponentially distributed random variables.

E3. Returning to the Example E2, compute the probability that until 200000 km
there are at most 2 punctures.
Denote the number of puncture until T (km) by n;. Applying the previous statement n; o000 IS

Poisson distributed random variable with parameter
A *=100000- 1. =100000-4.58-10° = 4.58.
Consequently, P(n100000< 2) =P(M100000="0) + P(M100000=1) + P(M100000=2) =
0 1 2

4.58 o458 458 o458 4.58 o458

o 1 2!
How many punctures happen until 200000 km most likely?
MNaooooo IS also  Poisson  distributed  random  variable ~ with  parameter
A**=200000-4.58-10"° =9.16. As the parameter A** is not integer, there is a unique
mode, namely [A**]|=[9.16]=9.

=0.165.

Theorem
If & is exponentially distributed random variables with parameter %, then m=[g]+1 is

geometrically distributed random variable with parameter p=1—¢ ™.

Proof As 0< &, [&] takes nonnegative integer, n takes positive integer.
PMm=1)=P([g]+1=1)=P(&]=0)=P(0<&<1) =F1) - F(0)=1-e ™ —0=p.
P(=2)=P(E]+1=2)=P(]=1) =PU<£<2) =F@) - F) =1 7?)-[1-e )=
et —e?=etl-e")=p@l-p).

Generally,

P =k)=P([e]+1=k) =P(£]=k —1) =P(k ~1< £ < k) = F(k) - F(k —1) = [L—e 7 ) [L—e "D )=

—e M D_e?)= (e‘x )H (@-e™)=(1—-p)**-p, which is the formula to prove.

Example
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E4. Telecommunication companies invoices the fee of calls on the basis of minutes.
It means that all minutes which were begun have to be paid totally. If the duration of a call is
exponentially distributed random variable with expectation 3 minutes, how much is the
expectation of its fee if every minute costs 25HUF.
Let ¢ denote the duration of a call. The minutes invoiced are n=[¢]+1. The previous
statement states that mn is geometrically distributed random variable with parameter

p=1-e™* =1-¢% =0.393. Consequently, E(n) =1=$=2.54. The expectation of the
p O

fee of a call is E(25-m) =25-E(n)=25-2.54=63.54.

g.3. Normally distributed random variables

In this subsection we deal with the most important continuous distribution, namely normal
distribution. First of all we investigate the standard normal one.

Definition The continuous random variable & is standard normal distributed random variable,

if its probability density function is f(x) = 2 xeR.

1
——e
\2%
Remarks

e The inequality 0<f(x) holds for any value of xeR, and it can be proved that

0 7X2 0

- 1
_[ e 2 dx =+/2n . Consequently, j—
~A\2n

density function.
e The above function is often called as Gauss curve and is denoted by ¢(x) .

e The function @(x) is obviously symmetrical to the axis x.
e We use the following notation: &~ N(0,1) .

e Standard normally distributed random variables take any value.
e The graph of the probability density function can be seen in Fig.g.7.

e 2 dx =1. This means that f(x) is really probability

0.4

0.351

0.3F

0.25F

f(x)

0.2

0.151

0.1r

0.05F

Figure g.7. Probability density function of a standard normally distributed random
variable
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e The cumulative distribution function of a standard normally distributed random

variable is F(x) = _[f(t)dtz

in Fig.g.8.

f(x)

t 1
1%

0.4

0.351

0.3F

0.25F

0.2

0.15F

0.1r

0.051

t2

e 2dt, which is the area under the Gauss-curve presented

Figure g.8. The value of the cumulative distribution function as area under the
probability density function

e The cumulative distribution function of standard normally distributed random variables
is denoted by @(x) (capital F in Greek alphabet). Its graph can be seen in Fig.g.9.

1

0.9}
08}
07}
06t

Zosf
0.4f
03t
0.2t

0.1f

0
-4

. i
-3 -2

I
-1

X

I I I
1 2 3 4

Figure g.9. Cumulative distribution function of standard normally distributed random variables

e The function ® can not be written in closed form, its values are computed numerically
and are included in a table (see Table 1 at the end of the booklet and Table g.2.)

D(X)

0.5

0.8413

0.9773

WIN|FL|O

0.9986
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Table g.2. Some values of the cumulative distribution function of standard normally distributed
random variables

Data from this table can be read out as follows: ®(0)=0.5, ®(1)=0.8413, ®(2)=0.9773,
®(3) =0.9986.

Remarks

e The tables do not contain arguments greater than 3.8. As the cumulative distribution
function is monotone increasing and it takes values at most 1, furthermore ®(3.8) =0.99993,

0.9999< d(x) <1 in case of 3.8<x.We use ®(x)~1 for 3.8<x.

e The tables do not contain arguments less than 0, because the values at negative
arguments can be computed as follows.

Theorem

If 0<x,then ®(—x)=1-D(X).

Proof The proof is based on the symmetry of the probability density function.
2 2

T 1

——e 2dt=1-

_'[O\/ZTE _‘Lx/ﬂ

Expressively, stripped areas of the Fig.g.9. are equal.

O(—x) = e 2dt=1-d(x).

0.4

03k

o1f

Figure g.9. Equal areas under the standard normal probability density function due to its
symmetry

Obviously, ®(—x)=1-®(x) holds for any value of x.

Theorem

If £€~N(01), then —& ~ N(0,1) holds, as well.

Proof Let n=-¢.

F,(X)=P(M<X)=P(-£<X)=P(0<&+X)=P(-x<&)=1-P(—x) =1- (1 - D(x)) = D(x).

x2
Now f, (x)=F,"(x)=®'(x) =Le 2, which proves the statement.

J2n

Numerical characteristics of standard normally distributed random variables:
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Expectation

x? x?

E(€)=0. It follows from the fact that Ix-e_de =—e 2 and

x2 x2 x?

E(é)zTX-f(X)dsz =lim-——e 2 — lim-——=—¢ 2 =0.

1 1
i \/Z X—00 \/Z X—>—00 \/E

Dispersion
D(&) =1. As a proof, recall that D? (&) = E(&2 )— (E(g))2 . Applying partially integration

E(E?) = szf(x)dx—j \/_e XZde Tx-x\/;_ne X22dx {x—e 2] T e 2dx

—00 —00 OO

Recalling L’ Hopital law we get

x? x? x?

I R -1 = 1 .
limx——=e 2 = lim x——=e 2 =0. Moreover, —— e 2dx 1, as e 2 is a
xow 21 Xomo 21 '[ N2 N2n

probability density function. Consequently, D?(&) = E(ﬁ )— (E(g)) =1-02? =0, which proves
the statement.

Mode
Local maximum of ¢ isat x =0, consequently the mode is zero.

Median
me=0. We have to find the value x for which ®(x)=0.5. Using the table of cumulative

distribution function of standard normal distribution, we get x =0.

Example
E1. Let £ be standard normally distributed random variable. Compute the probability that

€ is less than 2.5.

P(&<2.5)=d(2.5)=0.9938.

Compute the probability that & is greater than -1.2.

P(-1.2<§)=1-9(-1.2) =1- (1 - D(1.2)) = D(1.2) =0.8849.

Compute the probability that & is between -0.5 and 0.5.

P(-0.5<& <0.5) = ®(0.5) — ®(-0.5) = ®(0.5) — (1— ®(0.5)) = 2(0.5) —1=2-0.6915—1=0.383Q
At most how much is & with probability 0.9?

x=? P(§<x)=0.9. P(§<x)=®(x)=0.9. We have to find the value 0.9 in the columns of @,

as the value of the function equals 0.9. Therefore, x =1.28.
At least how much is & with probability 0.95?

x=? P(>x)=0.95. 1-d(x)=0.95= d(x)=0.05. As d(x)<0.5 and & is monotone
increasing function, x<0. If we denote x=-a , O0<a and ®(x)=®(-a)=1-d(a)=0.05.
This implies ®(a) =0.95 and a =1.645.Finally, we end in x =-1.645.

Give an interval symmetrical to 0 in which the values of & are situated with probability 0.99.
X=? P(—x <& <Xx)=0.99. P(-x <& < X)=®(X) — ®(—X) = 2P(x) —1=0.99. This implies
d(x)=0.995 and x=2.58. The interval is (—2.58, 2.58)
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Now we turn to the general form of normal distribution.

Definition Let & be standard normal distributed random variable, meR and O<oc. The
random variable n=ocf&+m is called normally distributed random variable with
parameters m and o. We use notation n~ N(m,o).

Remarks
e With m=0 and o=1, n=c&+m=¢& is standard normally distributed random

variable. It fits with notation & ~ N(0,2) .

e 7 is linear transformation of a standard normally distributed random variable.

e If a<0 and meR, then n=a§+ m=(-a)(-&) + m. Recall that —& ~ N(0,2) holds as
well, furthermore O<-a, consequently m is normally distributed random variable with
parameters m and —a.

Theorem Let & be standard normally distributed random variable, meR and O<o. The

cumulative distribution function of the random variable n=c& +m is F, () =®(X -m

) and

(¢

1

V2ro

PI00f F, () =P(of + m<) =P(g < =) =0(> ).

the probability density function of n is f,(x) = e 2

- (x-my

x—m)j 1 x-m 1 1 5

==

c c c 2no

f,(0)=F'(x)= (CD(

(¢

The graph of the cumulative distribution functions can be seen in Fig.g.10. In all cases m=0,
red line is for =1, yellow line is for =2, blue line is for c=4 and green line is for
c=05.

Figure g.10. Cumulative distribution functions for normally distributed random variables for
different values of c

The graph of the probability distribution functions be seen in Fig.g.11. In all cases m=0, red
line is for o=1, yellow line is for o =2, blue line is for =4 and green line is for 6=0.5.
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1.6

14r

1.2r

Figure g.10. Probability density functions for normally distributed random variables for
different values of o

One can notice that if the value of o is large, then the curve is depressed, if the value of o is
small, then the curve is peaky. It is the obvious consequence of the fact that the peak is at high

ofl.

216
If we want to present the roll of parameter m, then we can notice that the probability density
function is symmetric to m. In fig.g.11., the parameter o equals 1, red line is for m=0, blue
line is for m=1 and green line is for m=-1.

f(x)
o
N

Figure g.11. Probability density functions for normally distributed random variables for
different values of m

Numerical characteristics of normally distributed random variables:

Expectation
If n~N(m,o), then E(m)=m. It follows from the fact that
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E(Mm)=E(c-E&=m)=cE()+m=c-0+m=m.

Dispersion
If m~N(m,c), then DMm)=c. To prove it, take into consideration that

D(M)=D(c-£=m)=cD({)=c-1=0.
Summarizing, the first parameter is the expectation, the second one is the dispersion.

Mode
Local maximum of f (x) isat x=m, consequently the mode is m.

Median

me=m. We have to find the value x for which F_(x)=0.5.This means (D(ﬂ) =05. 1t
(e}

X—m

implies =0=x=m.

o

Example
E2. Let n~ N(5,2) . Compute the probability that n is less than 0.

Pn<0)=F (x)= cD(O—;S) =@(-2.5) =1-®(2.5) =1-0.9938=0.0062.
Compute the probability that the value of 1 is between 0 and 6.
6 ; 5) - q)(o ; 5) = ®(0.5) — ®(-2.5) =0.6915—- 0.0062=0.6853

Compute the probability that the value of n is greater than 6.

P(0<n<6)=F,(6) - F, (0) = d(

P(6<n)=1-F, (6)=1~ (D(%) =1-®(0.5)=1-0.6915=0.3085.

At most how much is the value of n with probability 0.8?

x=? P(n<x)=0.8. (D(XT_S) =0.8. As @(0.84)~0.8, therefore XT_SZ 0.84. This implies
x=5+0.84-2=6.68.

At least how much is the value of n with probability 0.98?

X295 _0.98. o(X=2
2 2

x=? P(x<m)=0.98. P(x<n)=1-d( )=0.02. If we introduce new

variable ysz_5 , we reduce our task to determine the solution of ®(y)=0.02. This type of

problem was previously solved. We can first realize that y is negative and if y=-a, then
®(a) =0.98. Consequently, a=2.33, y=-2.33, that is XT_5=—2.33,. Finally, arranging the
equation we get x=5-2.33-2=0.34.
Compute the value of the probability density function at 6.

~(6-5)°
L e 22 _o176.
21

f,(6)=

Theorem (k times o law) If n~N(m, o), then P(m — ko <n<m+ ko) =20(k) —1.
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Proof The proof is very simple, compute the probability.
P(M — ko <n<m+ka)=F, (M + ko) — F, (m — ko) =p("TKI =My M-ko=m,
) G

D(K) — D(—K) = D(k) — (1 - D(k)) =2d(K) —-1.

Remarks

e Substituting the values k =0,1,2,3 into the previous formula, we get
PM-oc<n<m+o)=20(1)-1=2-0.8413-1=0.6826,
P(M-2c<n<m+2c)=20(2)-1=2-0.9772-1=0.9544,
P(m—-3c<n<m+3c)=20(3)—1=2-0.9987-1=0.9974.

¢ The last equality states that a normally distributed random variable takes its values in the
interval symmetrical to the expectation and radius 3 times dispersion with probability almost 1.

e The probability density function with parameters m=1 and o =1, for k=1,2 present
the k times o law (see Fig.g.12.).

0.4 0.4

0.35f

0.3r

0.25F

(%)

0.21

0.151

0.1r

0.05

Figure g.12.The areas under the probability density function

Example

E3. Let n~N(312). Give an interval, symmetrical to 3, in which the values of n
are situated with probability 0.99!

Apply “k times o” law. As the required probability equals 0.99, consequently,
2d(k) —1=0.99. This implies ®(k) =0.995, and as a consequence, k=2.58. Therefore the

interval looks (m—ko,m+Kko)=(3-12-2583+12-2.58)=(-27.96,3396). It is also
presented in Fig.g.13.

0.035

0.031

0.025

0.02

fx)

0.015

0.01r

0.005
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Figure g.13.Area 0.99 under the probability density function

Theorem If n is normally distributed random variable, then so is its linear transformation.
Namely, if n~N(m,c), a=0,then 6=an+b~N(a-m+b,fa-c).

Proof

Recall the definition of the normally distributed random variable, n=c-&+m with
E~N@OD. 6=an+b=a(c-E+m)+b=acE+am+b. If 0<a, then 6~ N(am+b,ac), if
a<0, then 6~ N(am+b,—ac). Summarizing these formulas we get the statement to be
proved.

Theorem If n, ~N(m;,5;), n, ~N(m,,c,) furthermore n, and n, are independent, then
M, +M, ~ N(M, +m,,+/c? + 65 .

Remarks

e Although we can not prove the previous statement, notice, that the parameters are
calculated according to the properties of expectation and variance. The first parameter is the
expectation. Expectation of the sum is the sum of expectations. The second parameter is

dispersion. Dispersions can not be given, but variances can. D?(n, +1,)=D?(n,) + D*(n,),

therefore D(n, +m,) =+/c% + G5 .

e As a consequence of the previous statement we emphasize the following: If ¢,
i=123,...,n are independent identically distributed random variables, &, ~N(m,c), then

Zn:é,i~N(n-m,c-\/ﬁ).

o If & 1=123,..,n are independent identically distributed random variables,
;&i .
& ~ N(m,o), then ‘T~ N[m,ﬁj,
Example

E4. Weights of adults are normally distributed random variables with expectation
75kg and dispersion 10 kg. Weights of 5 year children are also normally distributed random
variables with expectation 18 kg and dispersion 3 kg. Compute the probability that the average
weight of 20 adults is less than 70 kg.

20
Z‘:a,i 10

i=1
&, ~N(7510), &, ~ N(182). n N(75, @),
20
2 Ea 70-75
P <70)=F, (70)=ad( ) = d(-2.236) =1 ®(2.236) =1— 0.9873=0.0127.
20 L., 2.236

i=1

20
Give an interval symmetrical to 75kg in which the average weight of 10 adults is with
probability 0.9.
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20
Zéa,i 1
' ~ N(75

i=1

10 "J10
and dispersion 10/4/10. 20(k) —1=0.9 implies k=1.645, therefore the required interval
looks (75-1.645-3.16,75+1.645-3.16) =(69.8,80.2) .
At most how much is the total weight of 6 adults in the elevator with probability 0.98?

). To answer the question apply the “k times ¢ law” with expectation 75

6 6
x=? P> g, <x)=098. D&, ~N(6-756-10). It means that ®, (x)=098.
i=1 R igléa,i

(I)(X_450) 0.98. Consequently, X - 450—2.06, finally
24.495 95

X = 450+ 24.495. 2.06 = 50046k ~ 560kg .

Compute the probability that the total weight of an adult and a 5 year child is more than 100 kg,
if their weights are independent.

g, +&, ~ N(75+18,110% +3?),

PUO0<E, +&:)=1-F, . (100 =1-0(—

100 93

) 1-0.6937=0.3063.

E5. Daily return of a shop is normally distributed random variable with expectation 1
million HUF and dispersion 0.2 million HUF. Suppose that returns belonging to different days
are independent random variables. Compute the probability that there is at most 0.1 million
HUF difference between the returns of two different days.

Let &, denote the return of the first day, &, denote the return of the second day. &, ~ N(1,0.2),

&, ~N(10.2). The questionis P(&, —&,|<0.1).

P(g, — €,/ <0.)=P(-0.1<§, &, <0.)=F, ., (0.)-F, . (-0.1).

If we knew the cumulative distribution function of &, — &, , then we can substitute 0.1 and -0.1
into it.

