
 

 

 

 

 

 

Discrete and Continuous Dynamical 
Systems with Applications 

Győri István, Hartung Ferenc 

    

2014 

A tananyag a TÁMOP-4.1.2.A/1-11/1-2011-0104 “A felsőfokú informatikai 
oktatás minőségének fejlesztése, modernizációja” c. projekt keretében a 
Pannon Egyetem és a Szegedi Tudományegyetem együttműködésében 

készült.  
 

                     



Contents

Contents 1

Introduction 3

1 First-order differential equations 5
1.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Separable differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 First-order scalar linear differential equations . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 First-order non-linear differential equations . . . . . . . . . . . . . . . . . . . . . . . 19
1.6 System of first-order differential equations . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Second-order differential equations 23
2.1 Second-order linear homogeneous differential equations . . . . . . . . . . . . . . . . . 23
2.2 Second-order linear homogeneous equations with constant coefficients . . . . . . . . 24
2.3 Second-order linear inhomogeneous differential equations . . . . . . . . . . . . . . . . 27
2.4 Method of undetermined coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Method of variation of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Systems of linear differential equations 41
3.1 Background from linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Linear systems of differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Homogeneous linear systems with constant coefficients . . . . . . . . . . . . . . . . . 44
3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Stability theory of differential equations 57
4.1 Autonomous systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Stability notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Scalar nonlinear autonomous equations . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Two-dimensional autonomous homogeneous linear systems . . . . . . . . . . . . . . . 61
4.5 Stability of linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6 Stability of nonlinear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.7 Liapunov functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.8 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Elements of bifurcation in differential equations 77
5.1 Scalar differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Two-dimensional systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Time delays in modeling 85
6.1 Self regulation population model with delayed regulation . . . . . . . . . . . . . . . . 85
6.2 Two connected mixing tanks model with time delay . . . . . . . . . . . . . . . . . . 89

7 First-order difference equations and discrete population models 91
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2 Linear population models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

1



2 Contents

8 Higher-order difference equations 95
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.2 Second-order linear homogeneous difference equations . . . . . . . . . . . . . . . . . 96
8.3 Application of higher-order difference equations . . . . . . . . . . . . . . . . . . . . . 100

9 Stability theory for difference equations 105
9.1 Linear difference equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.2 First-order nonlinear scalar autonomous difference equations . . . . . . . . . . . . . 106
9.3 Bifurcation and chaos in difference equations: discrete logistic equation . . . . . . . 109

10 Hybrid systems and a control application 111
10.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.2 Models with time delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

References 115

Index 116



Introduction

These lecture notes contain the material of the course Discrete and continuous dynamical
systems offered for master students at the Faculty of Information Technology, University of
Pannonia. The goal of this course is to give a short introduction to some basic topics of the
theory of differential and difference equations.

The organization of the lecture notes is the following. Chapter 1 studies some basic notions
and terminology of differential equations and some solution techniques and applications for
first-order scalar differential equations. Chapter 2 discusses the theory of second-order linear
equations and classical applications including spring-mass system and the pendulum. Chapter 3
contains the basic methods of linear homogeneous systems of differential equations together with
some necessary background from linear algebra. Chapter 4 gives an introduction to stability
notions and results for differential equations, and in the related Chapter 5 we introduce some
notions from the theory of bifurcations. Chapter 6 includes a few examples for the case when time
delay appears naturally in differential equation models. Chapter 7 shows some basic solution
techniques of first-order linear difference equations through discrete population models. Chapter
8 discusses solution techniques of higher-order difference equations, and Chapter 9 presents some
basic results and definitions for stability and bifurcation theory for difference equations. Finally,
Chapter 10 shows an application when the model is a so-called hybrid system, a combination of
continuous and discrete system.

The lecture notes was prepared with the support of the grant TÁMOP-4.1.2.A/1-11/1-2011-
0104.
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Chapter 1

First-order differential equations

In this chapter, we introduce some basic notions and notations for first order differential
equations, study some solutions techniques for linear and for simple classes of nonlinear first-
order differential equations. We present some applications where first-order differential equations
are used as model equations. We also summarize basic existence and uniqueness results for scalar
and vector valued first-order differential equations.

1.1 Basic concepts

Differential equation is an equation which involves an unknown function and its derivatives. An
ordinary differential equation is a differential equation where the unknown is a function of a single
variable, a partial differential equation is a differential equation where the unknown function is of
several variables. In these lecture notes, we study only ordinary differential equations (ODEs).
An ODE is said to be of order n if the nth derivative of the unknown function appears in the
equation but no larger order derivatives. An nth-order ODE has the general form

g(x, y, y′, . . . , y(n−1), y(n)) = 0. (1.1)

Here y is the unknown function of x, i.e., y = y(x). It is usual in differential equations to omit
the argument of the unknown function in the equation. We will use this convention throughout
these lecture notes.