As & —&,=E +(-£,), furthermore —§&, ~N(-1,0.2), & —§&, ~N(@1-10.2%+0.2%).

x-0
Consequently, &, —&, ~ N(0,0.283) . This implies F. _. (X)= cI)(O 283)
Finally, P(&, —&,/<0.1) = cp( )— (— )_ ( ) 1=2-0.6381-1=0.2762.

0.283 0.283 0.283
Compute the probability that the return of a fixed day is less than the 80% of the return of
another day.

P(§;<0.8-&,)=? P(§; <0.8-&,)=P(§; -0.8-&, <0)=F, g, (0).

If we knew the cumulative distribution function of & —0.8,, then we could substitute 0 into
it.

&, ~N(0.8:1,0.8-0.2), -&, ~N(-0.8-1,0.8-0.2).

& —08-&, ~N@1-0.38, \/O 22 +(0.8-0.2)*). Consequently, &, —0.8-&, ~ N(0.2, 0.256).

Now we can finish computations as follows:

~02
P(,<08-8,)=F, .. ( )=®((()).2(5)6)=(D(—0.78)=0.2173.
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g.4. Further distributions derived from normally distributed ones

In statistics, there are many other distributions which are originates from normal ones. Actually
we investigate chi-square and Student’s t distributions. We will use them in chapter j, as well.

Definition Let &~ N(0,1). Then 6=&? is called chi-squared distributed random variable
with degree of freedom 1 and it is denoted by 6 ~ 2

0 ifx<0
Theorem The cumulative distribution function of 6=£% is F,(x) = ) .
20(/x) -1 if 0< x
0 ifx<0
The probability density functionof n is f (x)=4 1 =X 1 .
0 e? . — 0<x
J2r &

Proof
Al of values of 2 are nonnegative, consequently, sz (x)=0, if x<0. For positive x values,
1

F, (X)=P(0<x)=P(&* <X) =P(—/x <& <v/x) = F. (¥X) = F. (-VX) = ®(/x) = ®(—X)

=20(/x) 1.
Oif x<0

2.0 (5)-(Vx) =2 L Xy 1

2 2 ifo<x

o wx dmedx

The graph of the above cumulative distribution function and the probability density function
can be seen in Fig. g.14.

f.(x)=(F)X=

1 T T T T T T T 4

091

0.81

f(x)

Figure g.14. Graph of the cumulative distribution function and the probability density
function of %2 distributed random variables

Numerical characteristics of chi-squared distributed random variables with degree of freedom
1:

Expectation
E(0) =1, which is a straightforward consequence of E(£%)=D?(&) + (E(&))’ =1+0=1.
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Dispersion
D(6) = V2, which can be computed by partial integrating.

Mode
There is no local maximum for the probability density function.

Median
me=0.675. We have to solve equation 2@(\/;) —1=0.5, that is ®(x) =0.75. It is satisfied by
x=0.675.

n
Definition Let & ~N(01),i=123,..,n, and let & be independent. Then 6:Z§? is called
i=1
chi-squared distributed random variable with degree of freedom n and is denoted by

0~y>

Theorem
Probability ~ density  function of x distributed random  variable is
X 2" if o0<x
fo(x)= 2Er(ﬂ)
2
0 otherwise

The function T' is the generalization of factorial for non integer values. F(0.5)=\/E,
furthermore T'(Xx+1)=n-T'(X) .

The graph of the probability density function of 32 distributed random variable with degree of
freedom n=5 can be seen in Fig.g.15.

0.035

0.031

0.025

Figure g.15. Graph of the probability density function of y 2 distributed random variables

Remarks
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e |f n=2, the probability density function coincides with that of exponentially distributed
random variable with parameter A =0.5.

o For general values of n, explicit form of cumulative distributions function of xﬁ is

quite complicated, it is not usually used. The values for which the cumulative distribution
function reaches certain levels are included in tables used in statistics. These tables are used in

chapter j, as well. For example, if we seek the value x for which P(x < yZ2) = 0.95holds, we get
x=11.07 .(see Table 3 at the end of the booklet.)
Usually, the real number x for which  P(x<6)=a holds, can be found in tables and is

denoted by Xﬁ,a (see Table 2 at the end of the booklet).

0.035

Figure g.15. The value exceeded with probability 0.05 in case of y 2

Numerical characteristics of chi-squared distributed random variable:

Expectation
n n
E(6) =n , which is a straightforward consequence of E(D_&7) =Y E(&’)=n.
i=1 i=1l
Dispersion
n n
D(6) =~/2n , which follows from D(>_£?)=>"D*(&?)=2n.
i=1 i=1

Mode
Thereisnomode if n<2,anditis n—-2,if 2<n.

Median

It can not be expressed explicitly, it is about n(1—9£)3
n
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Definition Let §,,&,,...,&, and n independent standard normally distributed random variables.
il

&

degree of freedom n and is denoted by 6 ~ <, .

The random variable 0= is called Student’s t distributed random variable with

Theorem
The probability density function of a Student’s t distributed random variable with degree of
n+1 n+l

M0 (e e
freedomnis f, (x) =—[1+—j .
Jomr)L "
Remarks
1 (n-)H(n-3)..5-3
2Jn (N-2)(n—4)..4-2

e If nis odd, then the normalising constant is , and if n is even,

1 (n-D)(n-3)..4-2
m/n (n=2)(n-4)..5-3°

e |f n=1, then fl(x)zi.
T 1+X

function is called Cauchy distributed random variable.

n+1

then it is

>~ The random variable with this probability density

2 2

2\~ 5~ X -X
X 2 1 —
o If n—>oo, then |1+— —e 2, consequently f_(x) >——=e 2 =¢(x) for
[ n j " NVZs
any values of x.

e The probability density functions of t, distributed random variable can be seen in
Fig.g.16.

fn(x)

I I I -
-4 -3 -2 -1 0 1 2 3 4
X

Figure g.16. Probability density functions of t,, distributed random variable for
n=1(black),n =5 (red) and n=100(blue)

e Closed form of the cumulative distribution functions do not exist. The values for which
the cumulative distribution function reach different levels are included in tables used in
statistics (see Table 2 at the end of the booklet). These tables are used in chapter j, as well.
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Supposing ©~1,, the value, for which P(-x<6<x)=1-o and P(a<[0))=a is usually
denoted by t, . For example, if a=0.2 and n=5, t;,, =0.92. It is also presented in Fig.
0.17.

0.4r

/"\
0.35- J
/ \
f \
/ \
0.3f \
/ |
0.25f \
~ / |
& ozr / \
( |
/ \
0.15F / \
// \\
o1 / \
A \‘\
0.05F /
P .
ol T ds M
25 2 15 -1 05 0 05 1 15 2 25
-0.92 X 0.92

Figure g.17. Bounds for t. distributed random variables with probability 0.8

Numerical characteristics of chi-squared distributed random variable:

Expectation
If 6~t,,then E(0)=0, if 1<n. It is straightforward consequence of the symmetry of the

probability density function. If n =1, expectation does not exist.

Dispersion
D(6) _vyn-2
Jn

, if 2<n, otherwise it does not exist. It can be computed by partial integrating.

Mode
It is always zero.

Median
It is always zero, due to the symmetry of probability density function.
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h. Law of large numbers

The aim of this chapter

In this chapter we present asymptotical theorems which characterize the
behaviour of the average of many independent identically distributed
random variables. We return to the relative frequency, as well, and we
prove that it is about the probability of the event. These theorems are the

theoretical basis of the pools and computer simulations.

Preliminary knowledge

Expectation, dispersion and their properties. Binomially distributed

random variables.

Content

h.1. Markov’s and Chebisev’s inequalities.

h.2. Law of large numbers.

h.3. Bernoulli’s theorem.
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h.1. Markov and Chebisev’s inequalities

First we provide estimations for certain probabilities. Although these estimations are quite
rough, they are appropriate to be applied for proving asymptotical statement. Their main
advantage that they do not require the knowledge of the distribution of the random variable,
they use only the expectation and dispersion.

Theorem (Markov’s inequality)
Let & be a random variable all of values of that is nonnegative and E(§) exists. Then, for

any O<eg the following inequality holds: P(azs)s@.
€
Proof
1 if Ahold
The proof is based on the following: ¢-1.., <&.Recall that 1, = I_ o1s .
- 0 if Adoesnothold
1 if £>¢hold
This implies 1,., ={- " 7 &"0l%
- 0 if E<eholds
if £>¢holds
Multiplying by ¢ we get ¢-1. = © I s2e . Taking into account the non-
- 0 if E<eholds

negativity of &, this means that e-1.,, <&. Applying the following property of

expectation m; <n, =E(n;)<E(n,), we can see that E(e-1..)=¢-E(l.,)<E(g).

Recalling that E(1,)=P(A)and dividing both sides by O<e the inequality ends in
E©)

P(§ =€) <—==. This is the statement to be proved.
1S

Theorem (Chebisev’s inequality)
Let n be a random variable those dispersion exists. Then for any 0<A, the following

D*(n)

}\‘2

inequality is satisfied: P(n—E(n)|>2) <

Proof Note that [n—E(m)|>A holds if and only if (n—E(n))°=2>. Consequently,
P(n—EM)| =) =P((n—EMm))* =2%). Apply Markov inequality with &=(n—-E(n))* and
£=22. Non-negativity obviously holds, and E(£)=E((n—E())?)=D?(n). Therefore,

2
D}én) , and it is the statement to be proved.

P(n—E)|27) =Pz ) s =2 -

Remark
e Chebisev’s inequality can be also written in the following form:

2
P(|n—E(n)|<x)21—DT§m. {n-Em)| <)} is the compliment of the event

{n—E@m)|=1}. If P(A)<x, then P(A)=1-P(A)>1-x , which implies the statement.
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1
K
and P(n—-E(n)|< kD(n))zl—k—lz. Substitute A =kD(1)). It can be done with kel

D(n) ’
supposing D(n)=0. If D(n)=0, then on the basis of the property of dispersion,

e Chebisev’s inequality can be also written as follows: P(|n— E(n)|2 kD(n)) <

P(n=E(n))=1, therefore P(in—E(n)))>kD(n))=0 which is less than kiz for any value
of k.

e The inequality P(|11—E(n)|2kD(n))ski2 expresses that the random variable n
takes its values out of the neighbourhood with radius kD(n) of its expectation with

probability not larger than kiz . Large deviation is with small probability.

e The inequality P(n—E(n)|< kD(n))zl—ki2 states that a random variable n takes
its values in the neighbourhood with radius kD(n)) of its expectation with probability no
smaller than l—kiz. Small deviation is with large probability.

e The proofs do not use the distribution of the random variable.
e If we knew the distribution of n, the probabilities P(n—E(n)|>kD(n)) and

P(In—E(m)| < kD(n)) can be computed explicitly.

Example

E1l. Let n be Poisson distributed random variable with parameter A =2.
Compute the probability that the values of n are in the neighbourhood with radius D(n) of
its expectation.
E(m)=r=2, D(n) =vA =2 =1.41. In—E(n)| < D(n) means that
E(n) - D(n) <n<EM) +D(n). Explicitly, 2—+2<n<2++/2, that is 0.59<n<3.41.

1 2 3

Now P(0.59<n<3.41)=P(n=1)+P(M=2)+P(n=3) =%e2 +%e2 +%e2 =0.722.

E2. Let n be uniformly distributed random variable in [-1,2] =[a,b]. Compute
the probability that n takes its value in the in the neighbourhood with radius 1.5-D(n) of
its expectation.

a+b -1+2 b-a 2-(-1) 3

E(="7-=—"7"=05. D(=—=-= -

2 2 J12 12 243
The interval is (0.5-1.29990.5+1.299) =(-0.7991.299) . The question can be written as
P(me(-0.7991.799)) = P(-0.799< N <1.799) = F(1.799) — F(-0.799).  Recalling  that
0 ifx<a=-1
XZ8_X+l e q_acx<b=2,
b-a 3

1 if b=2<x

=0.866. 1.5-D(n)=1.299.

F(x) =
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we get P(~0.799<1n<1.799) = 1'7929” _ 079941, 566

3
We note that one can check that the result ends in the same probability independently of the
endpoints of the interval [a,b].

E3. Let n be exponentially distributed random variable. Determine the interval
symmetric to expectation of n in which the values of n are situated with probability 0.99.

Let the radius of the interval kD(n). E(n)z%zD(n), the interval looks

il
oA
k-

11 1 101 1 1) 1 1. 1 1
pime| 2okt i thop o ton it crd i hord ok Y,
(ne(x 2 xj) (x ALY xj Gk -FG -k

if x<0 —7»(1 ki) —(t E)
. R k- Dyo1oe 0T e W
e A A

0
Recalling that F(x) =
g ) {1— if 0<x

The value of F(%—k-%) depends on the sign of its argument. One can notice that

I koo if 1<k and o<t k-l if k<l If k=1, then

Y Y

p( e(——111 1. 1) 2p<n<2)=F(Z)—0=1-e2 =0.865<099. This implies
N Y LAY ' i

1< k. Therefore, F(x —k -%) =0. Consequently,

P(he Il lho1e o099, @M -001, 1+k=—In0.01=4605,
A A A

1 1 1 1 4605 ;
k =3.605. As a control, P(x—3.605x<n<x+3.6051)=1—e —0=0.01, which

was the requirement.
We note that the value of k is independent of the value of the parameter A .

E4. We do not know the distribution of a random variable n, but we know its
expectation and dispersion. If E(n)=200 and D(n)=10.Give an interval in which the
values of n are situated with probability at least 0.95!

According to the Chebisev’s inequality P(E(n) —k(D(n) <n<E(Mm)+ k(D(n)) Zl—k—lz f

—iz =0.95, then k=4.472, and the interval looks
(200-10-4.472, 200+10-4.472)=(155.28, 244.72).
E5. Let n be binomially distributed random variable with expectation 200 and

dispersion 10. Compute the probability that values of n are situated in the neighbourhood
of its expectation with radius 4.472D(n) .
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As n is binomially distributed with parameters n and p, E(m)=n-p=200,

D(n) =+/np(l—p) =10, consequently 1—p=%=0.5, which implies p=0.5 and

n=400. The question is P(200—4.472-10<n<200+4.472-10)
=P(@5528<n<24472). n takes only nonnegative integer values, hence
P(15528<n<24472)=P(n=156) + P(h=157) +...+ P(M=244). As mn is binomially

400
distributed ~ random  variable,  P(n=Kk) =U2ka (a-p)™ =[k JO.Sk .0.5%00K

400 400 400
P(155.28<1<244.72) = 0.5%°¢.0.54001%6 0.5%°7.0.5%%17 ¢ 4 0.5%%4
156 157 244

=0.999909.

E6. Let n be a random variable with expectation 200 and dispersion 10. Give
the probability that values of n are situated in the interval (175225).
As we do not know the distribution of n, we can not give exactly the required probability,
but we can give an estimation for it. The interval (175225) is symmetric to the expectation
200, it can be written as (200—2.5-10,200+ 2.5-10) =(E(n) — k- D(n),E(m) + k- D(1))

% implies P(175<n <225 >1- ! =0.84.

252

with k=2.5. P(n—E(n)| <kD(n))>1-

E7. Let n be binomially distributed random variable with expectation 200 and
dispersion 10. Compute the probability that the values of n are situated in the interval
175 225).

P75<n <225 =P(M=176)+P(M=177)+...+ P(n=224) =

400 400 400
0.5'750.5%24 + 0.51770.5%2° + ...+ 0.5%2%0.5'7¢ =0.9858, which is much
176 177 224

more than the estimation 0.84 given by Chebisev’s inequality. We draw the attention that
actually we know the distribution of the random variable, and it is extra information to E6.

E8. Let n be normally distributed random variable with expectation 200 and
dispersion 10. Compute the probability that the values of n are situated in the interval

(175, 225).

Now, n~N(20010), and F(x)= o=

( 10
= @(2251‘0200) - @(1751‘0200) =®(2.5) - D(-2.5)=2-D(2.5) -1=0.9876. We note that
this probability is also much more than the estimation given by Chebisev’s inequality due to
the extra information of distribution. Furthermore it is close to the probability computed in
the previous example. The reason of this latter phenomenon will be given in the next section

). Now P(75<n<225=F(225 -F(175=

4 244
.0.54%
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h.2. Law of large numbers

In this subsection we provide a form of large numbers which is easy to prove and which is
able to give estimations for the probability of large deviations. This statement is the basic of
computer simulations. One can state stronger forms of the law of large numbers and one
also can give statements under weaker assumptions, as well.

Theorem Let &,,&,,....,&,,...be independent identically distributed random variables with
E(&)=m and D(§;)=c. Then, forany O<eg,

2.6

n

-mi<e|—1,if n >0,

Pl ——m[>g|—>0if n—>ow.

Proof

S, S, >,

Let n, = == Now E(“~—)=m and D| =~ — |=-> . Apply the Chevisev’ inequality
n n n Jn
n
DZ(n ) ZE—" 02
for n,. This gives us P(]nn —m|>s)§—2“, which implies P|F2X——m|>¢ <—.
€ n ne

2
As ¢ and o are fixed, 6—2—>0, if n— oo, which coincides with the second part of the

ne
n
Zii 2
statement. The formula P ‘:lT—m <g 21—:—2—>1—0 is the first part is the
€

statement.

Example
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El. Let &, ,...& oo are independent uniformly distributed random variable in
1000

g

[0,1] . Give an estimation for the probability P ﬁ —-0.5>0.05].

n

Zéi 2

Apply the above inequality P| -=X— —m|>¢ gc—z.
n ne
Now E(E)=05=m, D(gi)=i=0.2887=c. Substitute €=0.05,

V12

o’ 1

2 = 2 20033
ne~ 12-1000-0.05

1000

D&

Consequently, P| [-=~— —0.5/>0.05|<0.033.
1000

At most how much is the difference between the average and 0.5 with probability 0.95?

n
26
The question is the value of ¢, for which P| [-=~— —m| <& [=0.95. As we do not know the
n

n
26
exact distribution of -==— | we can not compute the exact probability, but we are able to
n

n

Zgi 2 2

T ml<e 21_0_2, if 1_0_2=0.95, then
ne ne

estimate the probability. P



145

Probability theory and mathematical statistics— Law of large numbers

n

Zai 2

P| [-——m| <& [>0.95 holds. 1—0—2=0.95 implies

1 _p , consequently
n ne 12-1000-0.05

£2=1.6667x10%, £=0.041.

How many random variables have to be averaged in order to assure that the difference
between the average and 0.5 should be at most 0.01 with probability 0.98?

e

The question is the value of n for which P| |-=2— —m|<0.01|=0.98. Applying the formula
n

Z_llai 2 2

= —-m|<eg 21—0—2 again,  substitute 1—6—2:0.98 and £=0.01.
ne ne

P

o’ 1

5 = > =n, n=41667.
€”-0.01 12.0.01°-0.02

How many random variables have to be average in order to assure that the difference

between the average and 0.5 be at most 0.005 with probability 0.98?

If £=0.005, then , n=1.6667x10°, which is four times larger than the previous number of
experiments. If we want to decrease the accuracy into the half, we need 2° times more
experiments.

Remark

n
Zgi 02
e If we fix the accuracy ¢, and the value of n , then P| |- — —m|<e 2l1-—
n ne

gives us an estimation for the probability that maximal difference between the average and
the expectation exceeds the accuracy.
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2
o If we fix the probability 1— o (reliability) and the value of n, then 1-——>1— o
ne
2

implies &< . Consequently, the accuracy is proportional to the square root of the

n-o
reciprocal of the number of experiments.
2

o If we fix probability 1— o (reliability) and the accuracy ¢, then 1—0—2s1—o¢
ne
2

implies Gz—s n . This means that the number of experiments is proportional to the square
e A

of the accuracy.

e As an illustration of the law of large numbers, we present the next Table h.1. The
random variables were uniformly distributed in [0,1], the reliability level was fixed as
1-a=0.95 and 1-a=0.99. The table shows that the difference between the average and
the expectation is getting smaller and smaller as the number of simulations was increased.

2

The total requested time was less than 1 minute. The theoretical accuracy €= 005 and
2

e= 001 were computed for the reliability levels 0.95 and 0.99, respectively.
n e S o o

i 5 os n-0.05 n-0.01
10 0.432756065694353 | 0.067243934305647 | 0.11785 0.2635
100 0.530898496906201 | 0.030898496906201 | 0.03 7268 0.0833
1000 0.506786612848606 | 0.006786612848606 | 0.011785 0.02635
10000 0.496156685345852 | 0.003843314654148 | 0.003 7268 0.00833
100000 0.500349684591498 | 0.000349684591498 | 0.0011785 0.002635
1000000 0.500158856526807 | 0.000158856526807 | 0.0003 7268 | 0.000833
10000000 0.499726933610529 | 0.000273066389471 | 0.00011785 0.0002635
100000000 0.499951340487525 | 0.000048659512475 | 0.000037268 | 0.0000833
1000000000 | 0.499985939301628 | 0.000014060698372 | ¢ 000011785 | 0-00002635

Table h.1. The averages and their differences from the expectation in case of uniformly

distributed random numbers
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Secondly, the random variables were exponentially distributed with expectation 0.1 and 10.
Table h.2. shows that the difference between the average and the expectation depends on the
value of the parameter. The parameter is the reciprocal of the dispersion, consequently, the
larger the dispersion, the larger the difference.

A=0.1 A=0.1 A=10 A=10
N n n n n
D De, D& DE,
i=1 S i=1 i _ Q.
n n n n

5 6.2277618964331 | 3.7722381035668 | 0.09447373893621 | 0.055276
100 11.756814668520 | 1.7568146685202 | 0.10392000570707 | 0.00392
1000 9.5670585169631 | 0.4329414830368 | 0.09696619091756 | 0.00304
10000 9.9932193771582 | 0.0067806228417 | 0.100150679660307 | 0.00015

100000 9.9708942677258 | 0.0291057322741 | 0.100629035751288 | 0.00063

1000000 9.9943200370807 | 0.0056799629192 | 0.100039656754390 | 0.00004

10000000 | 10.003113268035 | 0.0031132680354 | 0.099950954820648 | 0.00004

100000000 | 9.9994289522126 | 0.00057104778736 | 0.100000507690485 | 0.00000005

100000000 | 10.000097147933 | 0.00009714793369 | 0.100000729791939 | 0.00000007

Table h.2. The averages and their differences from the expectation in case of exponentially
distributed random numbers

e The law of large numbers is expressed by the sentence that the expectation is about
the average of many values of random variable. Not exactly the same, but it is not far from
it.

e As the expectation is an integral, the law of large numbers provides possibility to
compute integrals numerically as follows: Let g:H—>R, HcR, [a,b]cH, suppose that

g is continuous in [a, b]. Taking into account the properties of expectations,
b b
= j g(x)dx =(b — a)j g9(x) .bidx =(b—a)-E(g(n)), where n is uniformly distributed
—-a
a a

random variable in [a,b]. E(g(n)) is about the average of many values of g(n). n can be
constructed as a linear transformation of a uniformly distributed random variable in [0,1].

b
Consequently, the algorithm of computing the approximate value of the integral _[ g(x)dx is
a

the following: generate a random number, multiply it by b—a and add “a”, then substitute
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this value into the function g. Substitution can be made as the all the values we get are in
the domain of g. Repeat the process n times and take the average of the values. Multiply the

average by b —a and we get the approximate value of the integral. The necessary number of
simulation can be determined as follows:

Zg(n )

P(jg(x)dx (b-a)- —1n <Je) =P(

b

Joax > geny)
a =l < € )>
(b—a) n b-a

21_(b_a)zmzl_

2

n-g
max g(x) — min g(x)
As ), isin [a,b], D(n;) < 2*L 2a<"<b
Zg(n) (Bmaxg(x) min g(x))2
1-o= P(jg(x)dx (b—a)- ‘1T<s)21—(b—a) e . which
. -8

Imaxg(9 - mingGof

40(8

implies (b—a)?-

Example

1
1 . .
E2. Compute 1—dx by random simulation.
+ X
0

1
Notice that Ilidx = E(ﬁ) where & is uniformly distributed random variable in [0,1].
+ X +
0

Consequently, generate random numbers by the computer, add 1, and take the reciprocal.
This process has to be repeated many times. Take the average of the numbers you got, and

this average is approximate value of the integral. As &e([01], ﬁe[O.S,l],
+

1 0.52
D — )<
( g)

of simulation is

=0.0625. If we fix the reliability level 1— o =0.99, the necessary number

0.0625
e”-0.01
than 0.01, then we have to make 0.0625-10° =62500<n simulations. As

<n. If we would like to compute the integral with difference less

%dx =[In@+x)];5 =In2—-In1=In2, we can follow the difference between the exact
+X

value and the approximate value of the integral in Table h.3.
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¢ is computed as

(maﬁg(x) - mirz)g(x)J2
2

3 /0.0625 e
0.01-n

n-a
N average Difference €
62 0.702627791231423 | 0.009480610671478 0.3175
625 0.694214696993436 | 0.001067516433491 0.1
6250 0.695502819777260 | 0.002355639217315 0.03175
62500 0.693417064411419 | 0.000269883851474 0.01
625000 0.693095119363388 | 0.000052061196558 0.003175
6250000 0.693134534818101 | 0.000012645741844 0.001
62500000 0.693167969772721 | 0.000020789212776 0.0003175
625000000 0.693142704368027 | 0.000004476191918 0.0001

Table h.3. The averages and their differences from the expectation in case of transformed
random variables

For all simulations, elapsed time was 42.9 seconds.

3
E3. Compute the value of the integral Isin 1dx with accuracy 0.01.
X
1

3 3
Note, that jsinldx:Z-J-sinl-%dx:Z-E(n), where n:sin(%) and & is uniformly
X
1 1

X
distributed random variable in [13]. —135in%£1, Dz(sini)sﬂzl,
P2 TN foin e <eys1-a-L . 1oL 099 and c—001 implies
n X ne ne

1

n=400000C.We can follow the average and the theoretical accuracy in the function of
numbers of simulation in Table g.4. Elapsed time, together for all simulations, was 36.82
seconds.

n average €

40 4.044413814196310 3.162

400 3.124480498240279 1

4000 3.266154820794264 0.3162
40000 3.241221397791890 0.1
400000 3.252187207202902 0.03162
4000000 3.251025444611742 0.01
40000000 3.251126290354754 0. 003162
400000000 3.250561315440294 0.001

. . .1 .
Table g.4. Averages of random variables given by n = sm(g) and the theoretical accuracy
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We note that better estimations for the variance can be also given, we used —1<siny <1 for
the sake of simplicity.

2

100 —x
E4. Compute Ie 2 dx by random simulation.
-100
100 —x2 &2
Note that J-e 2 dx =200-E(e 2 )where & is uniformly distributed random variable in
-100
—T]Z _éz 1
[-100,100]. As 0<e 2 <1 D?%(e 2 )sz,
n —nzi
2.¢ 2 100 1 1
P(200- 22—~ je 2 dx|<g)>1-200° > 1-10000——2>0.99  implies
n oo 4n-¢ 4n-¢

n>2500000(. As from standard normal probability density function we know that
100 -x2 o —x2
Ie 2 dx ~ '[e 2 dx/2r comparing the average to V2r we get Table h.5.:

-100

—0

n average Difference €

25 8.323342326487701 5.816714051856701 | 10

250 3.015562934762770 0.508934660131769 | 3.16227
2500 2.264787314861209 0.241840959769791 | 1

25000 2.441972159407621 0.064656115223379 | 0.316227
250000 2.451752388622218 0.054875886008782 | 0.1
2500000 2.511696184700974 0.005067910069974 | 0.0316227
25000000 2.508097777785709 0.001469503154709 | 0.01
250000000 2.504753761626246 0.001874513004754 | 0.00316227

Table h.5. Averages of the transformed random variable and their differences
from +/2n in case of different numbers of simulations

We can see that actual difference is always smaller than the theoretical accuracy.

h.3. Bernoulli’s theorem

In this subsection we apply the law of large numbers to characteristically distributed random
variables and we get a statement for relative frequencies. This statement tells us that the
relative frequency of an event A are close to the probability of A.
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Theorem (Bernoulli’s theorem) Let A be an event, and K, (n) is the frequency of the event

performing n independent experiments. Then, for any O<eg, P(w— P(A)[>g) >0 if
n

k (n)

—P(A)| <€) - 1supposing n —oo.

Proof Recall that kA(n) is binomially distributed random variable with parameters n and
p=P(A), and k, (n) can be written as a sum of n independent characteristically distributed

random variables 1, with parameter p. E(1,)=p=P(A), D?*(1,)=+pd-p

consequently, P(M—P(A) <g)21—p(1—_2p)—>1—0 supposing n-—oo  and
ne
P(—2= Ka () —P(A)|2¢) < pl- )—>O supposing N —co.
n ne’
Remarks

o The above statement tells us that large deviation between the relative frequency and
the probability occurs with small probability, small deviation is with large probability.

e Roughly spoken, the relative frequency is about the probability, if the number of
simulations is large. This is the theoretical background of computer simulations and pools.

Ka(n)
n

o OSp(l—p)S%, consequently P(

—P(A)| < )>1_L This inequality
4ng?

provides possibility to estimate the necessary number of simulations.

o |If we fix the number of simulation and the accuracy (&), we can estimate the
probability that the difference between the relative frequency and the probability exceeds
accuracy ¢ .

o If we fix the number of simulations and the reliability (1—a ), we can compute the

accuracy ¢ by 1—

5 >1l-a, €<

4no,
o If we fix the reliability (1— o) and the accuracy ¢, we can determine the necessary
. . 1
number of simulations by -<n.
doe

Examples
E1. To illustrate the above statement we present the following simulation example: flip

4 times a fair coin and determine the probability that there are heads and tails among the
results.

Of course our computer can not flip a coin but it can generate a random number uniformly
distributed on [0,1] . Imagine that if the result (random number) is less than 0.5, then we get

head, in the opposite case we get tail. Repeat it four times and decide whether the results of
flips are the same in all cases or there are at least one heads and at least one tails. Repeat the
composite experiment n times and compute how many times you get both head and tail. The
relative frequency is about the probability. If we would like to approximate the probability
of the event “you get both head and tail “ with accuracy €=0.01 with probability 0.99, we

need 1 = ! =250000< n experiments. The relative frequencies arising

4oe?  4-0.01-0.01
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from simulations and their differences from the exact probability % can be seen in Table

h.6. One can notice that the real difference is much smaller than the accuracy showing that

the estimation is not sharp. We can see better estimation in the next chapter.

n Relative frequency Difference €

25 0.960000000000000 0.085000000000000 1

250 0.892000000000000 0.017000000000000 0.3162
2500 0.874800000000000 0.000200000000000 0.1
25000 0.873840000000000 0.001160000000000 0.03162
250000 0.875000000000000 0 0.01
2500000 0.875041600000000 0.000041600000000 0.003162
25000000 0.875081200000000 0.000081200000000 0.001
250000000 0.874980140000000 0.000019860000000 0.003162

Table h.6. Relative frequencies and their differences from the exact probability

The computer program is very simple and the elapsed time is small. The program for
simulation was written in MatLab and it can be seen as follows:
function sziml6
format long
tic
er=zeros (8,
for j=1:1:8
jo=0;
for i=1:1:(2.5%10"7);
head=0;
for k=1:1:4
vel=rand (1) ;
if vel<0.5
head=head+1;

1)

end
end
if O<head & head<4
jo=jo+1l;
end
end
szim=Jjo/(2.5*10"73) ;
er(j,l)=szim;
end
toc
er
kul=abs (er-14/16)

The relative frequencies and their differences from the exact probability are plotted in
Fig.h.1. and Fig.h.2. with n=2.5-10¥.
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Figure h.2. Differences of the relative frequencies and the probability in the function of

number of simulations on logarithm scale

Of course, it is easy to find such events the probability of that is complicated to compute but
computer program for simulation is easy to elaborate. In those cases the approximation of
the probability by relative frequency is a useful tool for people who are able to apply

informatics.
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i. Central limit theorem

The aim of this chapter

In this chapter we present asymptotical theorems in connection with the
distribution of the sum and the average of many independent identically
distributed random variables. We will approximate the cumulative
distribution functions and probability density functions by the help of
those of normal distributions.

Preliminary knowledge

Convergence of functions. Cumulative distribution function, normal

distribution, properties of expectation, dispersion.

Content

i.1. Central limit theorem for the sum of independent identically distributed random

variables.

i.2. Moivre-Laplace formula.

i.3. Central limit theorem for the average of independent identically distributed random

variables.

i.4. Central limit theorem for relative frequency.
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i.1. Central limit theorem for the sum of independent identically distributed

random variables

In the previous section we have dealt with the difference of the average of many
independent identically distributed random variables and their expectation. We have proved
that the difference is small with large probability, if the number of random variables is large.
In this chapter we deal with the distribution of the sum and the average of many independent
random variables. We state that they are approximately normally distributed. We use this
theorem for computations, as well.

Theorem (Central limit theorem) Let &;,&,,...,&,,,... be independent identically distributed
random variables with expectation E(&;)=m and dispersion D(§;)=c, i=12,.... Then,

i&i —nm
lim P( =1

n—oo G'\/ﬁ

The proof of the theorem requires additional tools in probability theory and analysis,
consequently we omit it.

<Xx)=®(x) forany xeR.

Remarks

Zn:é,i —nm
° P( i=1

ovn
anii —nm

i=1

ovn

iéi —nm n n

<X) is the value of the cumulative distribution function of the

random variable at the point x.

E _ L oS cam|etp[Se oo _
—" ‘cﬁD@&i ”mJ‘GﬁD@a‘J‘cﬁ‘l'

n
Zéi —nm
e The random variable -==——— is usually called as standardized sum.

ovn
e Central limit theorem states that the limit of the cumulative distribution function of

n
ZEA —nm
the random variables ‘=X——— equals the cumulative distribution function of standard

avn

normally distributed random variables. Consequently, for large values of n, the cumulative
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distribution function of the standardized sum is approximately the function ®. It can be
written in the form F (X) = D(X).

X&i—nm
i=1
G\/H

e Distribution of &; can be arbitrary. In practice, the approximation is good for
100<n, in many times for 30<n.

e The relative frequencies of the standardized sums can be seen in the following
Figs.i.1, i.2. and i.3., if we sum up n=1, n=2,n=5, n=10, n=30, n=100 independent
random variables. The random variables were uniformly distributed in [0,1] .Red line is the
probability density function of standard normal distribution. One can see that the shape of
histogram follows more and more the shape of the Gauss curve.

Figure i.1. The relative frequencies of the values of the standardized sums if we sum up
n=1 and n=2 random variables

Figure i.2. The relative frequencies of the values of the standardized sums if we sum up
n=5 and n=10 random variables

Figure i.3. The relative frequencies of the values of the standardized sums if we sum up
n=30 and n=100 random variables
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e Distribution of &; can be arbitrary. In Figs. i.4., i.5. and i.6. the relative frequencies
of standardized sum of n exponentially distributed random variables with expectation

E(&;) =1:% (n=12,5,10,30100) are presented. One can realize that the shape of Gauss

curve appears for larger values of n than previously, due to the asymmetry of the
exponential probability density function.