In Eq. (1.1) all terms are moved to the left-hand-side of the equation. Then the left-hand-side
can be any expression of the independent variable x, the unknown function y and its derivatives
up to order n. In a particular case, of course, any term except y(n) can be omitted in the
equation. We note that in many applications, the independent variable is the time. Therefore
in many cases t is used to denote the independent variable of the unknown function in the ODE
instead of x.

Eq. (1.1) is called nth-order implicit differential equation. In the case when the equation can
be solved for the largest order derivative, we can rewrite the differential equation in the form

y(n) = f(x, y, y′, . . . , y(n−1)), (1.2)

which is called explicit nth-order ODE . By a solution of Eq. (1.2) we mean a function y which is
defined on an interval I ⊂ R, and which satisfies (1.2) for x ∈ I. Therefore a solution is defined
on an interval by definition. No restriction is given whether this interval is finite or infinite,
open or closed.

Example 1.1 The equation
4x3y(4) − 5y(y′′)2 + 7x2 = 0

is a fourth-order implicit ODE which can be rewritten as an explicit fourth-order ODE of the
form

y(4) =
5y(y′′)2 − 7x2

4x3
.

We note that the two equations are not equivalent, since the first equation is defined on R, but
the second equation is defined only for x 6= 0. ✷
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6 1 First-order differential equations

Example 1.2 The equation
y′′ = 2x+ 1

is a very simple explicit second-order ODE which can be solved by integrating both sides of the
equation twice. First, integrating by x we get

y′ =

∫

(2x+ 1) dx,

hence
y′ = x2 + x+ c1.

Integrating once more we get

y =

∫

(x2 + x+ c1) dx,

so

y =
x3

3
+

x2

2
+ c1x+ c2.

This formula gives all solutions of the original ODE, since we made equivalent transformations.
The formula of the solution contains two independent constants c1 and c2, which can take any
real value. ✷

The previous example illustrates that an ODE has infinitely many solutions. A formula
which contains n independent constants (parameters) is called a general solution of the nth-
order equation (1.1) or (1.2) if the formula satisfies the equation on an interval for any selection
of the parameters form the domain of the parameters. So the formula given at the end of the
previous example gives the general solution of the ODE. It can happen that a general solution
of an ODE does not contain all solutions. Such a solution which can not be obtained from the
formula of the general solution by fixing the parameter values is called singular solution.

Given an nth-order ODE and its general solution containing n parameters, then, in general,
n predefined conditions are needed to guarantee the uniqueness of the solution. The most
frequently used conditions are of the form

y(x0) = z1, y′(x0) = z2, · · · , y(n−1)(x0) = zn. (1.3)

Conditions (1.3) are called initial conditions (IC), x0 is called initial time, the given z1, z2, . . . , zn
values are called initial values. Eq. (1.1) (or (1.2)) together with the IC (1.3) is called initial
value problem (IVP).

Example 1.3 Consider the first-order ODE

(e3y + 8y)y′ = 7x5.

One can recognize that the left-hand-side of this equation is a derivative of a composite function,
so it can be rewritten as

(

1

3
e3y + 4y2

)′
= 7x5.

Integrating both sides we get
1

3
e3y + 4y2 =

7x6

6
+ c.

This nonlinear equation is called the implicit solution of the ODE. From this equation, we cannot
express y as a function of x, so we can not give the explicit solution of the ODE. But using
numerical methods for any given x, we can find the approximate solution y(x) of the nonlinear
equation with arbitrary precision. ✷
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1.2 Separable differential equations

The first-order scalar ODE
y′ = g(x)h(y) (1.1)

is called separable differential equation. The method of solving Eq. (1.1) is the following. By
division or multiplication we separate the variables, i.e., the same variables are rearranged to
the same side of the equation:

y′

h(y)
= g(x),

then we integrate both sides of the equation by x. To see the details of the calculations here we
write out the argument of y:

∫

y′(x)

h(y(x))
dx =

∫

g(x) dx.

The function y in the left integral is not known, but we can compute this integral if we use the
change of variable u = y(x): using the formal computation rule du = y′(x) dx we get

∫

1

h(u)
du =

∫

g(x) dx. (1.2)

Computing both integrals and substituting u with y, we get the implicit solution of the equation.
The next example illustrates the above method.

Example 1.4 Consider the first-order scalar ODE

y′ = (3x4 + 2x)y2. (1.3)

This is a separable differential equation, since by division we can separate the variables:

y′

y2
= 3x4 + 2x.

Here the left-hand-side depends only on y, and the right-hand-side only on x. Integrating both
sides with respect to x gives

∫

y′(x)

y2(x)
dx =

∫

(3x4 + 2x) dx.

Using the new variable u = y(x) we get
∫

1

u2
du =

∫

(3x4 + 2x) dx,

and computing the indefinite integrals

−1

u
+ c1 =

3x5

5
+ x2 + c2.

We can introduce c = c2 − c1 instead of the two independent constants c1 and c2, so

−1

u
=

3x5

5
+ x2 + c.

We can conclude that whenever we integrate both sides of an equation it is always enough to
write +c only in one side of the equation. Replacing back u by y and omitting the argument of
y as usual, we get that

−1

y
=

3x5

5
+ x2 + c

is the implicit solution of the equation. Here we can solve this algebraic equation for y, so

y = − 1

3x5/5 + x2 + c
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is the explicit solution of the ODE. ✷

Now consider again Eq. (1.1). We give a practical computation method as follows. First

replace y′ by the classical notation y′ = dy
dx . This yields

dy

dx
= g(x)h(y). (1.4)

Consider the left-hand-side formally as a fraction, and now separate the variables:

dy

h(y)
= g(x) dx.

We have to emphasize that this is a formal equation. To give a meaning of this equation, we
“integrate” both sides, i.e., write integral sign on both sides:

∫

dy

h(y)
=

∫

g(x) dx.

Now on the left-hand-side y is used as an independent variable, and the formula denotes an
integration with respect to y, on the right-hand-side an integration with respect to x. Note that
this is equivalent to Eq. (1.2), only there instead of the variable y variable u was used, which in
the next step was substituted with y.

We solve again Example 1.4 using this formal calculation.

Example 1.5 Consider again Eq. (1.3), but using dy
dx notation for y′:

dy

dx
= (3x4 + 2x)y2.

Separating the variables gives
dy

y2
= (3x4 + 2x) dx,

then we “integrate” both sides
∫

dy

y2
=

∫

(3x4 + 2x) dx.

Computing both integrals yields the same solution that we got in Example 1.4 with a longer
calculation:

−1

y
=

3x5

5
+ x2 + c.

✷

Now we show a third possible method for solving the separable ODE (1.1). Suppose given
an IC

y(x0) = y0 (1.5)

associated to Eq. (1.1). As in the first two methods we separate the variables in Eq. (1.1)

y′(x)

h(y(x))
= g(x),
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but now we compute the definite integrals of both sides from x0 to x (which is one possible
antiderivative of the itegrands). Since x will be the upper limit of the integrals, we use a
different arguments inside the integrals:

∫ x

x0

y′(t)

h(y(t))
dt =

∫ x

x0

g(t) dt.

In the first integral we substitute the new variable u = y(t), so we get

∫ y(x)

y(x0)

1

h(u)
du =

∫ x

x0

g(t) dt,

hence, using the IC, we get
∫ y

y0

1

h(u)
du =

∫ x

x0

g(t) dt.

Note that in the upper limit of the first integral y(x) is simply written as y, as we usually do in
differential equations.

The next example illustrates the above calculation:

Example 1.6 Consider the IVP

y′ =
ex

2

3y3
, y(1) = 2.

Separating the variables (using formal calculation) gives

3y3dy = ex
2

dx.

Computing the indefinite integrals of both sides yields
∫

3y3 dy =

∫

ex
2

dx.

Now the problem is that the second integral has no antiderivative in terms of an elementary
function, so we cannot compute this integral. Of course, we can give the answer in the implicit
form

3y4

4
=

∫

ex
2

dx.

This is a general solution of the equation since the indefinite integral contains a parameter c
implicitly. But in this form we cannot apply the IC, so we cannot give the solution of the IVP.

Now use definite integrals instead of the indefinite integrals above. Then using the IC we
get

∫ y

2
3t3 dt =

∫ x

1
et

2

dt,

which implies
3y4

4
− 3 · 24

4
=

∫ x

1
et

2

dt.

Here we give an explicit solution to the IVP:

y = ± 4

√

16 +
4

3

∫ x

1
et2 dt.

Note that the given initial value at the initial time is positive, so the solution of this IVP is
given by

y = 4

√

16 +
4

3

∫ x

1
et2 dt.
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The solution is not expressed in terms of elementary functions, but using numerical methods we
can evaluate the definite integral in the formula for any given x with arbitrary precision. This
allows to use this formula in practice as it was a formula of elementary functions.

We note that if the initial value was y(1) = −2 then the solution of the IVP would be

y = − 4

√

16 +
4

3

∫ x

1
et2 dt.

✷

1.3 First-order scalar linear differential equations

Let I ⊂ R be an open interval. An equation of the form

a(x)y′ + b(x)y = g(x), x ∈ I (1.1)

is called first-order scalar linear differential equation. In the case when g ≡ 0, the equation is
called homogeneous, otherwise, i.e., when g 6≡ 0, it is called inhomogeneous or nonhomogeneous.
Therefore the general form of a scalar linear homogeneous differential equation is

a(x)y′ + b(x)y = 0, x ∈ I. (1.2)

Theorem 1.7 Let y1 and y2 be solutions of the linear homogeneous differential equation (1.2)
on the interval I. Then α1y1 + α2y2 is also a solution of (1.2) on I for any α1, α2 ∈ R.