1 T T T T T T T T 0.7

0.9r
0.6

0.8

0.5

071

0.4

0.3

0.2

0.1

0

Figure i.4. The relative frequencies of the values of the standardized sums of
exponentially distributed random variables, if we sum up n=1 and n=2 random variables

Figure i.5. The relative frequencies of the values of the standardized sums of
exponentially distributed random variables, if we sum up n=5 and n=10 random
variables

Figure i.6. The relative frequencies of the values of the standardized sums of
exponentially distributed random variables, if we sum up n=30 and n=100 random
variables
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e Finally we illustrate the central limit theorem for the case when 6; ~ N(0,1), and

n
g =02, that is Zai ~ 2. Standardized sums are approximately normally distributed
i=1
random variables. We note that many program languages have random number generator
which provides normally distributed random variables, as well.

2.5 T T T T T T T T 1
0.9-
0.8
0.7
0.6

Eosr

f(x)

0.4r

0.3r

0.2r

0.1r

Figure i.7. The relative frequencies of the values of chi-squared distributed random
variables with degree of freedom n=1 and n=2

Figure i.8. The relative frequencies of the values of chi-squared distributed random
variables with degree of freedom n=5 and n=10

0.45 T T T T T T T T 0.45

f(x)
f(x)

Figure i.9. The relative frequencies of the values chi-squared distributed random
variables with degree of freedom n=30 and n=100
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After illustrations we consider what can be stated about the distribution function of the
sums, without standardization.

Remark

n

e The cumulative distribution function of the sum Z§i is about normal distribution
i=1

X —nm

function with expectation n-m and dispersion on , that is F (x) D( n ). This
(e}
i:l
S& —nm _y-nm y—nm
can be supported as follows: F (y) P(Z L<y)=P(Z )~ O ),
: e R

i 1

which coincides with the cumulative distribution function of n~N(nm,c\/ﬁ). We

emphasize that E(>.€,)=nm and D(3&,) =ovn .
i=1 i=1

Examples

El. Flip a fair coin. If the result is head, then you gain 10 HUF, if the result is
tail, you pay 8 HUF. Applying central limit theorem, compute the probability, that after 100
games you are in loss. Determine the same probability by computer simulation.

-8 10

Let &. the gain during the ith game. & ~
& g g g & (0.5 05

J, i1=12,...100. &; are independent,

identically  distributed random variables. Moreover, E(E_,i):—8-%+10-%=1,

100
D(~E.,i)=\/(—8)2 %+102 -%—12 =9. The question is the probability P(Zl&i <0). Recall
i=1
100

that P(Z§,<O) F100 (0). According to the central Ilimit theorem,

i 1

X —100
9.410
0-100-1

9-4100

Foo (X) = O(——F—= ) consequently,
2§

Fuo (0) = d( )=®(-1.11) =1— d(1.111) = 0.1336.
2 &

In order to approximate the probability by relative frequency with accuracy 0.001, according
to the previous section, we need 25000000 simulations. After making the required number

ka(n)
n

of simulations, we get =0.13568732 which is quite close to the approximate value

got by the central limit theorem.

E2. Supposing previous games, how many games have to be playd in order not
to be in negative with probability 0.99?

Our question is the value of n for which P(ZZ&i >0)=0.99. This question can be
i=1
expressed by the cumulative distribution function of the sum as follows: n=?
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X—-n-1 .
1-F, (00=099. As F, (X)~®(———), we have to solve the equation
Eléi Elii 9-\/ﬁ
cD(;):/n_)zo.Ol. This was detailed in the subsection of normally distributed random
-A/n
variables in subsection g.3. ®(y)=0.01 implies y =-2.3263, therefore 09_:};1:2.3263,
-a/n

n=438.35, that is n=439. As a control, performing the simulation 25000000 times, the
relative frequency was 0.98914.

E3. The accounts in the shops are rounded to 0 or 5. If the finial digit of the
account equals 0, 1, 2, 8, or 9 than the money to pay ends in 0. If the finial digit of the
account equals 3, 4, 5, 6, or 7, then the money to pay ends in 5. Suppose that all final digits
are equally probable and they are independent during different payments. Applying the
central limit theorem, determine the probability that the loss of the shop due to 300
payments is at least -30 and less than 30!

Let the &, 1=123..300 be the loss of the shop during the ith payment.

& -{ 2 -10 12 J which are independent identically distributed random

02 02 02 02 02

300

variables. The total loss during 300 payments equals Z&i . The question is
i=1

300
P(-30< Zgi <30) which can be expressed by the cumulative distribution function of

i=1

100 300
D, as follows: P(-30<) & <30)=Fy, (30)-Fy (-30). According to the central
i=1 i—1 Elﬁi Elii

m) , where

limit theorem, Fyy, (X) = ®(
2§

% +/300

m=E(;)=-2-02-0.1-02+0-0.2+1-0.2+2-0.2=0 and
GzD(&i)z\/(—Z)Z 02+ (-1)%-02+0%2-02+22-02+12-02-0% =4/2.

30-0
Consequently, F,, (30) =~ ®(————)=0.88966,
pd V24/300
Fao (=30)~ q)(ﬂ) =1-0.88966=0.11034 and
it J2+/300 ' '

i=1
300
P(-30< Z&i <30)=Fy (30)—F (—30)~0.88966—-0.11034=0.77932~0.8.
=1 Eléi Eléi
Give an interval in which the loss is situated with probability 0.99.
The interval in which a normally distributed random variable with parameters m= 0 and

o=+/600 takes its values with probability 0.99 is (—63.1,63.1). Therefore the loss is

between -63.1 and 63.1 with probability 0.99. Notice that the loss may be -300, it is in a
loose interval with large probability. This fact is appropriate for checking based on random
phenomenon.

E4. Throw a fair die 1000 times, repeatedly. At least how much is the sum of the results
with probability 0.95?
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Let the result of the ith throw be denoted by ¢&;, i=1,2,...,1000. Now
1 2 3 45 6
&~/1 1 1 1 1 1) which are independent identically distributed random
6 6 6 6 6 6
. . . 1 1 1 1 1
variables with expectation E(§;)=1-—+2--+3--+4-—+5--4+6-—-=35=m and
6 6 6 6 6 6

dispersion D(gi)=\/12 Aoty il el el 350 _17078-6.
6 6 6 6 6 6

Central limit theorem states that F (x) q)(x n-3. 5) The question is the value of x
1.7078/n
1000
for which P(Z:EJi >x)=0.95, that is 1-F, (x)=0.95. Solving the equation
i=1 Eléi
1-@X=2000:35y g5 X—1000-35 4 ooy~ 34112, Summarizing, the sum of
1.7078-1000 1.7078-1000

1000 throws is at least 3412 with probability 0.95. Although we do not know what happens
during one experiment, the sum of 1000 experiments can be well predicted.

i.2. Moivre-Laplace formula

Moivre-Laplace formula is a special form of the central limit theorem, the form applied to
the cumulative distribution function of binomially distributed random variable.

Theorem (Moivre-Laplace formula) Let k,(n) be the frequency of the event A
(P(A)=p, O0<p<1) during 2<n independent experiments, that is k, (n) is binomially
distributed random variable with parameters n and p. Then, for any xeR,
lim p(Xa() = NP

"= ynp(l-p)

Proof Recall that Kk , (n) =1}, with
i=1
1 if Aoccursduring theith experiments
0 if Adoesnotoccur during theithexperiments’

<X)=®(X).

A

1 i=12,...are independent, characteristically distributed random variables with parameter

p, EQ,)=p, DY) =+/p(-p) . Apply the central limit theorem and we get the statement
to be proved.

Remarks
e P(n<Xx) equals the cumulative distribution function of k , (n) at point x.

* E(ka(n)=np, D(ka(n))=+npl—-p).

* Moivre-Laplace formula states that Fy, ), (X) = D(X) .
Vnp(l-p)

), which can be proved as follows:

X —np

Vynpil-p

* R (X) = O(
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ka(N)=np  y—np y—np
=P(k = = '
R N s B T LN e &

e Forany a<b,

b—np o a—np

P(a<ka(n) <b)=Fy, @ (b) = F,m (@) = D( )— )
) A Vnpd-p)"  ynp{t-p)

e The approximation is good if 100<n and 10<np.

e P(ka(n)=K)=P(k<k,(n)<k+D)=F, K+ -F m(K)~
(k+2)—np _a k—np )
Jnp-p)"  npt-p)
Consequently,  P(k, (n)=k) =[Eka(1—p)”k can be approximated by the help of the
cumulative distribution function of a normally distributed random variable. The differences

between the exact and the approximate values can be seen in Fig.i.10. The values of
parameters are n=100 and p=0.1. Largest difference between the exact and the

~ GD(

approximate values is less then 0.01.
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Figure i.10. The exact and the approximate probabilities and their differences in
case of binomial distribution

e Pkp(n)=k)= (EJp"(l— p)"™ can be also approximated by the help of the
probability density function of normally distributed random variable. From analysis one can
recall that if the function G is continuously differentiable in [a,b], then
G(b)-G(a)=G'(c)(b—a) , for some ce(a,b). Applying this theorem for a=k and
b=k+1 weget P(k<k,(n)<k+D)=F, K+ -F, K=

k+1-np k—np ., c—np 1
( ) — O( )=D'( )- (k+1-Kk).
Jnp@-p)”  y/np(-p) Jnp-p)" y/np-p)
PN
Asd)(x)_me ,me ,
| _c-np §
c—np 1 1 e[vnp(zlp)}. 1

O'( ) = —_
Jnp-p)” Jnp-p) 2r Jnp-p)
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which coincides with the probability density function of a normally distributed random

variable with expectation m=np and dispersion c=; at some point
Vnp-p)
ce(k,k+1).
If we choose the middle of he interval, that is c=k+0.5 we get P(k,(n)=Kk)=
L k+0.5—np). The exact and the approximate probabilities and their

Jnp(L-p) ? Jnp(L-p)

differences are plotted in Fig.i.11. One can see that the largest difference between the
approximate and exact probability is less than 0.01.
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Difference
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Figure i.11. The exact and the approximate probabilities and their differences in
case of binomial distribution

Example

E1. In an airport, the number of tickets sold for a fly is 500. Suppose that all of
ticket holders are at the checking with probability 0.95 independently of each other.
Compute the probability that the number of people coming up at the checking is at least 490.
Let 1 denote the number of people coming up at the checking.  is binomially distributed
random variable with parameters n=500 and p=0.95. The question is P(n>490). Now

P(n = 490) = P( =490) + P( = 491) + P(n = 492) + P( =493 + ...+ P( =500) =

500 500 500
0.95%9°.0.05' + 0.9591.0.05° +...+ 0.95°%°.0.05° =0.00046.
490 491 500
If one applies Moivre-Laplace formula,

490-500-0.95

PM=>490)=1-F (490)~1-®
o ) (499 («/500-0.95.0.05
between the exact and approximate probabilities is less than 0.001. One can conclude that
that the probability of having at least 490 passengers on the fly is very small. More than 500

tickets may be sold, if the number of places is 500 and we would like to have less than 0.01
probability for overfilling.

)=1-0.99896=0.00104. The difference

E2. How many tickets may be sold in order to assure that at least 500 passengers be at
the checking?

Let n, the number of passengers at the checking in case of n sold tickets. The question is
the value n for which P(n, <500)=0.99. We require F, (501)=0.99. Applying central
- X—-n-0.95 . . 501-n-0.95

limit theorem, F, (X) » ®(———=—=—=) . Solving equation ®(——==)=0.99 we

vn-0.95-0.05 vn-0.95-0.05
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get M:2.3263, which is a quadratic equation for n. Solving it, we ends in
4/n-0.95-0.05

n=515. As a control,

500 515 515(515 ) )
P(Ms15<500) = > P(Ngys =i) =1— > P(ng;s =1) =1- ZLi Jo.95' -0.05°*" =0.9926> 0.99.
i=0

i=501 i=50

E3. How many passengers are at the checking most likely? Compute/approximate the
probability belonging to the mode in case of n=515 sold tickets.
Mode of binomially distributed random variable is [(n +1) - p]=[516-0.95]=[4902] =490,

515
as (n+1)-p is not integer. P(n515:490):(490)0.9549°-0.0525:8.0585-10'2.
Approximating this value by normal cumulative distribution function, we get
P(ns15 =490) =P(490<n5,5 <49) =F,_ (491 — F(490) ~
491-515-0.95 _ 490-515-0.95

\/515-0.95-0.05) (\/515-0.95-0.05

approximation by probability density function, we get
1 490-515-0.95
P(Ms15 =490) ~

¢
\/21+/515.0.95-0.05 ' +/515-0.95-0.05
almost the same as the previous approximation.

~ @ )=0.63826-0.56026=0.078. If we apply

)=7.8125x10%, which s

E4. Flip a fair die 400 times repeatedly. Give approximately the probability that
the number of heads is at least 480 and less than 520.
Let 1,00 be the frequency of heads in case of 1000 flips. m,,,, iS binomially distributed

random variable with parameters n=1000 and p=0.5. The question is
P(480<m;400<520), which can be expressed by the cumulative distribution function of
Moo DY the following way: P(480<m,4,0<520)=F  (520)-F,  (480). Applying

Moivre-Laplace formula, F,  (X) = ®( x ~1000-0.5

4/1000-0.5-0.5

520-500 480—500) B

750 " a0

520—500)_(1)(480—500):2(1)( 20 )—1=0.7941
V250

O

\250 \250
Give an interval symmetric to 500 in which the number of heads is situated with probability
0.99.
If 6~ N(500,+250), then P(500—2.5758-4/250<6<500+2.5758-/250)=0.99. That
means P(459<m,yy0<541) =0.99.
What do you think if you count 455 heads in case of 1000 flips?
If we realize that the frequency of heads is less than 459, then there are two possibilities .
First one is that an event with very small probability occurs. The second one is that the coin

is not fair. People rather trust in the second one. This is the basic thinking of mathematical
statistics.

100¢ 1000

), and

P(480< M09 <520) = O(

At the end of this subsection we present the approximation of Poisson distribution by
normal distribution. The possibility of that is not surprising: Poisson distribution is the limit
of binomial distribution.
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Theorem Let n, be Poisson distributed random variable with parameters A, =n .Then

. n, —n
limP

n—o0 ( \/ﬁ
Proof n, can be written as the sum of n independent Poisson distributed random variables
with parameter A =1, consequently central limit theorem provides the formula presented
above.

<X)=0(X).

Remarks
e Condition A, =n is not crucial. Supposing that n is Poisson distributed random
variable with parameter A and 10<A, then P(n <x) zd)(%).

e Expectation of n E(n)=2A, dispersion of n D(n):ﬁ. Roughly spoken, the
expectations of the approximated and the approximate distributions are the same values.

Same can be stated about the dispersions.
e Similarly to the binomially distributed random variable,
AX K+1-2 K-\
Pm=k)="—e™ =P(k<n<k+1) = d( ) —@( ).The goodness of the
=9 i N Jr

approximation can be seen in Fig.i.12. in case of A =10 and in Fig.i.13. in case of A =50.
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Figure i.12. The exact and the approximate probabilities and their differences in
case of Poisson distribution with parameter A =10
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Figure i.13. The exact and the approximate probabilities and their differences in
case of Poisson distribution with parameter A =50

Example

E5. Working times of a certain part of a machine between consecutive failings are supposed
to be independent exponentially distributed random variable with expectation 24 hours. If a
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part goes wrong, it is changed immediately. How many spare parts should be had in order to
have enough for a time period 90 days with probability 0.99.

Let n; be denote the failings from time t=0 to T . Recall that n; is Poisson distributed
random variable with parameter A, =A-T, where A is the parameter of the exponential

distribution. Actually, if the time unit is day, then k:%:%:l, where &, 1=123,...
i
denote the time between the i-1th and ith failings. Consequently, m,, is Poisson distributed
random variable with parameter A4, =90. The question is the value of x for which
x—-90

90

=2.3263, which implies x =90+ 2.3263-4/90 =11207.

P(ngo < X)=0.99. P(Mgo <X)=F

MN9o

(x) = d(

). Solving the equation

x—-90 x-90
O(——)=0.99 we get
790 V90

Consequently, we should have 113 spare parts in order not to run out them with probability

113 i
0.99. Asacontrol, P(ny, <113 = de*% =0.99172, but
~ il

112 90|

P(ngosllz):zTe % -0.98924. This also supports the goodness of the presented
i=0 -

method.

i.3. Central limit theorem for the average of independent identically

distributed random variables

Central limit theorem was presented for the sum of many independent random variables.
The average can be computed as a product of a sum and a constant value, consequently,
central limit theorem can be written for the average, as well.

Theorem Let &;,&,,...,&,,... be independent identically distributed random variables with
expectation E(&;)=m and dispersion D(&;)=c, i=12,.... Then,

2.6

lim p| —
n—oo (e}

N

-m
<x=®(x) forany xeR.

Proof Notice that
zai Zii_nm Z&i_nm n
i=1 i=1 i=1 ZE-" —nm

—-m

Pl <x|=P — 1 <x|=P — D <x|=P[ L <x
o o Vn-o c-n
Jn Jn n

Therefore the statement is the straightforward consequence of the central limit theorem for
sums.

Remarks
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Zlii _Zlii s
E(——)=m, D(—)=—.
o E( - ) ( . ) Ny
D, g
i _m R
e« P nT< X | is the cumulative distribution function of ”T, that is the
Jn Jn

standardized average.

o F, (X)=® X ;m . This can be proved as follows:
P 9
; Jn
n
" _Zléa
25 Ee-mo _
F, (y)=P[Z—<y|=p 1 YT Y2M
2 & n o o o]
i=1 r— r— r—
oo Jn
. The cumulative distribution function of the average can be approximated by

cumulative distribution function of a normally distributed random variable. The
expectations of the approximated and the approximate distributions are the same and so are
their dispersions.

o Distribution of the averaged random variables can be arbitrary.

e Approximation can be applied if the number of random variables is at least 100.

e The fact, that the average is approximately normally distributed random variable
and data are frequently averaged in statistics, is reason of the leading role of normal
distribution in statistics.

Example
E1l.Let us suppose that the lifetime of bulbs are independent exponentially
distributed random variables with expectation 1000 hours. Give and interval symmetric to

1000 in which the lifetime of one bulb is situated with probability 0.8.
—2000

E(&i)z%zﬁ). As P(&, <2000 =1—e 100 =0.865, consequently, the interval looks
(1000-x,1000+ x) with X <1000.

_lOOOi—X _lOOO—X
P(1000- x <&; <1000+ x) =F, (L000+ X) — F, (1000~ x)=1-¢ 1000 — {1— e 1000 j

1000-x 1000+x ~1000-x ~1000+x
=e 1000 _g 1000 Splving the equation e 1090 —e 1000 —Q.8, we get

X X X

elo0 _g 1000-08.e=2.1746. Defining the new variable y=el° we get

y—£=2.1746. This is a quadratic equation for the variable y. Solving it we ends in
y
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X

y=-0.38997 and y=2.5645. y=e10% can not be negative, therefore y=2.5645. This
implies x =1000- In(2.5645)= 941.76.
The interval looks 1000-941.76,1000+941.76)=(58.24,194.76).We note that the

interval is quite large, almost 1900 hours is its length.

As a control,
-194176 58.24

P(58.24<¢, <194176)=F. (194176) - F. (58.24)=1-e 1000 _(1—¢ 1000)=0238.

Give and interval symmetric to 1000 in which the average lifetime of 200 bulbs is situated
with probability 0.8.

Turning to the average,
200

D

P|1000-y <4 <1000+ Y |=Fy (1000+Yy)—F,, (1000-y) .
n Y& Y&

i i3
n n
. x —1000 .
Taking into account that F,, (X)~® ~1000_ | we should determine the value y for
L&
S 200
. 1000+ y —-1000 1000-y—-1000| o
which @ 1000 (0] 1000 =0.8 holds. This implies
200 200
2.0 Y |_1208 thatis X220 _1 2816, that is y =90.623.
1000 100
7200

The interval in which the average is situated with probability 0.8 is
(1000—90.623,1000+90.623 = (909,1097) . Notice that its length is about 182 hours,
which is much less than it was in the case of exponential distribution.

i.4. Central limit theorem for relative frequency

At the end of this chapter, we present the central limit theory for relative frequency. As the
relative frequency is the average of independent characteristically distributed random
variable with parameter p, this form of the central limit theorem is a special case of that
concerning average.

Theorem Let k, (n) be the frequency of the event A for which P(A)=p, O<p<1, during

ka(n) D
2<n independent experiments. Then, for any x R, lim P| ——— < x |=®(X) .
e [pd=p)
n

Remarks
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(o0, pla®)_ 0
ka(n) D

<X) is the value of the cumulative distribution function of the

P(——
/p(l—p)
n

standardized relative frequency.

* Returning to the relative frequency, F,, ) (X) =~ @ _XZP | This can be argued

" [PA=p)
n

Ka(n)

Ka(n) n y—-p y—p
by P( y)=P ~ L |

n \/p(l—p) <\/p(1—p) p(L-p)

n n n
P(kA(n)—p<8)=P(p—8<kA(n)<p+s)ch Pre=P | _g PZEZP |
: n p(L-p) pL-p)
n n

=2@(ﬂ)—1.

VPL-p)

It provides possibility to compute
1. thereliability 1— o in the function of ¢ and n,
2. ¢ (accuracy) in the function of reliability 1— o and n
3. number of necessary experiments (n) in the function of ¢ and 1-a..

e This formula can be directly applied if pis known.

Example
E1. Throw a fair die 500 times repeatedly. Compute the probability that the
relative frequency of “six” is at least 0.15 and less than 0.18.
Let A be the event that the result is “six” performing one throw. The question is

P(0.15§M <0.18) . Recall that
500
K . (500) 0.18—2 0.15—(15
P(0.15< A5T <0.18) =Fy, (500 (0.18) = F, , (500 (0.15) ~ @ =
500 500

= d(0.8)- ®(-1)=0.78814- 0.15866=0.62948~ 0.63.
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Making computer simulations, applying 10° simulations, we get approximate value for
k . .
P(0.153$<0.18). This means that 500-10° =5-.10% random experiments were

performed, which required 0.31 sec. Computer simulation resulted in 0.627480.

E2. Throw a fair die repeatedly 500 times. At most how much is the difference
between the exact probability and the relative frequency with reliability 0.9?

: ka(n) edn edn .
Applying  P(—2 —p‘<8)z2®( 20(——=)-1=0.90 implies
n Vp@ —p VpA-p)
edn 1 1.654- é:
———=1.645. Substituting n=500and p==, e=—————=0.0274. It means
Vp-p) 6 V500
that P(%—0.0274 K (500) +0.0274) =P(0.1393< AS((?OO) <0.1941) ~0.90.
Computer simulation resulted in 0.907078. If we would like to increase the reliability, for
example, 1-a=0.99, then 20(——— eV )-1=0.99, ﬂ=2.5758, £=0.0429:.
p-p) 15
6 6

Consequently, the interval is (%—0.04293%+0.04293:(0.12374,0.20960j. We can

realize that the greater the reliability, the larger the interval.

E3. Throw a fair die 500 times repeatedly. How many throws should be done, if the
relative frequency of “six” is closer to the exact probability than 0.01 with reliability 0.99?

Apply again the formula P(—2-—=> A( )_ p| < £) = 20 (——r— evn )-1 with £=0.01 and
p(L-p)
1-a=099. 20(—— evn )—1=0.99 implies M)=2.5758, that s
Jp-p) p-p)
2
\/_ 2.5758 = E, n= 2.5758 EE =9215 instead of 500 experiments. As
0.01 V6 6 0.01 V6 6
evn : : : . L
2d(————) -1 is monotone increasing function of n, if we increase the value of n, we
pP-p)
increase the reliability, as well. If we apply the estimation P(M— p‘ <g) zl—p(l—_zp)
n ne
presented in the previous chapter, substituting €=0.01 and p:% and
15
1—p(1—_2p)=0.99we get n =L2z13900 which is about the 1.5 times larger than
ne 0.01.0.01

the previously determined simulation number. It means that it is rather worth computing by
central limit theorem, than by the law of large numbers.
Note that if we would like to have accuracy €=0.001, then the number of simulation has to

be 10? =100 times larger than in the case of £ =0.01.
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We would like to emphasize that in the previous examples the probability of the event A
was known. But in many cases it is unknown and we would like to approximate the
unknown probability by the relative frequency. In those cases we can apply upper estimation

en )1,
\VP(L-p)

Theorem For any value of 0<p<1, 2@(28\/5) -1<20(——=

for the probability 20(———

evn
VP(L-p)

Proof If O<p<1, then p(1—p)£%, moreover . /p(l—p s%. This implies

)_

8\/_ 8\/_ ,thatis 2- edn<s—N— eVn . As @ is monotone increasing function, so is
1 \/p(l p) Vp-p)
2

20 -1, therefore 2-8\/ﬁﬁi implies 20(2- evn) —1< 20(——t— e — VT y—1, which

pP-p) Jp=p)

is the statement to be proved.

Remark

. Formula 2cI>(28\/ﬁ)—1does not contain the unknown value of p, therefore the

inequality 2d(2e+/n) —1<P( <eg) is suitable for estimating the accuracy, the

[
n

reliability and the necessary number of simulation in the case of unknown p value.

For the sake of applications, we determine the reliability in the function of n and ¢ , the
accuracy ¢ in the case of nand reliability 1—o., and the necessary number of simulations
in the function of ¢ and 1—-a..

1. <g) supply a direct lower

ks
n

bound for the reliability.
2. If nand the reliability 1—o are fixed, with the choice 2®(2evn)-1=1-a,

-3
st/ﬁzd)‘l(l—%j and ¢ =—2. Notice that the accuracy ¢ is proportional to the

2Jn

reciprocal of the square root of the number of simulations. We note that CD‘l(l—%]:y

@‘1(1—‘;)
2vn

o |f the accuracy ¢ and the reliability 1—a are fixed, then 2@(28Jﬁ)—1:1—a

means that ®(y) =1—%. Summarizing, if €= pl<e).

2
-3)
serves again the formula 28\/ﬁ=®1[1—%j and, n=| ————2 | . If nincreases, then

2¢
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the reliability increases supposing ¢ is fixed. If the reliability is fixed and n increases, then
¢ decreases. Note that the required number of simulation is proportional to the square of the

2
cpl(l—o‘j
if —2 <

reciprocal of the accuracy. Summarizing, i 5 <n, then
€

1—ocSP(‘kTA—p <g).

Examples

E1l. At a survey, n=1000 people are asked about a yes/no question. The
relative frequency of answer “yes” is 0.35. Estimate the probability that the relative
frequency is closer to the probability of answer “yes” (p) than 0.05, that is P(0.3<p<0.4).

Let A be the event that the answer is yes, P(A)=p is unknown. Recalling

k I
2@(28\/5) ~1<P(-2 —p|<e) and  substituting n=1000 and €=0.05,
n

20(2e/n) —1=20(2 - 0.05- y1000) = 0.99922. Therefore, 0.99922<P(k , —p| <0.05).

E2. At a survey, n=1000 people are asked about a yes/no question. How much
is the largest difference between the relative frequency and the exact probability p with

reliability 0.95?

o 1-4)
We have a formula for accuracy, namely s:—z. Now, 1-a=0.95,
2vn
o1-5)
1-%-0.975, d)l(l—gjzl.% and 2)_ 196 5031 That means
2 2 2Jn 241000

0.95<P(0.35-0.031< 1ESO< 0.35+0.030) . This is the reason why surveys publish the

results with +3% in case of 1000 people.

E3. At a survey n=1000some people are asked about a yes/no question. If we
need accuracy &= 0.01 with reliability 0.95, how many people should be asked to be able to

do this?
2

q)‘{l—“j
Apply 2—82 <n with €¢=0.01, 1-a=0.95.

2
Q_l(l_(;j 1.96 Y
2| _[ L —982 =9604.
2¢ 2.0.01

This is the reason why 10000people are asked to have accuracy 0.01 with reliability 0.95.
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<0.0)=P(0.34<p<0.35).

Summarizing our result, in case of 9604<n, 0.95< P(k—A -p
n

Of course, the above questions should have been asked for computer simulation as well. The
main difference between survey and computer simulation is that the number of simulation
can be easily increased but the increment of number of people asked at a survey requires lots
of money.

Finally we present Tables i.1.and i.2., which contain the required number of simulations for
given accuracy, in case of reliability levels 1—0.=0.95 and 1— o =0.99. These reliability
levels are often used in practice. In Tables i.3. and i.4., we present accuracy at given

numbers of simulation.

1-a=0.95
n €
10 0.3099
100 0.098
500 0.043827
1000 0.03099
5000 0.013859
10000 0.0098
50000 0.0043827
100000 0.003099
500000 0.0013859
1000000 0.00098
500000 0.00043827
1000000 0.0003099
5000000 0.00013859
10000000 0.000098
50000000 0.000043827
100000000 0.00003099
Table i.1.The accuracy in the function of number of simulations in case of reliability
level 0.95
1-a=0.99
n €
10 0.40727
100 0.12879
500 0.05 7597
1000 0.040727
5000 0.018214
10000 0.012879
50000 0.005 7597
100000 0.0040727
500000 0.0018214
1000000 0.0012879
500000 0.0005 7597
1000000 0.00040727
5000000 0.00018214
10000000 0.00012879
50000000 0.00005 7597
100000000 0.000040727

Table i.2.The accuracy in the function of number of simulations in case of reliability

level 0.95
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1-a=0.95
€ n
0.1 97
0.05 385
0.025 1537
0.01 9604
0.005 38416
0.0025 153660
0.001 960400
0.0005 3841600
0.00025 15366000
0.0001 96040000
Table i.3.Necessary number of simulations to a given accuracy in case of reliability
level 0.95
1-a=0.99
€ n
0.1 166
0.05 664
0.025 2654
0.01 16587
0.005 66347
0.0025 265390
0.001 1658700
0.0005 6634700
0.00025 26539000
0.0001 165870000

Table i.4.Necessary number of simulations to a given accuracy in case of reliability

level 0.99



j. Basic concepts of mathematical statistics

The aim of this chapter

In this chapter we present the basic concepts of mathematical statistics
and we sketch of some branches of it. We introduce empirical cumulative
distribution  function, empirical density function, estimations of
expectations and dispersions. We also present how to test hypothesis in

Some case.

Preliminary knowledge

Properties of average. Normal distribution. Student’s t distribution. Chi-

squared distribution.

Content

j.1. Empirical cumulative distribution functions and histogram.

j.2. Estimation of probability, expectation and variance.

j.3. Testing hypothesis



j-1. Empirical cumulative distribution function and histogram

In the previous chapters we have dealt with probabilities. In this last section we present how
to draw conclusions from data on the basis of probabilistic argumentations. As the
cumulative distribution function contains all information about the random variable, our
primary aim is to approximate it on the basis of data. Data have dual nature, before
performing the sampling they are random variables, after performing the sampling they are
real numbers as the results of observations of a random phenomenon. The statistical
methods are executed on the numbers, but they are elaborated for the random variables.

First, clarify the concept of sample.

Definition Sample is a series of independent observations concerning a random variable
&*. More precisely, sample is E=(&,,&,,....&,), & 1=12,...,n are independent identically

distributed random variable with common distribution function F. The number of
elements of the sample equals n.

Definition Let the values of the sample be x;,X,,...X,, X; €R, i=1,2,...,n. Empirical
cumulative distribution function belonging to the values of the sample x =(x;,X,,...,X,,)

D L)

is defined as F R>R Fy sy x) @ =Fe(2) = i-1 . _

X1, X2, Xn)

Remarks
e Argument of the function is denoted by z because the letter x is related to the
sample.
*  Fuxp..x,) (@) is briefly denoted by F,(z).

o Cumulative distribution function is the relative frequency of the event {& <z} if we

2 L)

perform independent experiments for this event. F,(z) ="=—— is a staggered function
n

which has jumps at z=x;. It is constantly zero previous to the smallest element of the

sample, and it is constantly 1 following the greatest one.
e The elements of the sample x; and x; may be equal.

e The function F,(z) has all properties of cumulative distribution function.
Namely,

n n
L D1y <> 1., for any values of z<y, which implies monotone
i=1 i=1
increasing property.
Its limitis zeroat —co and 1 at .
3. It is left hand-side continuous. Consequently, it is really cumulative
distribution function.

N



n n n
distribution function if x; are all different. If some x; values are repeatedly in the sample,

then the probability belonging to this value is the relative frequency of this element in the
sample.

e The random variable 6~[1 1 1} has the same cumulative

Example
El. Let the elements of the sample be x;, =12, x, =10, x5 =15 x, =12, Xy =13.

Draw the empirical cumulative distribution function belonging to these sample elements.

0 ifz<10
5 1 if10<z<12
=2t |3
Fe(z)%: c if 12<z<13.
% if 13<2 <15
1 if15<z

This function can be seen in Fig.j.1.

osf —_—

06 —

oaf

0.2 [ ——

o

L L L L L L L L
8 9 10 1 12 13 14 15 16

Figure j.1. Empirical distribution function belonging to the sample elements
inE.L

Theorem If F,(z) is the empirical cumulative distribution function belonging to the sample
elements (Xx,,....,X,) and F(z) is the cumulative distribution function of &;, i=12_3,... ,
then for any value of xR and O<e, P(F,(2) - F(2)| <&) >1if n>o0.

Proof Let A be the event that the random variable &* is less than z, that is A={&*<z}.
Now F,(z) is the relative frequency of A during n independent trials. Moreover,
F(z) =P(A) . The law of large numbers states that the relative frequency of an event and the
probability of that are close to each other, that is

P(F.(2) - F(2)| <&) Zl—w —1-0, supposing N — oo,
ne



Remarks

e The above theorem is the consequence of the law of large humbers.

e The theorem states that the values of the cumulative distribution function can be
approximated by the empirical cumulative distribution function. The necessary number of
simulations to a given accuracy can be determined by applying the central limit theorem
presented in the previous section. For example, if €=0.01, then n=9604, if the reliability
level is 0.95.

Example
E1l. Let &* be exponentially distributed random variable with parameter A =1.

Take a sample of n elements independently with respect to &*. Draw the empirical

cumulative distribution function of the sample if n=10 and n=100 and n =1000.
The empirical cumulative distribution functions together with the exact one can be seen in
Figs.j.2. and j.3.

Figure j.2. Empirical distribution function belonging to an exponentially distributed sample
of 10 and 100 elements

Fe(x)
]
@

Fe(x)

0‘.6 O.‘8 ‘1 1.‘2 1.‘4 1.‘6 1‘.8 ‘2
Figure j.3. Empirical distribution function belonging to an exponentially distributed sample

of 1000 elements and a segment of the function

One can realize that there is hardly difference between the exact cumulative distribution
function and the empirical one if the number of sample elements is large.



E2. The exact cumulative distribution function and the empirical one is presented in Fig.

0 1
j-4.in case of &~ (0 E g 5] . The number of sample elements was n=10 and n=100.

Fig.j.4. Empirical cumulative distribution function (blue) and exact one (red) in case of 10
and 100 sample elements

One can see that if the number of elements is large, then they are close to each other.

The following statement is a stronger one than the previously proved statement. We present
it without proof.