Proof: Substitute the function y = α1y1 + α2y2 to the left-hand-side of (1.2). Then for x ∈ I

a(x)(α1y1 + α2y2)
′ + b(x)(α1y1 + α2y2) = a(x)α1y

′
1 + a(x)α2y

′
2 + b(x)α1y1 + b(x)α2y2

= α1

(

a(x)y′1 + b(x)y1

)

+ α2

(

a(x)y′2 + b(x)y2

)

= 0. ✷

Corollary 1.8 The solutions of a first-order linear homogeneous equation form a linear space
(vector space) of functions.

Example 1.9 Consider the linear homogeneous equation

y′ + 3x2y = 0.

Recognize that this equation is separable:

dy

y
= −3x2 dx,

so integrating both sides we get
ln |y| = −x3 + C,

hence
y = ±e−x3+C = ce−x3

,

where c = ±eC . We can see that this formula gives a solution for c = 0 too, since y ≡ 0 satisfies
the original equation. Note that we lost this solution in the above calculation when we divided
the original equation by y. ✷
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The above method can be applied in general. Consider the explicit form of Eq. (1.2), i.e.,

suppose a(x) 6= 0 on the interval I. Then introducing r(x) = b(x)
a(x) Eq. (1.2) can be rewritten in

the form
y′ + r(x)y = 0, x ∈ I. (1.3)

The solution of this equation is given in the next theorem.

Theorem 1.10 The general solution of the first-order scalar linear homogeneous differential
equation (1.3) is

y
H
= ce−

∫
r(x) dx, x ∈ I, c ∈ R. (1.4)

Proof: Eq. (1.3) is separable, so rewrite it as

dy

y
= −r(x) dx.

Integrating both sides gives

ln |y| = −
∫

r(x) dx+ C.

We note that writing +C on the right-hand-side is superfluous, since it is included in the
indefinite integral, but we use it to see the following calculation. We apply the exponential
function to both sides

|y| = e−
∫
r(x) dx+C = eC e−

∫
r(x) dx.

Then c = ±eC gives (1.4), but the above calculation yields c 6= 0. On the other hand, if c = 0
then (1.4) gives y ≡ 0, which is also a solution of Eq. (1.3). ✷

Relation (1.4) implies that the space of the solutions is one-dimensional.

Corollary 1.11 The solutions of a first-order linear homogeneous equation form a one-dimen-
sional linear space.

Theorem 1.12 Let y1 and y2 be solutions of the first-order linear inhomogeneous equation (1.1)
on the interval I. Then y1 − y2 is a solution of the linear homogeneous equation (1.2) on I.

Proof: Substitute y = y1 − y2 to the left-hand-side of (1.1). Then for x ∈ I

a(x)(y1 − y2)
′ + b(x)(y1 − y2) = a(x)y′1 − a(x)y′2 + b(x)y1 − b(x)y2

=
(

a(x)y′1 + b(x)y1

)

−
(

a(x)y′2 + b(x)y2

)

= g(x)− g(x)

= 0.
✷

Theorem 1.13 Let y1 be a solution of the linear homogeneous equation (1.2), and y2 be a
solution of the linear inhomogeneous equation (1.1) on I. Then y1 + y2 is also a solution of the
linear inhomogeneous equation (1.1) on I.

Proof: Substitute y = y1 + y2 to the left-hand-side of (1.1). Then for x ∈ I

a(x)(y1 + y2)
′ + b(x)(y1 + y2) = a(x)y′1 + a(x)y′2 + b(x)y1 + b(x)y2

=
(

a(x)y′1 + b(x)y1

)

+
(

a(x)y′2 + b(x)y2

)

= 0 + g(x)

= g(x).
✷

A fixed solution of the linear inhomogeneous equation (1.1) is called a particular solution.
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Corollary 1.14 The general solution of the linear inhomogeneous equation (1.1) y
IH

can be
written as the sum of the general solution of the corresponding linear homogeneous equation y

H

and a particular solution of the linear inhomogeneous equation y
IP
:

y
IH

= y
H
+ y

IP
.

In practice, for first-order linear inhomogeneous equations we use the so-called method of
integrating factors instead of Corollary 1.14. An example is shown first.

Example 1.15 Consider the scalar first-order linear inhomogeneous equation

xy′ + 2y = 4x5.

Realize that after multiplying both sides by x, on the left-hand-side, a derivative of a product
appears:

x2y′ + 2xy = 4x6,

hence
(x2y)′ = 4x6.

Integrating both sides we get

x2y =
4x7

7
+ c,

hence

y =
4x5

7
+

c

x2
.

Note that the formula is a sum of two terms: 4x5

7 , the particular solution of the inhomogeneous
equation, and c

x2 , the general solution of the corresponding homogeneous equation. ✷

Consider the scalar first-order linear inhomogeneous equation

y′ + r(x)y = f(x), x ∈ I (1.5)

which corresponds to Eq. (1.3). We are looking for an integrating factor µ(x), so that if we
multiply both sides of (1.5) by µ, a derivative of a product, more precisely, the derivative of
µ(x)y appears. Now compare the left-hand-side of the equation

µ(x)y′ + µ(x)r(x)y = µ(x)f(x)

and the identity
(µ(x)y)′ = µ(x)y′ + µ′(x)y.

Then the two expressions are the same if µ satisfies

µ′(x) = µ(x)r(x).

This is a linear homogeneous differential equation, so formula (1.4) yields that

µ(x) = e
∫
r(x) dx (1.6)

is a possible solution. Hence multiplying (1.5) by µ we get

(µ(x)y)′ = µ(x)f(x),

so

µ(x)y =

∫

µ(x)f(x) dx,
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and then

y =
1

µ(x)

∫

µ(x)f(x) dx.

Substituting the formula of µ and again writing +c in the indefinite integral for the sake of an
easier readability we get

y = e−
∫
r(x) dxc+ e−

∫
r(x) dx

∫

e
∫
r(x) dxf(x) dx. (1.7)

Let x0 ∈ I. Instead of indefinite integral we use a particular antiderivative, the one which is
given by a definite integral with lower limit x0:

y = e
−

∫ x

x0
r(t) dt

c+ e
−

∫ x

x0
r(t) dt

∫ x

x0

e
∫ t

x0
r(s) ds

f(t) dt.

For x = x0 we get immediately that y(x0) = c. Therefore, the solution of the linear inhomoge-
neous equation (1.5) corresponding to the IC

y(x0) = y0

is given by

y = e
−

∫ x

x0
r(t) dt

y0 + e
−

∫ x

x0
r(t) dt

∫ x

x0

e
∫ t

x0
r(s) ds

f(t) dt

= e
−

∫ x

x0
r(t) dt

y0 +

∫ x

x0

e
∫ t

x
r(s) dsf(t) dt, x ∈ I. (1.8)

Formula (1.8) is called the variation of constants formula.

Example 1.16 Consider the IVP

x2y′ − 4xy = 5x3, y(1) = −2.

We apply the method of integrating factors. First we rewrite the equation into an explicit form,
i.e., we divide it by x2:

y′ − 4

x
y = 5x. (1.9)

We apply formula (1.6), so let

µ(x) = e
∫
− 4

x
dx = e−4 lnx = elnx−4

= x−4.

Multiplying (1.9) by µ(x) we get
(x−4y)′ = 5x−3,

hence integrating both sides yields

x−4y =

∫

5x−3 dx = −5

2
x−2 + c,

so

y = −5

2
x2 + cx4.

The IC implies

−2 = −5

2
+ c,

from which

c =
1

2
.
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Therefore the solution of the IVP is

y = −5

2
x2 +

1

2
x4.

✷

1.4 Applications

In this section, we give some typical applications where first-order differential equations are used
as models of a physical, engineering, biological, economical process. In all these applications, the
unknown function is a function of the time, so it is natural to denote the independent variable
by t. We will use this notation in this section.

Example 1.17 Experimental observations show that radioactive isotopes decay at a rate pro-
portional to their mass. Suppose it is experienced that the mass of an isotope is reduced by 12%
in 2 years. Give the mass of the isotope as the function of the time supposing that the initial
mass is 10 mg. Find the time interval that is needed for the mass to decay to the half of its
original size.

Let Q = Q(t) denote the mass of the isotope at time t. We measure the time in years and the
mass in mg. Then by the assumptions Q(0) = 10 and Q(2) = 10 · 0.88 = 8.8. The assumption
yields that the rate of change of the mass, i.e., the derivative of Q(t) with respect to the time is
proportional to the actual mass. Hence we get the equation

Q′ = −kQ.

The derivative is negative, since the mass decreases, so the constant k > 0. By assumption the
IC associated to the differential equation is

Q(0) = 10.

The equation is a first-order linear homogeneous differential equation, its general solution is

Q = ce−kt, t ≥ 0.

Applying the IC we get

c = Q(0) = 10.

Therefore the solution of the IVP is

Q = 10e−kt, t ≥ 0.

From the assumption Q(2) = 8.8 we get for t = 2

10e−2k = 8.8,

which yields

k = − log 0.88

2
≈ 0.027759,

and hence

Q = 10e−kt ≈ 10e−0.027759t.

Let T denote the time interval which is needed that the original mass Q(0) becomes its half,
1
2Q(0). Then

1

2
Q(0) = Q(0)e−kT .
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We can observe that the value of T does not depend on the initial size Q(0) of the isotope, it
depends only on k, i.e., on the decay rate of the isotope. Such a time is called the half-life of
the material. We have

T =
ln 2

k
≈ 10.844 years.