Theorem (Glivenko)
If F,(z) is the empirical cumulative distribution function belonging to the sample elements

(X4,...,X,) and F(z) is the cumulative distribution function of &* and §&;, i=123,....
Then sup|F, (z) - F(z)] > 0 if n — oo with probability 1.
zeR

Remarks

e Glivenko’s theorem is often used as fundamental theorem of mathematical statistics.

o |ts philosophical interpretation is that the world is knowable.

e The main differences of the Glivenko’s theorem and the theorem presented at the
beginning of the section are that this later states uniform convergence (not for any z
separately) and states probability 1 (strong law of large numbers).

e Test for distribution function can be given on the maximal difference called as
Kolmogorov-Smirnov’s test, and will be presented in the last subsection.

Now we turn to the approximation of probability density function by histogram. Histograms
were used for presentation of relative frequencies. We usually compared them to the
probability density functions.



Definition Let x,,X,,...,X, be value of the sample. Let a:_rlnzin Xi, b= max X; and
i=1,2,..n i=1,2,..n

1<m fixed. Then consider points vy, =a—2—a, Y, =yi_l+iB, i=12,...m. Let
m m

ki(n,m)=>"14 gy 1yl 1=12,...,m and
j=1

ki(n,m)‘ 1
n b-a

f.(2)= m

0 otherwise
The function f,(z) is called as histogram with m equally lengthen subintervals belonging
to the sample elements x,, X,,...,X,,.

if zely,,y;) 1=12,...m

Remarks

e Histogram strongly depends on the value of m. If m is too small or too large as
compared to n the shape of the graph of histogram will not be appropriate. To see this, we
present Fig.j.5. The number of sample elements sample was n=100 in all cases. The sample
was uniformly distributed, m=4, m=10, m=50 and m=100. The sample elements were the
same in case of all histograms.

0.35

0.3r

0.25F

0.21

fe(x)

fe(x)

0.15f

0.1r

0.05

0 0.2 0.4 0.6 0.8 1 12 14 —%‘2 0 0.2 0.4 0.6 0.8 1 12
X X

Figure j.5. Histograms of a sample of 100 elements in case of 5 and 11 subintervals

0.08 T T T T T T 0.045

fe(x)

-0.2 0 0.2 0.4 0.6 0.8 1 12 . . . . 05 06 07 08 09 1
X X

Figure j.6. Histograms of a sample of 100 elements in case of m=50 and m=100

If the number of sample elements is 10000 and they are uniformly distributed in [0,1], then
the histograms for m=4, m=10, m=50 and m=100looks as follows:



fe(x)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 -0. 0 0.2 0.4 0.6 0.8 1 12
X X

j.5. Histograms of sample of 10000 elements in case of 5 and 11 subintervals

0.025 T T T T T 0.014

0.0121
0.02[

0.01f

0.0081

fe(x)

0.006~

0.004

0.0051
0.002

-0.2 0 0.2 0.4 0.6 0.8 1 12 0 0.2 0.4 0.6 0.8 1 12
X X

j.5. Histograms of sample of 10000 elements in case of 51 and 101 subintervals

The histograms belonging to m=4 and m=10 seem to be better approximations of the
probability density function of uniformly distributed random variable. The high of the first
and last rectangular is the half of the others because the smallest value of the sample is
about zero, the first subinterval is [-0.05,0.05], and

P(-0.05<&<0.05 =P(0<£<0.05=0.05, while P(0.05<£<0.15=0.1. The last
subinterval is (0.951.05], P(0.95<& <1.05)=0.05.

o Although there are many theorems concerning the relationship of the empirical
cumulative distribution function and the real cumulative distribution function, it is difficult
to give limit theorem concerning the histogram and the probability density function. In
abstruse phrasing, for appropriate fixed m values, the histogram is close the real probability
density function, if n is large. Examples were presented in section g.

j.2. Estimation of probability, expectation and variance

After approximating the cumulative distribution function and the probability density
function, we estimate the probability of an event, furthermore the expectation and the
variance of a random variable. This will be done by a function of the sample.

Definition Let £=(&,,§,,....§,) be sample and g:H<=R" — R a real valued function
with ImEcH . Then go&=g(§) is called statistics.



Remarks

e Statistics are the function of the sample. The question in which cases which function
should be applied is important question of mathematical statistics.

e The function goemn:Q—R is a random variable, and g(x,,X,,..X,) is a real

number. The dual property appears in this case, as well.

Estimation of probability

Let £=(E,.8,.8 ) b le £ & =1, 1 if Aoccursattheithexperiment
et E=(§;,E5,m-0s easample, §; & =1, = o ] ]
e P ' |0 if Aoccursat theith experiment

are characteristically distributed random variables with parameter O<p<1. Let g:R" - R
n n
Zy' Zi.

a(y., Y, ,...,yn)=‘=1— Then go &=g(§) ==— the sample average It can be considered

n

as the relative frequency of an event A with  P(A)=p. Now,

Za.
E(9(8))=E| 22— |=—=p, D(g(&)= ‘/ ) 0. Consequently, if we estimate the

n

'O

2.5 A(0)

probability p=P(A) by p=13%—= Ka (D , then the expectation of the estimation equals
n n

the exact probability p and the dispersion of the estimation tends zero if n — 0. These two
properties implies the consistency of the estimation, which means that the estimate value
fluctuates around the value to be estimated and the fluctuation tends zero if the number of
sample elements tends to infinity.

Moreover, applying the central limit theorem, for 100<n, 10<np, we can write that

P(p—u ‘/ (1 p)< A<p+ ‘/ ) 1-a, with ®(u,)= 1—— Arranging the

sides of both mequalltles they in (approximately)

=1 with d)(ua)zl—%.

contains the exact probability p with probability (reliability level) 1—o. This interval is
usually called as confidence interval for the probability belonging to the reliability level
l-a.



Remarks
e We list the values u, for some frequently used reliability levels 1-o, and give

n

26
confidence intervals for the probability in case of relative frequency “=—=0.450 and
n

n=500 in Table j.1.

1-a | u, | Confidence interval
09 [1645| [0.413,0.487]
0.95 [ 1.960 | [0.406,0.493
0.98 2326 | [0.398,0.502

0.99 [2575| [0.3930.507]

Table j.1. Values u, and confidence intervals for the probability belonging to reliability
level 1—a

e The larger the reliability, the wider the interval.
Estimation of the expectation in case of known value of dispersion

Let £=(&,,&,,...,.&,) be a sample, &, are random variables with expectation m and

n n

ZYi Zﬁi

dispersion o. Let g:R" >R g(Y;,Yp.Y,)=-=—. Then g(§)=-2 € is the
n

n =
&
) nm c .
sample average. Now, E(g(&))=E| 22— |=—=m, D(g(n)) =— . Consequently, if we
n n

Jn

n

g

estimate the expectation by the sample average, then E(m)=E(-2—)=m, and
n
n
&
D| =L — 0. This means that the sample average is consistent estimation for the
n

expectation. Note that the sample average is the expectation belonging to the empirical
cumulative distribution function. Moreover, if &, ~N(m,c), or 100<n, then

S,
AL N(m -

n Jn

), or this holds approximately. Applying the k.o law with notation



k=u,, we get P(m- ua—< <m+u, ) 1-oa. Arranging both sides of the
g n Jn
Z§| zgl
2 cm<it 4y %)=1-a
a\/ﬁ n a\/ﬁ

is an interval in which the expectation m is situated with probability 1—o, It is called as
confidence interval of the expectation belonging to the reliability level 1—o..

Remarks

e The above formula can be applied in the case when the dispersion is given.
e If we have the sample elements (x,,X,,...,X,), we have to substitute these values
n n
D& Zai
into the formula |t — -y -2 1 +u, ——| to get the confidence interval for the

n “Yn' n “\/_

expectation belonging to the reliability level 1-a. For example, if x, =15, x, =17,
X3 =14, x, =19, x5 =1.7 then

Xy + X, + X5+ X, + X5 :1.5+1.7 +1.4+19+1.7 _164. The confidence interval

5 5
belonging to the reliability levels 0.9, 0.95, 0.98and 0.99are contained in the Table j.2.

el e 1 eay, 02 6s,
{' R «”}
0.9 |[1.645 [1.493,1.787]
0.95 | 1.960 [1.465,1.815|
0.98 | 2.326 [1.432 1.848|
0.99 | 2575 [1.409,1.871]

Table j.2. Confidence intervals for the expectation in case of reliability level 1—a

o |f the reliability level is increased, then the length of the interval increases, as well.

o |f the number of sample elements tends to infinity, the length of the confidence
interval tends to zero.

e If the accuracy is given, we can compute the necessary number of sample elements
to a given reliability level. For example, if we would like to have a confidence interval to



2
the reliability level 0.99 with length 0.1, then u -isg, (UO“O'SGJ <n, that is .

(—2050756 02) =107<n. The number of the necessary elements is proportional to the

variance and to the square of the reciprocal of the accuracy.

If the dispersion of the random variable is not known then we have to estimate it on the
basis of the sample.

Estimation of the variance and the dispersion

As the sample average is the expectation belonging to the empirical distribution function, it

is coherent idea to estimate the variance o by the variance belonging to the empirical
distribution function.

n

>y, -vf

Let s°:R" >R, sz(yl,yz,...,yn)z%. Then

Z(Eﬁu _g)z Zi.
szogzsz(al,gz,...,gn)z%, where &= .$%(&,,8,,...,&,) is a random
variable.

E(Sz(él’éz ----- £,)=E % =

%E(Z - —22 m)E—m) +n(& - m))] [Z(ai—m)zJ—E((é—m)z).

i=1

i & L (o
E(E-m))=E | =—-m =—2E(Z(ai—m)2—22(ai —m)((&,——m)}



$*2 (Y1, Y2 Yp) =2 ] =nrllsz(y1,y2,---,yn)-
Ye-gF| [ Xe-Ef|
E(s*? (£,,8,5,...8,))=E '=1n_1 :n—l'E i=1 . - 2o

s*? (&,,&,,...,&,) is briefly denoted by s*°. It can be proved that if E(éi“) exists, then

D?(s** (&,,&,,...&,)) =0, if n—oo. Summarizing, s** is consistent estimation of the
variance. Now it is worth estimating the dispersion by the statistics

S* (Ey, EprBn) =S *2 (61,850 Ep) =

Definition The statistics s* (§,,&,,..§,) = is called as corrected empirical

dispersion.

To construct confidence interval for the variance and the dispersion we state the following
theorem without proof (Fisher-Cochran’s theorem)

s** (€1, 82.-£n)
62

Theorem If & ~N(m,o), then (n-1) ~x2_,, furthermore £ and

s*? (&,,&,,.&,) are independent random variables. By definition of Student’s t

distribution (see chapter g), this also implies that *—\/_~
(SRS

Remarks

e y2 distributed random variables were presented in Chapter g. The explicit forms of
their cumulative distribution functions are not usually used. There are tables (see Table 3.)
which contain the real values 2 , for which P(y2 , <6)=a supposing 0~ y?2. This means
that P(9<Xﬁ,a)=1—0€- These values Xﬁ,a are called as critical values belonging to the
reliability level 1—-o.

e By the help of the critical values belonging to 1—% and % one can construct an

interval in which the values of y?2 distributed random variable are situated with probability

1-o . Namely, P(x%, ./, <0<x?,./,). These intervals will be used to construct such
intervals in which variance and dispersion are situated with probability 1—o..



If & ~N(m,o), then (n—1)

S*Z (é,l,iz:--'!&n) _ =l
62

~ %2 ., consequently,
(e

*2
POl a2 <(n —1)80—237(@,2) =1—a . Arranging the sides of the inequalities we end in

2 2

s* S*

2 2
Xn,al2 nl-o/2

X
s*? g *? .
P(.[(n-1)— <o< [(n-1)— )=1-a. Summarizing, supposing normally
Xnal2 Xni-a/2

distributed samples or large number of elements, the confidence interval for the variance
belonging to the reliability level 1— o looks like

{(n—l) A }

Xn,(x/Z Xn,l—(x/Z

P((n-1) <c’<(n-1)

)=1-o. As a straightforward consequence,

and that for the dispersion it is

5*2 5*2
(n-1)— ,\/(n—l) 5 :
Anal2 Ani-ar2
Remarks

o Due to the central limit theorem, the assumption of normally distributed sample can
be omitted if n is large.
o If we have the value of the sample, we can construct the confidence intervals for the

variance and the dispersion by the following steps: compute the value of s*?, find the

critical value belonging to the reliability levels % and 1—%, then substitute them into the

formulae in the boxes.

o For example, assuming normally distributed sample, if x;, =15, x,=1.7,
5 p—
Z(Xi —x)2

Xy =14, X, =1.9, X, =17 then x=1.64 and s*?> =1L —

4
_(15-1.64) +(1.7-1.64)* +(1.4-1.64) +(1.9-164)° +(1.7-1.64)
- 4

Confidence intervals belonging to the reliability levels 0.9, 0.95, 0.98and 0.99 are
included in Table j.3.

= =0.038.

1-a 2 2 2 2 2 2
Xag-a X4 s* S* * *
1012 | Xaar2 {4, 4 } (n—-1) 52 (=1 25‘

Xaal2 Xa—oi2 Xaoi2 Xag-ai2

09 | 0711 | 9.488 [0.016,0.214] [0.127,0.462)

0.95 | 0.484 | 8.496 [0.0180.314] [0.134,0.560]




098 | 0297 [13277 [0.012,0.512] [0.107, 0.715
099 | 0.207 | 14.86 [0.010,0.734] [0.101, 0.857]

Table j.3. Critical values and confidence intervals for the variance and dispersion in case
of reliability levels 1—a

e The greater reliability, the larger interval.
Finally let us return to the estimation of the expectation in case of unknown dispersion.
Estimation of the expectation in case of unknown dispersion

Taking the sample average does not require the knowledge of the dispersion. Furthermore,

) D

estimating the expectation by the sample average, E(m)=E(-*—)=m, and
n

n
2
D| = — | - 0 holds in the case of unknown value of &, as well.
n

Turning to the confidence interval for the expectation, apply Fisher-Cochran’ theorem and
E-m
S*
There are tables of Student’s t distribution, in which one can find the real numbers t
for which P(-t, , <t <t  )=1-o. The value t

na =

the formula Jn~ T,_, In case of normally distributed samples.

nlo !

1o 1S called as critical value belonging

<5

n-lLa —

_*m\/_gtnfla):l—oc. Arranging both
s ,

to the reliability level 1—a. Now, P(-t

* *
1o 'S

_ ot -t -S

sides of the inequalities we ends in P(E——"2% " <m<E+"EE " )=1_q.
Jn Jn

Summarizing, the confidence interval for the expectation belonging to the reliability level

l-ais

Remarks

o Note that the confidence intervals for the expectation are very similar in the cases of
known and unknown dispersion. In case of unknown dispersion, o is replaced by its
estimation, s*, and the critical value is t,_,,, instead of u,.

o The larger the reliability level, the larger the interval.

o The larger the number of elements, the smaller the critical value.

e The limit of the critical values t , are u_, thatis r!in t,, =U,.This is due to the

statement that the cumulative distribution functions of Student’s t distributed random
variables is the cumulative function of a standard normally distributed random variable.



e The confidence intervals belonging to a given reliability level can be constructed
after executing the following steps: compute s* on the basis of the sample, find the critical
value and substitute into the above formula. In case of normally distributed sample and

X, =15, x,=17, x;=14, Xx,=19, X, =17,x=164 and s*=0.038. The
confidence intervals belonging to the reliability levels 0.9, 0.95, 0.98 and 0.99 are
presented in Table j.5.

1-a 1:4,(1 - t4,a 8* t4,a 8%
& &+
5 55
09 [1.533 [1.506,1.774]
095 | 2.132 [1.454,1.826]
0.98 | 2.999 [1.378,1.901
0.99 | 3.747 [1.313 1.967]

Table j.5. Critical values and confidence intervals for the expectation in case of unknown
value of dispersion

j.3. Testing hypothesis

An important branch of mathematical statistics is testing hypothesis. Hypothesis is an idea
about the value of probability, expectation, dispersion, a parameter or about the cumulative
distribution function itself. We check that the hypothesis can be true or not, more exactly,
data contradict to the hypothesis or not. The main idea of testing hypothesis is the following:
if the hypothesis holds, then a certain function of the sample has a known distribution. This
implies that one can determine an interval in which the function of the sample is situated
with a given reliability 1—o. If the hypothesis does hold, the values of the function (test
function) are out that interval with probability o . The mentioned interval is called as
acceptation region; its compliment is the critical region. Then, check whether the test
function is really in the acceptation region. If it is, then the data do not contradict to the
hypotheses. If it is not, two reasons for this may happen: the hypothesis does not hold or the
hypothesis holds and an event with small probability o occurs. Statisticians vote for the
later one, hence we do not accept the hypothesis, because we rather trust in the alternative
than in the occurrence of rare event. Of course, the decision may be wrong.

The name of the basic idea is null hypotheses (H,), the name of the opposite is alternative

hypothesis (H;). They have to be mutually exclusive but they may not cover all
possibilities concerning the parameter. For example, H, is that the probability of an event is

0.4, the alternative hypothesis is that the probability of the event is smaller than 0.4.
Decision, whether we accept (fail to reject) H, or reject it, may be right or wrong.

Following four cases can be distinguished:

H, is accepted

H, is rejected

H, istrue

Right decision

Wrong decision

H, is not true

Wrong decision

Right decision

Table j.6. Possibilities concerning the decisions in testing a hypothesis




Decision that H, is true, although it is rejected is called as error of the first kind (type I.
error), its probability is o . The probability of the first kind error is usually called as the
level of significance.