✷

Example 1.18 Suppose an initial investment S0 is deposited in a bank account that pays
interest at an annual rate r, i.e., 100r % at the end of the year (0 < r < 1). Then at the end of
the year the value of the investment will be the sum of the initial investment and the interest
payed:

S0 + S0r = S0(1 + r).

By the end of the second year, similar computation yields the balance

S0(1 + r) + S0(1 + r)r = S0(1 + r)2.

It is easy to see that after t years the balance of the account will be

S0(1 + r)t.

Next suppose that the bank pays the annual interest n times a year. Then at the end of the
first term, i.e., after 1

n year the bank pays 1
n part of the annual interest, i.e., the amount S0

r
n .

Therefore the balance of the account will be

S0 + S0
r

n
= S0

(

1 +
r

n

)

.

After the 2nd period, i.e., after 2
n year the bank pays again the amount S0

(

1 + r
n

)

r
n as the

interest, hence the balance will be

S0

(

1 +
r

n

)

+ S0

(

1 +
r

n

) r

n
= S0

(

1 +
r

n

)2
.

It is easy to see that after k periods the balance is

S0

(

1 +
r

n

)k
,

and hence at the end of t years, i.e., after tn periods the balance is

S0

(

1 +
r

n

)tn
.

It is known from calculus that

lim
n→∞

(

1 +
r

n

)tn
= ert,

and the convergence is monotone increasing for all t.
Such a bank account where the balance at time t is given by the formula

S(t) = S0e
rt

is called a continuously compounding interest with annual rate r. Such a continuously com-
pounding interest can be defined so that we assume that the rate of change of the balance S(t)
is proportional to the actual balance, i.e., equation

S′ = rS

is satisfied. We can observe that this equation is identical to the equation of the radioactive
decay, but the rate r is positive here, and the similar constant was negative in the case of the
radioactive decay.
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We now assume that we deposit the amount S0 = 20000 EUR to an account which pays 4%
annual interest computed continuously (r = 0.04), and we also withdraw k = 100 EUR from the
account at a constant rate. Compute the balance of the account after 5 years.

S′, the rate of change of the balance is the difference of the amount added (the interest
payed) and withdrawn per unit time. Hence the equation

S′ = rS − k (1.1)

describes the balance of the account. This is a first-order linear inhomogeneous differential
equation with constant coefficient, which can be solved with the method of integrating factors:

S′ − rS = −k,

and so multiplying the equation by the factor µ(t) = e−rt we get

(e−rtS)′ = −ke−rt,

and hence

e−rtS =
k

r
e−rt + c.

Therefore the general solution is

S = cert +
k

r
.

The IC S(0) = S0 yields c = S0 − k
r , and so

S =

(

S0 −
k

r

)

ert +
k

r
. (1.2)

This formula shows that if the withdraw rate k is small, more precisely, if k < rS0, then the
coefficient of the exponential function is positive, so the function S is monotone increasing and
it tends to ∞. In the critical case when the withdraw rate is k = rS0, the balance is constant
S = k

r for t ≥ 0. But if the withdrawal rate is larger than the critical value, i.e., k > rS0, then
the coefficient of the exponential function in (1.2) is negative, so S is monotone decreasing and
it tends to 0. That implies that there exists a finite time T such that S(T ) = 0, and, of course,
no more withdraw is possible from the account.

Using the given parameters of this example we get S(5) = 17500e0.2+2500 = 23874.55 EUR.
✷

Example 1.19 Suppose a mixing tank contains initially Q0 kg of salt dissolved in 200 l of
solution. A solution containing 0.2 kg/l salt flows into the tank with a constant rate of 4 l/min.
We assume that the solution is well-stirred in the tank, and it flows out of the tank with a
constant rate 4 l/min. Find the mass of the salt in the tank as a function of the time. Find the
limiting value of the salt as t → ∞.

The rate of change of the mass of the salt equals to the rate it enters minus the rate at which
the salt leaves the tank. Let Q = Q(t) denote mass of the salt in the tank at time t. The rate
of change the salt enters to the tank is 0.2 kg/l · 4 l/min=0.8 kg/min. The rate of change the
salt leaves the tank is Q(t)/200 kg/l · 4 l/min=Q(t)/50 kg/min. Therefore

Q′ = 0.8− 1

50
Q(t).

This is a first-order linear inhomogeneous differential equation whose solution is

Q = 40 + (Q0 − 40)e−
1

50
t.

Therefore, Q(t) → 40 as t → ∞, so for large t the amount of salt in the tank is approximately
40 kg. ✷
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Example 1.20 Suppose we drop a body of mass m from rest in a medium where a friction
proportional to the speed applies to the body. For example we drop the body in a tank containing
some fluid. Find the position and the velocity of the body as the function of the time.