Decision that H, is not true, although it is not failed to reject is called as error of the second

kind (type Il. error). Its probability depends on the value of the tested parameter, for
example. Consequences of the different kind of errors are of various severities.

Remarks
e Usually applied significance levels are .=0.05 and o.=0.01.

e Some test functions are connected with the statistics presented in the previous
subsection.

o The elaborated tests can be executed as a recipe in the kitchen. Their steps are the
followings:

State H, and H,, fix the level of significance.

Determine the critical region and the acceptance region.

Compute the actual value of the test function by substituting the values of the sample
elements into the test function.

Check weather the actual value of the test function is in the critical region or in the
acceptance region.

Make your decision: if the actual value of the test function is in the critical region, reject
H,, if itis in the acceptance region, accept H,.

. If H, is accepted, then H, may be untrue but the data do not contradict to this

assumption. If you doubt in H, you should take a sample of more elements.

In the latest part of this subsection we present tests for the probability, expectation, variance
and cumulative distribution function. We explain the task, present the test function, critical
and acceptance region and decision itself in all cases, separately.

Test for the probability

During this problem we have to decide about the probability of an event, whether it can be a

fixed number or not. Let m=(&,&,,...&,) be the  sample,
R 1 if Aoccursattheithexperiment N ani K (n). the f ;
=1, = o ] ] . Now , i =k, (n), the frequency o
~ 0 if Aoccursat theithexperiment ) A a Y
& -
A, and =L —=—A2 7 jts relative frequency.
n n

Let Hy, :P(A)=p,, H;:P(A)=p,, where p, is the idea about the probability of the event.
If 100<n, 10<np, is satisfied, then by the central limit theorem we can state, that
Kaln) _
n 0
Po (- Po)
n

~N(0,1) supposing that H, holds. Consequently, let the test function



u=—=—"—— . If H, holds, then P(-u,<—"—<u,)=1-a, where

}po(l_po) Po(L—Po)
n n

cD(ua)zl—%, coinciding with the previous subsection. Critical region is

(—o0,—u, )U(u,,) and acceptance region is [-u,,u,]. Critical value u, and its

ka(n)
n

}po(l_po)
n

interval [-u,,u,], then H, is accepted, in the opposite case H, is rejected and H, is
accepted. The level of significance equals o .

0

opposite are the bounds of the critical region. If the actual value of is in the

Let H,:P(A)=p, and H, :P(A) <p, one sided alternative hypothesis. Then, if H, holds,

ka(n) ka(n)
Po Po
then —A_———~N(01), and P(-U,, <————)=1—a supposing 100<n,
Po(1—Po) Po(—Po)
n n
10<np,. The critical region is (—o,—u,, ), the acceptance region is [-u,,,). If the
ka(n)

0
n

{po(l_po)
n

under —u,, we reject H, and we accept H,. Data rather support that P(A) <p, and they
contradict to P(A)=p,.

actual value of the test function is at least —u,,, , then we accept H,, if it is

Remarks
e Alternative hypothesis H, :p, <p can be similarly handled.

o The smaller the significance level, the larger the acceptance region.

Po(1—Py)
n
and the larger of its reciprocal. Consequently, smaller difference can be accepted between
the relative frequency and the real probability in case of small number of sample elements.
Same difference between the relative frequency and the real probability may result in
acceptance of H, for small number of elements of sample and in rejection of H, in case of
large number of elements of the sample.
e Acceptance of H, in case of two sided alternative hypothesis and rejection of H,
in case of one sided alternative hypothesis may happen at the same significance level o .
Example will be presented later.
. Same difference between the relative frequency and the real probability may result
in acceptance of H, for small number of elements of sample and in rejection of H, in case
of large number of elements of the sample.

° The larger the number of sample elements, the smaller the value of



E1.

Let the relative frequency of an event A during n independent experiment be

0.35. Test the hypothesis H, :P(A) =0.4 and H, :P(A) = 0.4 in case of significance levels

a=0.1, a=0.05, a=0.01and number of sample elements n=100, n=300, n=600.
Results are included in Table j.7.

a,n u, Critical region Actual value of | Decision

the test function
a=0.1, 1645 | (—o0,~1.645)U(1.6450) | -1.0206 H, is accepted
n=100
a=0.1, 1.645 | (~o0,~1.645)U(1.645) | -1. 7678 H, is rejected,
n=300 H, is accepted
a=0.1, 1.645 | (-0,~1.645)U(1.6450) | -2.5 H, is rejected,
n=600 H, is accepted
=005, |[196 | (-»0-196)U(1.96,0) |-1.0206 H, is accepted
n=100
=005, [196 | (-»0-196)U(1.96,0) |-1.7678 H, is accepted
n=300
=005, |[1.96 | (-0-1.96)U(1.96,0) |-2.5 H, is rejected,
n=600 H, is accepted
a=0.01, 2576 | (~00,~2.576)U(2.576,00) | -1. 0206 H, is accepted
n=100
a=0.01, 2576 | (~o0,~2.576)U(2.576,0) | -1. 7678 H, is accepted
n=300
a=0.01, 2576 | (—0,-2.576)U(2.576,0) | -2.5 H, is accepted
n=600

Table j.7. Testing hypothesis p=0.4 with two sided alternative hypothesis

E2. Let the relative frequency of an event A during n independent experiment be 0.35.
Test the hypothesis H,:P(A)=0.4 and H,:P(A)<0.4in case of significance levels

a=0.1,

n=600. Results are included in Table j.8.

a.=0.05, a=0.01land number of elements of the samples n=100, n=300,

a,n u,, | Critical Actual value of the test | Decision
region function
a=0.1, 1.282 | (~,~1.282) | -1. 0206 H, is accepted
n=100
a=0.1, 1.282 (—oo,—l.282) -1. 7678 H, is rejected, H, is
n=300 accepted
a=0.1, 1.282 | (~0,-1.282) | -2.5 H, is rejected, H, is
n=600 accepted
a=0.05, 1.645 | (~o0,~1.645) | -1.0206 H, is accepted
n=100
a=0.05, 1.645 | (~o0,—1.645) | -1.7678 H, is rejected, H, is
n=600 accepted
a=0.05, 1.645 | (—~o0,~1.645) | -2.5 H, is rejected, H, is




n=600 accepted

a=0.01, 2.326 | (-0,-2.326) | -1.0206 H, is accepted

n=100

a=0.01, 2.326 | (~0,-2.326) | -1.7678 H, is accepted

n=300

a=0.01, 2.326 | (-0,-2.326) |-2.5 H, is rejected, H, is
n=600 accepted

Table j.8. Testing hypothesis p=0.4 with one sided alternative hypothesis
Test for the expectation in case of known value of dispersion

Let n=(&,,&,,....&,) be a sample, &, are random variables with expectation m and with
known dispersion o. We would like to check weather H,:m=m, holds or conversely,

D,
=l

-m

H,:m=m,. If & ~N(m,o) or 100<n, then ”T~ N(0,1). Consequently, if H,
Jn
holds, then
n
26
i=1 _mo
Pl—u,<—1——<u, [=1-a. The critical region is (—oo,—u,)u(u,,), the
()
Jn
2.6
i=1 _mO
acceptance region is [-u,,u,, ]. Using the test function u :nT’ if the actual value
Jn

of the test function is in the critical region H, is rejected, if it is in the acceptance region
H, is accepted.

If the alternative hypothesis is H, :m<m,, then the critical region is (-,~u,, ), the

n

D

i=1

— mO
acceptance region is (—u,, o). If the actual value of the test function u =N isin
(¢}

Jn
the acceptance region, then H, is accepted, if it is in the critical region, H, is rejected and
H, is accepted.

Remarks
o The alternative hypothesis H, :m, <m can be similarly handled.
. The smaller the significance level, the larger the acceptance region.



. The larger the number of elements of the sample, the smaller difference
between the average and the real expectation can be allowed if H, is accepted.

o The necessary number of elements of the sample to detect difference e

2
. .. (u . .
between the real and the hypothetical expectation is (LG) <n. It is proportional to

€
variance and the square of the reciprocal of the difference to detect.
. The case when applying two sided alternative hypothesis H, is rejected and
applying one sided alternative hypothesis H, is accepted may occur.
. The test function requires the knowledge of the dispersion.
Example

E3. Let & ~N(m,o). Let us assume that the dispersion of the random variable
investigated equals 1.2. Sample average is supposed to be computed as 100.5. Test the
hypothesis that H,:m=100 and H;:m=100 if the level is significance is a=0.1,
a.=0.05, oo =0.01 and the number of sample elements are n=10, n=30, n=50.
Results are included in Table j.9.

a,n u, Critical region Actual value of | Decision

the test function
a=0.1, 1.645 | (—o0,~1.645)U(1.645x) | 1.3176 H, is accepted
n=10
a=0.1, 1.645 | (—o0,-1.645)U(1.6450) | 2.2822 H, is rejected,
n=30 H, is accepted
a=0.1, 1.645 | (-0,~1.645)U(1.645 ) | 2. 9463 H, is rejected,
n=50 H, is accepted
=005, | 196 | (~o,-1.96)U(1.96,0) |1.3176 H, is accepted
n=10
0=005, |19 | (-~0,-196)U(1.96,0) | 2.2822 H, is rejected,
n=30 H, is accepted
=005, |19 | (~0,-1.96)U(1.96,0) | 2.9463 H, is rejected,
n=50 H, is accepted
=001, |2576 | (~u0,~2.576)U(2.576,%) | 1.3176 H, is accepted
n=10
=001, | 2576 | (~u0,~2.576)U(2.576,x) | 2. 2822 H, is accepted
n=30
a=0.01, 2.576 | (—0,—2.576)(2.576,00) | 2. 9463 H, is rejected,
n=50 H, is accepted

Table j.9. Testing hypothesis m =10 with two sided alternative hypothesis

E4. Let & ~N(m,o). Let us assume that the dispersion of the random variable
investigated equals 1.2. Sample average is supposed to be computed as 100.5. Test the
hypothesis that H,:m=100 and H,:100<m, if the level is significance is o =0.1,

a=0.05, a=0.01 and the number of sample elements are n=10, n=30,n=50.
Results are in Table j.10.




a,n Uy, Critical Actual value of the test | Decision
region function
a=0.1, 1.282 | (1.282x) 1. 3176 H, is rejected
n=10
a=0.1, 1.282 | (1.282 ) 2.2822 H, is rejected, H, is
n=30 accepted
a=0.1, 1282 | (1.2820) | 2.9463 H, is rejected, H, is
n=50 accepted
a=0.05, 1.645 | (1.645x) | 1.3176 H, is accepted
n=10
o=0.05, 1.645 | (1.645x) 2.2822 H, is rejected, H, is
n=30 accepted
a=0.05, 1.645 | (1.6450) | 2.9463 H, is rejected, H, is
n=50 accepted
a=0.01, 2.326 | (2.326,:0) 1. 3176 H, is accepted
n=10
a=0.01, 2.326 | (2.326,x) 2.2822 H, is accepted
n=30
a=0.01, 2.326 | (2.326,0) | 2.9463 H, is rejected, H, is
n=50 accepted

Table j.10. Testing hypothesis m =10 with one sided alternative hypothesis
Test for the expectation in case of unknown value of dispersion

Let n=(&;,&,,....&,) be the sample, & are random variables with expectation m and
dispersion o but the value of the dispersion is unknown. Let us assume that &~ N(m,c) or

the number of the elements of the sample is large. We would like to check weather
H,:m=m, holds or conversely, H,:m=m,. If & ~N(m,c) or 100<n, then

D&
i=1

n

Jn

-m
~N(0,1). As we do not know the value of o, we can not compute the actual

26

n
g*

=

Mg

value of the above statistics. If we use s* instead of o, ~T,_4 supposing H,

holds. Consequently,

n

D&

i=1 -m,

Pl —t <N <t

n-1,a S *
Jn




The critical region is (—oo,~t, , JU(t,,,,), the acceptance region is |~t, 1.t 1 |-

n-lo?' "n-lo
n
D&
i=1

n

Using the test function t= , iIf the actual value of the test function is in the

Jn

critical region H, is rejected, if it is in the acceptance region H, is accepted.
If the alternative hypothesis is H, :m<m,, then the critical region is (-oo,~t,,), the

acceptance region is (—t,,,). If the actual value of the test function, that is —"

e ,
Jn

is in the acceptance region, then H, is accepted, if it is in the critical region, H, is rejected
and H, is accepted.

If Hy:m=m,; and H;:m<m,, then the critical region is (-oo,—t,,,) and acceptance
region is [ t,,,o). If the actual value of the test function is in the acceptance region, then
H, is accepted, if it is in the critical region, H, is rejected and H, is accepted.

Remarks
e Alternative hypothesis H, :m, <m can be similarly handled.

o The smaller the significance level, the larger the acceptance region.
e The larger the number of elements of the sample, the smaller difference between the
average and the real expectation can be allowed if H, is expected.

e The case when applying two sided alternative hypothesis H, is rejected and applying
one sided alternative hypothesis H, is accepted may occur.
¢ Note that test functions in case of known and unknown dispersion are very similar.

Example

ES. Let & ~ N(m,o). Let us assume that the corrected empirical dispersion computed

from the sample equals 1.2. Sample average is supposed to be 100.5. Test the hypothesis
that H,:m=100 and H,:m=100, if the level is significance are a=0.1, a=0.05,

o =0.01 and the number of sample elements are n=10, n=30, n=50.
The results can be seen in Table j.11.

a,n t, Critical region Actual value | Decision
of the test
function
a=0.1,n=10 | 1.383 (—0,-1.383)U(1.3830) | 1.3176 H, is
accepted
a=0.1,n=30 | 1.311 (-o0,~1317)U(1.31%00) | 2.2822 H, is
rejected, H,
is accepted




a=0.1,n=50 | 1.299 (—0,-1.299)U(1.299,00) | 2. 9463 H, is
rejected, H,
is accepted
a=0.05, 1.311 (~0,-1311)UL.31400) |1.3176 H, is
n=10 rejected, H,
is accepted
a=0.05, 1.833 (—0,-1.833)U(1.833 ) | 2.2822 H, is
n=30 rejected, H,
is accepted
a=0.05, 1.699 (—0,-1.699) U (1.699,0) | 2. 9463 H, is
n=50 rejected, H,
is accepted
a=0.01, 2.821 (—o0,—2.820)U(2.8210) | 1.3176 H, is
n=10 accepted
a=0.01, 2. 462 (—00,—2.462)U(2.462,00) | 2. 2822 H, is
n=30 accepted
a=0.01, 2. 405 (—0,—2.405)U(2.405,00) | 2. 9463 H, is
n=50 rejected, H,
is accepted

Table j.11. Testing hypothesis m =100 in case of unknown dispersion with two sided
alternative hypothesis

EG6. Let &, ~ N(m, o). Let us assume that corrected empirical dispersion computed by
the sample equals 1.2. Sample average is supposed to be 100.5. Test the hypothesis that
H, :m=100 and H,:100<m if the level is significance are o =0.1, =0.05, a=0.01
and the number of sample elements are n =10, n=30, n=50.

Results can be followed in Table j.12.

a,n t,, Critical region Actual value | Decision
of the test
function
a=0.1,n=10 | 0.883 (0.8830) 1.3176 H, is rejected
0=0.1,n=30 |0.854 (0.854 ) 2.2822 H, is
rejected, H, is
accepted
0=0.1,n=50 | 0.849 (0.849 ) 2. 9463 H, is
rejected, H, is
accepted
a=0.05, 1.383 (1.383 ) 1.3176 Ho is
n=10 accepted
a=0.05, 1.311 (1311 ) 2. 2822 H, is
n=30 rejected, H, is
accepted
a=0.05, 1.299 (1.299,0) 2.9463 H, is
n=50 rejected, H, is




accepted
a=0.01, 2.398 (2.398 ) 1.3176 H, is
n=10 accepted
a=0.01, 2.150 (2.150,0) 2.2822 H, is rejected
n=30 H, is

accepted
a=0.01, 2.110 (2.110,) 2.9463 H, is
n=50 rejected, H, is

accepted

Table j.12. Testing hypothesis m =100 in case of unknown dispersion with one sided
alternative hypothesis

Test for the value of variance

Let n=(§;,&,,....&,) be a sample, &, are random variables with expectation m and

dispersion . We would like to check weather H,:c”=cj holds or conversely,
: : —1)s*? :
H,:c® =5 . Recall that if & ~N(m,c) or nis large, then %*%ﬁ_l supposing
0
(n —1)s*?
2

H, holds. Consequently, P(xZ 1/, < <yl iq2)=1—a. The test function is

0
,  (n=1s**

2
Gy

. The critical region is (O,Xﬁ,l,l,a ,Z)U(Xﬁfm /2,%), the acceptance region

is [Xﬁ—l,l—a/2'X§—l,a/2]' If the actual value of the test function is in the acceptance region H,
is accepted, if it is in the critical region, H, is rejected and H, is accepted.
(n—1)s*?

2
Gy

critical region is (2., ,,), acceptance region is [O’Xﬁ—l,l—a]' If the actual value of the
test function is in the acceptance region, H, is accepted, if it is in the critical region, H, is
rejected and H, is accepted.

If the alternative hypothesis is H,:c” <oj, then P(yi, ., < )=1—a. Now,

Finally, if the alternative  hypothesis is H,:c’<c?, then apply

(n —1)s*?
2

P( sxﬁ_m):l—a. Now, critical region is [O,xﬁ,m), acceptance region is

Go
[Xﬁ_lya,oo). If the actual value of the test function is in the acceptance region, H, is
accepted, if it is in the critical region, H, is rejected and H, is accepted.