We model the body as a material point and we apply Newton’s Second Law F = ma, where
F is the net force acting on the body and a is the acceleration of the body. We fix the vertical
coordinate system so that the origin is at the position where we drop the body, and the positive
direction is the downward direction. Let v = v(t) denote the speed of the body, then a = v′.
We consider two forces: the gravitational force which points downward, so it is positive, and the
damping force which acts upward, so it is negative. Therefore the equation of the motion is a
first-order linear inhomogeneous differential equation

mv′ = mg − kv.

Its general solution is

v(t) = ce−kt/m +
mg

k
.

By the assumption, the motion starts form a rest, so the IC is v(0) = 0, which yields

v =
mg

k

(

1− e−kt/m
)

.

Integrating the velocity, we get the displacement of the body, x = x(t):

x =

∫

v(t) dt =

∫

mg

k

(

1− e−kt/m
)

dt =
mg

k
t+

m2g

k2
e−kt/m + C.

The value of C can be determined from the condition x(0) = 0. A simple calculation gives

C = −m2g
k2

, and hence

x =
mg

k
t+

m2g

k2

(

e−kt/m − 1
)

is the displacement as the function of the time. Certainly, these formulas are valid until the body
reaches the bottom of the tank, i.e., until x(t) ≤ xmax, where xmax is the maximal displacement
value. ✷

Example 1.21 Let N = N(t) be the size of a biological population at time t. A population size
can be the number of citizens of a country, the number of fish or animals in a territory, or the
mass of a bacteria culture. It is common to describe the size of a population by a real function.
For example, for a bacteria culture it gives the mass of the population, not the number of the
bacteria.

Linear model: It is a common assumption that in a population both the birth and the
mortality rates, i.e., the number of newborns and deads at unit time are proportional to the
size of the population. Let rb and rm be the birth and mortality rates, respectively, and let
r := rb − rm be the growth rate. It is positive if the number of births is larger than the number
of deads per unit time, and it is negative in the opposite case. Then the model equation is

N ′ = rN, N(0) = N0. (1.3)

Its solution is N = N0e
rt, which growths exponentially to +∞ if the growth rate is positive,

and it decays exponentially to 0 if the growth rate is negative. Eq. (1.3) was first introduced by
Malthus as a model equation of a population in 1798. The rate of change divided by the number
of population is called the per capita growth rate.

Suppose there is a continuous migration in the population with a constant rate M , where
M = immigration rate − emigration rate. Then our model is

N ′ = rN +M, N(0) = N0,
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which is a linear inhomogeneous differential equation. This equation is identical to Eq. (1.1)
(replacing k with −M), so its solution is

N =

(

N0 +
M

r

)

ert − M

r
.

Here the population dies out also in the case of a positive growth rate r > 0 if the migration rate
is negative and it satisfies M < −N0r. If M = −N0r, then the size of the population remains
constant.

Self-controlled nonlinear model: In real life, we cannot observe exponential growth of
a population on a large time interval, since the limitations of food, space and other resources
cannot allow the population to grow without any limitation. We get a more realistic model if
we assume that if the size of the population is small, then the per capita growth rate is close
to a constant, so the population growth exponentially. But for large population size the per
capita growth rate should be negative since the large population size inhibits the growth rate.
Moreover, it is natural to assume that the per capita growth rate is decreasing as the size of the
population increasing. The most simple function satisfying the above assumptions is a linear
one with a negative slope of the form r − mN , where m > 0 is a constant. This leads to the
model

N ′ = rN −mN2, (1.4)

which is called logistic differential equation. This model was introduced by Verhulst in 1838.
An other explanation for the particular form of the mortality part of the equation is that the
number of individuals who die per unit time is proportional to N2. The motivation for this is
that the mortality rate reflects the number of encounters between individuals for searching for
food and other resources. If the size of the population is N , then the number of encounters is
N(N − 1) ≈ N2.

Introduce the constant K = r/m. Then we have

N ′ = rN

(

1− N

K

)

, (1.5)

which is the other standard form of the logistic differential equation. It is a separable differential
equation, so we get

∫

dN

N(1−N/K)
=

∫

r dt.

Computing partial fractions in the first integral we get

∫

dN

N(1−N/K)
=

∫

(

1

N
+

1

K

1

1− N
K

)

dN = ln |N | − ln

∣

∣

∣

∣

1− N

K

∣

∣

∣

∣

= ln

∣

∣

∣

∣

∣

N

1− N
K

∣

∣

∣

∣

∣

.

Therefore

ln

∣

∣

∣

∣

∣

N

1− N
K

∣

∣

∣

∣

∣

= rt+ C,

which gives
N

1− N
K

= cert,

where c = ±eC . The IC N(0) = N0 yields

c =
N0

1− N0

K

.

Substituting back to the formula of the general solution gives

N =
N0K

N0 + (K −N0)e−rt
.
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This shows that N(t) → K as t → ∞. The constant K is called the carrying capacity of the
environment, since if 0 < N0 < K, then 0 < N(t) < K holds for all t > 0. The integral curves
of the logistic equation (1.4) with r = 2 and m = 1

5 , i.e., with carrying capacity K = 10 can
be seen in Figure 1.1. The solutions starting from an initial condition below K approach to K
monotone increasingly, and solutions starting above K approach to K monotone decreasingly.