E7. Let & ~N(m,o). Let us assume that corrected empirical dispersion computed by
the sample equals s*=1.3. Test the hypothesis that H, :c=1.1 and H, :c#1.1 if the level

is significance are a=0.1, a=0.05, aa=0.01 and the number of sample elements are
n=10, n=30,n=50.




a,n X1 o/2 Yo/ Critical region Actual Decision
value of
the  test
statistics
a=01, |16.919 |3.325 [0,3.325) U (16.919,) 12.57 H, s
n=10 accepted
=01, |[42.557 |17.708 | [0,17.708)u (42.557,) 40.504 | H, s
n=30 accepted
a=01, |66.339 |33.93 [0,33.93) U (42.557,x0) 68. 438 H, s
n=50 rejected,
H, is
accepted
a=0.05, 19.023 | 2. 7004 [0,2.70043.93)u(19.023,oo) 12. 57 Ho is
n=10 accepted
a=0.05, |[45.722 |16.047 | [0,16047)u (45.722:0) 40.504 | H, s
n=30 accepted
a=005, |70.222 |31.555 | [0,31.555)u(70.222,) 68.438 | H, s
n=50 rejected,
H, is
accepted
=001, [23.589 |1.7349 | [0,1.7349)L(23.589.0) 12.57 H, s
n=10 accepted
a=001, |52.33 |13.121 | [013.121)u(52.336:0) 40.504 | H, s
n=30 rejected
H, is
accepted
=001, |[78.231 |23.983 | [0,23.983)L(78.231,x) 68. 438 H, is
n=50 accepted

Table j.13. Testing hypothesis o =1.1 with two sided alternative hypothesis

E8. Let & ~N(m,c). Let us assume that corrected empirical dispersion
computed by the sample equals s*=1.3. Test the hypothesis that H,:c=1.1 and
H, :1.1<oc if the level is significance are aa=0.1, o =0.05, a=0.01 and the number of

sample elements are n=10, n=30, n=50.
a,n Lo Critical region Actual Decision
value  of
the test
statistics
a=0.1, 14.684 | (14.684,0) 12.57 H, is accepted
n=10
a=0.1, 39.087 | (139.087,) 40.504 H, is rejected, H, is
n=30 accepted
a=0.1, 62.038 | (62.038,0) 68. 438 H, is rejected, H, is
n=50 accepted
a=0.05, 16. 919 (16.919,0) 12. 57 H, accepted




n=10

a=005, |42.557 | (42.557x) 40. 504 H, is accepted
n=30

a=0.05, |[66.339 | (66.339,0) 68. 438 H, is rejected, H, is
n=50 accepted
=001, |21.666 | (21.666,x) 12.57 H, is accepted
n=10

a=001, [49.588 | (49.588,%) 40. 504 H, is rejected
n=30 H, is accepted
=001, |74.919 | (74.919,0) 68. 438 H, is accepted
n=50

Table j.12. Testing hypothesis o =1.2 with one sided alternative hypothesis

Kolmogorov-Smirnov’ test for the cumulative distribution function

Finally, we present Komogorov-Smirnov’ test to test the distribution of the sample. Namely,
the hypothesis is that the cumulative distribution function is a given function or data
contradict to that. To do that we use the maximum difference between the empirical
distribution function constructed by the sample and the hypothetical distribution function.

Let n=(&;,&,,....5,) be the sample, its values are X;,X,,...,X,. Let F,(z) be the

empirical distribution function constructed on the basis of the sample. Let the null
hypothesis  be Hy,:F=F and H :F=F,. If H, holds,  then

K(y) =P(lim \/ﬁsup|Fe (z) - F(2)|<y) can be given for any value of y. The values of this

zeR

function are included in Table 4.
Therefore, if H, holds,, fixing the value 1—a., then one can find the value k_, for which

P(l im \/ﬁsup|Fe (z) - F(z)|<k,)=1-o. The critical region is (k, o), acceptance region
n—oo
zeR
is [0, ka]. Test function is \/ﬁsup|Fe (2) - F(z)|. If the actual value of the test function is in
zeR

the critical region then H, is rejected, if it is in the acceptance region H, is accepted.

Referring to the shape of the empirical distribution function, the supremum can be computed
as the maximal difference of the cumulative distribution function and the empirical
distribution function and its right hand side limit at the points of the values of the sample.
Consequently, it is enough to compute the values of the empirical distribution function at
the points of the sample values, the right hand side limit of that at the same points,
furthermore the values of the empirical distribution function and their limits at these points.
Taking the differences, and their maximum we get the actual value of the test function.

Example

E9. Let the elements of the sample be x, =2, x, =0.5, x;=0.1, X, =0.7, x5 =0.2.
Testthat Hy :F(z)=1-e*, H,:F(z) #1—-e*.
First note that the basis of Kolmogorov’s test is an asymptotic theorem, hence it is not

recommended using for a sample of 5 elements. Nevertheless, for the sake of simplicity we
do that.




0if z<0.1

0.2if 0.1<z<0.2

0.4if 0.2<2<0.5

0.6if 0.5<z<0.7

Empirical cumulative distribution function is F, (z) =

08if0.7<z<2
lif 2<z
Xi Fe(xi) ZHE?+Fe(Z) Fo(xi) |Fe(xi)_F0(Xi)| lim Fe(z)_Fo(Xi)
Z—oXj+
0.1 0 0.2 0.095 0.195 0.105
0.2 0.2 0.4 0.181 0.019 0.219
0.5 0.4 0.6 0.393 0.077 0.277
0.7 0.6 0.8 0.503 0.097 0.297
2 0.8 1 0.865 0.065 0.135

Table j.13. Testing hypothesis F(z) =1-¢™*

One can see that max|F, (x;) — Fy (x;)| =0.195, max‘ lim F,(z) - F,(x;)|=0.297, therefore
Z—>Xj+

ma}?xlFe (x) — Fy ()| =0.297. The actual value of the test function is \5.0.297=0.664.
Xe

The critical values for aa=0.1, =0.05, a=0.01 are , consequently H, is accepted in all

cases of level of significance. One can check that the hypothesis H, :F(z)=1-e™" s
also excepted on the basis of this data. This means that conclusion ,, H, is accepted” means

that data do not contradict to the hypothesis.

Of course, many other tests exist for testing hypothesis, but their presentations are out of the
frame of this booklet.
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Cumulative distribution function of standard normally distributed

random variables
D(x)=P(E<X)

£~ N(0))

X .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.0 1.5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359
1 ].5398 | .5438 | .5478 | .5517 | .5557 | .5596 | .5636 | .5675 | .5714 | .5753
2 | .5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141
3 | .6179 | .6217 | .6255 | .6293 | .6331 | .6368 | .6406 | .6443 | .6480 | .6517
4 ]1.6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879
5 |.6915 | .6950 | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .7190 | .7224
6 | .7257 | .7291 | .7324 | .7357 | .7389 | .7422 | .7454 | .7486 | .7517 | .7549
| .7580 | .7611 | .7642 | .7673 | .7704 | .7734 | .7764 | .7794 | .7823 | .7852
.8 |.7881 | .7910 | .7939 | .7967 | .7995 | .8023 | .8051 | .8078 | .8106 | .8133
9 1.8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365 | .8389
1.0 | .8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599 | .8621
1.1 | .8643 | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | .8790 | .8810 | .8830
1.2 | .8849 | .8869 | .8888 | .8907 | .8925 | .8944 | .8962 | .8980 | .8997 | .9015
1.3 |.9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177
1.4 ]1.9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306 | .9319
1.5 |.9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 | .9429 | .9441
1.6 |.9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .9545
1.7 |.9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633
1.8 |.9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .9706
1.9 |.9713 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | .9761 | .9767
2.0 |.9772 | 9778 | .9783 | .9788 | .9793 | .9798 | .9803 | .9808 | .9812 | .9817
2.1 |.9821 | .9826 | .9830 | .9834 | .9838 | .9842 | .9846 | .9850 | .9854 | .9857
2.2 |.9861 | .9864 | .9868 | .9871 | .9875 | .9878 | .9881 | .9884 | .9887 | .9890
2.3 |.9893 | .9896 | .9898 | .9901 | .9904 | .9906 | .9909 | .9911 | .9913 | .9916
2.4 1.9918 | .9920 | .9922 | .9925 | .9927 | .9929 | .9931 | .9932 | .9934 | .9936
2.5 [.9938 | .9940 | .9941 | .9943 | .9945 | .9946 | .9948 | .9949 | .9951 | .9952
2.6 |.9953 | .9955 | .9956 | .9957 | .9959 | .9960 | .9961 | .9962 | .9963 | .9964
2.7 1.9965 | .9966 | .9967 | .9968 | .9969 | .9970 | .9971 | .9972 | .9973 | .9974
2.8 |.9974 | .9975 | .9976 | .9977 | .9977 | .9978 | .9979 | .9979 | .9980 | .9981
2.9 1.9981 | .9982 | .9982 | .9983 | .9984 | .9984 | .9985 | .9985 | .9986 | .9986
3.0 [.9987 |.9987 | .9987 | .9988 | .9988 | .9989 | .9989 | .9989 | .9990 | .9990
3.1 1.9990 | .9991 | .9991 | .9991 | .9992 | .9992 | .9992 | .9992 | .9993 | .9993
3.2 1.9993 | .9993 | .9994 | .9994 | .9994 | .9994 | .9994 | .9995 | .9995 | .9995
3.3 1.9995 | .9995 | .9995 | .9996 | .9996 | .9996 | .9996 | .9996 | .9996 | .9997
3.4 1.9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9998
3.5 [.9998 | .9998 | .9998 | .9998 | .9998 | .9998 | .9998 | .9998 | .9998 | .9998
3.6 [.9998 | .9998 | .9999 | .9999 | .9999 | .9999 | .9999 | .9999 | .9999 | .9999
3.7 1.9999 | .9999 | .9999 | .9999 | .9999 | .9999 | .9999 | .9999 | .9999 | .9999
3.8 1.9999 | .9999 | .9999 | .9999 | .9999 | .9999 | .9999 | .9999 | .9999 | .9999

Table 1. Cumulative distribution function of standard normally distributed random

variables
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Critical values of Student’s t distributed random variables

P(tn o <|<t:|) =
E~1,

Na 0.2 0.1 0.05 0.025 0.01 0.001
1 3.078 6.314 12.706 25.452 63.657 636.621
2 1.886 2.920 4.303 6.205 9.925 31.599
3 1.638 2.353 3.182 4.177 5.841 12.924
4 1.533 2.132 2.776 3.495 4.604 8.610
5 1.476 2.015 2571 3.163 4.032 6.869
6 1.440 1.943 2.447 2.969 3.707 5.959
7 1.415 1.895 2.365 2.841 3.499 5.408
8 1.397 1.860 2.306 2.752 3.355 5.041
9 1.383 1.833 2.262 2.685 3.250 4,781
10 1.372 1.812 2.228 2.634 3.169 4,587
11 1.363 1.796 2.201 2.593 3.106 4.437
12 1.356 1.782 2.179 2.560 3.055 4.318
13 1.350 1.771 2.160 2.533 3.012 4,221
14 1.345 1.761 2.145 2.510 2.977 4.140
15 1.341 1.753 2.131 2.490 2.947 4.073
16 1.337 1.746 2.120 2.473 2.921 4.015
17 1.333 1.740 2.110 2.458 2.898 3.965
18 1.330 1.734 2.101 2.445 2.878 3.922
19 1.328 1.729 2.093 2.433 2.861 3.883
20 1.325 1.725 2.086 2.423 2.845 3.850
25 1.316 1.708 2.060 2.385 2.787 3.725
30 1.310 1.697 2.042 2.360 2.750 3.646
35 1.306 1.690 2.030 2.342 2.724 3.591
40 1.303 1.684 2.021 2.329 2.704 3.551
50 1.299 1.676 2.009 2.311 2.678 3.496
60 1.296 1.671 2.000 2.299 2.660 3.460
70 1.294 1.667 1.994 2.291 2.648 3.435
80 1.292 1.664 1.990 2.284 2.639 3.416
90 1.291 1.662 1.987 2.280 2.632 3.402
100 1.290 1.660 1.984 2.276 2.626 3.390
0 1.282 1.645 1.960 2.241 2.576 3.291

Table 2. Critical values of Student’s t distributed random variables
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Critical values of 4?2 distributed random variables

P(xs, <& =0
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E~%h
Mo 10999 | 0.99 |0.975]095 [090 010 005 0025 |00l |0.001
1 .00 |.00 |.00 |.00 |.02 |271 |38 |502 |663 |1083
2 .00 |.02 |.05 |.10 |21 |461 |599 |738 |921 |13.82
3 .02 |11 |22 |35 |58 |625 |781 |935 |11.34 |1627
4 .09 |30 |48 |.71 |106 |7.78 |949 |11.14 |13.28 |1847
5 |21 |55 |83 |115 |161 |924 |11.07 |12.83 |1509 |2052
6 | .38 |.87 |124 | 164 |220 |10.64 |1259 |14.45 |16.81 |22.46
7 |60 | 124 | 169 | 217 |2.83 |1202 |1407 |16.01 |18.48 |24.32
8 | .86 |165 |218 | 273 |349 |13.36 |1551 |1753 |20.09 |26.12
9 | 115 209 |270 | 333 |417 |1468 |16.92 |19.02 |2167 |27.88
10 | 148 |256 |3.25 |394 |487 |1599 |1831 |20.48 |2321 |29.59
11 | 183 |305 |382 |457 | 558 |17.28 |10.68 |21.92 |24.72 | 31.26
12 |221 |357 |440 |523 |630 |1855 |21.03 |23.34 |2622 |32.91
13 | 262 |411 |501 |589 |7.04 |190.81 |22.36 | 2474 |27.69 | 3453
14 | 304 |466 |563 |657 |7.79 |21.06 |2368 |2612 |29.14 |36.12
15 | 348 |523 |6.26 |7.26 |855 |2231 | 2500 |27.49 |30.58 |37.70
16 |394 |58l |691 |7.96 |931 |2354 | 2630 |28.85 |32.00 |39.25
17 | 442 641 | 756 |867 |10.09 |24.77 | 2759 |30.19 |33.41 |40.79
18 490 |7.01 |823 |939 |10.86 |2599 |28.87 |3153 |3481 |4231
19 |541 |7.63 |891 |1012 |11.65|27.20 |30.14 |32.85 |36.19 | 43.82
20 |592 | 826 |959 | 1085|1244 |28.41 |3141 |3417 |3757 | 4531
25 | 8.65 | 1152 | 13.12 | 14.61 | 1647 | 34.38 | 37.65 | 40.65 | 4431 |52.62
30 | 1159 | 14.95 | 16.79 | 18.49 | 20.60 | 40.26 | 43.77 | 46.98 |50.89 |59.70
35 | 14.69 | 1851 | 20.57 | 22.47 | 24.80 | 46.06 | 49.80 |53.20 |57.34 | 66.62
40 | 17.92 | 22.16 | 24.43 | 26,51 | 29.05 | 51.81 | 55.76 |59.34 | 63.69 | 73.40
50 | 24.67 | 29.71 | 32.36 | 34.76 | 37.69 | 63.17 | 6750 | 71.42 | 76.15 | 86.66
60 | 31.74 | 37.48 | 40.48 | 43.10 | 46.46 | 74.40 | 79.08 | 83.30 | 88.38 | 99.61
70 | 39.04 | 45.44 | 48.76 | 51.74 | 55.33 | 8553 | 90.53 | 95.02 | 100.43 | 112.32
80 | 4652 | 53.54 | 57.15 | 60.39 | 64.28 | 96.58 | 101.88 | 106.63 | 112.33 | 124.84
90 | 54.16 | 61.75 | 65.65 | 69.13 | 73.29 | 107.57 | 113.15 | 118.14 | 124.12 | 137.21
100 | 61.92 | 70.06 | 74.22 | 77.93 | 82.36 | 118.50 | 124.34 | 129.56 | 135.81 | 149.45

Table 3.Critical values of y?distributed random variables
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Kolmogorov’s function

K(y)=P(lim Vn sup|F. (2) - F(2)| <)
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y .01 .02 .03 .04 .05 .06 .07 .08 .09
0.4 003 |.004 |.005 |.007 |.010 |.013 |.016 |.020 |.025
0.5 036 |[.043 |.050 |.059 |.068 |.077 |.088 |.099 |.110
0.6 136 149 1.163 |.178 |.193 | .208 |.224 |.240 |.256
0.7 289 [.305 |.322 [.339 |.35%6 |.373 |.390 |.406 |.423
0.8 456 | 472 | .488 |.504 |.519 | 535 |.550 |.565 |.579
0.9 607 |.621 |.634 |.647 |.660 |.6/3 |.685 |.696 |.708
1.0 730 |.741 |.751 |.761 |.770 |.780 |.789 |.798 |.806
11 822 |.830 |.837 |.845 |.81 |.858 |.864 |.871 |.877
1.2 888 [.893 |.898 |.903 |.908 |.912 |.916 |.921 |.925
1.3 932 |.935 |.939 |.942 |.945 |.948 |.951 |.953 |.956
1.4 960 |.962 |.965 |.967 |.968 |.970 |.972 |.973 |.975
15 978 [.979 |.980 [.981 |.983 |.984 |.985 |.986 |.986
1.6 988 [.989 1.989 [.990 |.991 |.991 ].992 |.992 |.993
1.7 994 1994 995 [.995 |.995 |.996 |.996 |.996 |.996
1.8 997 1997 1997 [.998 |.998 |.998 |.998 |.998 |.998
1.9 999 [.999 [.999 [.999 [1.999 1.999 ]1.999 |.999 [.999

Table 4. Kolmogorov’s function