✷
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Figure 1.1: integral curves of Eq. (1.4), r = 2, m = 1
5

1.5 First-order non-linear differential equations

A general form of an explicit first-order nonlinear differential equation is

y′ = f(x, y). (1.1)

If x and y are given, we can compute the right-hand-side of Eq. (1.1) at (x, y). This function value
gives y′(x), i.e., the slope of the tangent line to the graph of the solution. We can demonstrate
it in the following way: take a grid of the plain, and at each grid point we evaluate the function
value f(x, y), and draw a line segment or a vector at this grid point with slope equal to f(x, y).
Such a figure is called direction field . A solution of Eq. (1.1) through a grid point is a curve
whose tangent line is the line segment in the direction field. A direction field and a few solution
curves of the logistic equation (1.5) with r = 1, K = 1 is given in Figure 1.2. Figure 1.3 shows
a few solutions of the equation y′ = −y + x2 and its direction field.

Generating a direction field of a nonlinear equation is an easy task, and viewing at this figure,
one can have a good guess about the flow of the solution curves. Hence it helps to conjecture
the qualitative properties of the solution, e.g., the boundedness, convergence of solutions to a
constant value, monotonicity properties. From Figure 1.2 we can observe that all solutions of the
logistic equation y′ = y− y2 corresponding to initial values between 0 and 1 converge monotone
increasingly to 1, and solutions starting from an initial condition larger than 1 converge to 1
monotone decreasingly.

We associate the IC
y(x0) = y0 (1.2)

to Eq. (1.1), and suppose the function f is defined on a rectangular domain [x0 − a, x0 + a] ×
[y0 − b, y0 + b] for some a > 0 and b > 0.

The following basic theorem guarantees the existence of the solutions of our IVP (1.1)-(1.2).



20 1 First-order differential equations
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Figure 1.2: direction field of y′ = y − y2
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Figure 1.3: direction field of y′ = −y+x2/10

Theorem 1.22 (Peano) Suppose f : [x0−a, x0+a]× [y0−b, y0+b] → R is continuous, and let
M be its maximum, i.e., M := max{|f(x, y)| : |x−x0| ≤ a, |y− y0| ≤ b}. Let h := min

{

a, b
M

}

.
Then the IVP (1.1)-(1.2) has at least one solution on the interval I = [x0 − h, x0 + h].

Example 1.23 Consider the IVP

y′ =
√
y, y(0) = 0.

This is a separable ODE:
dy√
y
= dx,

so integration yields

2
√
y = x+ c.

Hence the general solution is

y =
1

4
(x+ c)2.

Using the IC we get c = 0, i.e.,

y =
1

4
x2

is the solution of the IVP. On the other hand, we can see that y = 0 is also a solution of the
IVP. Moreover, for all C ≥ 0 the function

y(x) =

{

0, x ≤ C,
1
4(x− C)2, x > C

also satisfies the IVP. ✷

The above example shows that an IVP can have more than one solution, even infinitely many
solutions. To guarantee uniqueness of the solution, we need a further assumption.

We say that a function f : [x0 − a, x0 + a]× [y0 − b, y0 + b] → R satisfies Lipschitz property
or it is Lipschitz continuous, if there exists a constant L ≥ 0 such that

|f(x, y)− f(x, ỹ)| ≤ L|y − ỹ|, x ∈ [x0 − a, x0 + a], y, ỹ ∈ [y0 − b, y0 + b].

The next result shows that if in addition to the continuity, function f satisfies Lipschitz property,
then the IVP has a unique solution.
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Theorem 1.24 Suppose the function f : [x0 − a, x0 + a] × [y0 − b, y0 + b] → R is continuous
and it satisfies the Lipschitz property. Let h := min

{

a, b
M

}

, where M := max{|f(x, y)| : |x −
x0| ≤ a, |y − y0| ≤ b}. Then the IVP (1.1)-(1.2) has a unique solution on the interval I =
[x0 − h, x0 + h].

1.6 System of first-order differential equations

In this section, we consider the system of first-order linear differential equations

y′1 = f1(x, y1, . . . , yn)

...

y′n = fn(x, y1, . . . , yn)

where yi = yi(x) (i = 1, . . . , n) are the unknown functions. We associate the initial conditions

y1(x0) = z1, . . . , yn(x0) = zn

to the system. Using the vector notations

y = y(x) =





y1(x)
...

yn(x)



 and f(x,y) =





f1(x, y1, . . . , yn)
...

fn(x, y1, . . . , yn)





we can rewrite the system as
y′ = f(x,y), (1.1)

and the IC as
y(x0) = z, (1.2)

where z = (z1, . . . , zn)
T . Suppose f : U → R

n, where U ⊂ R×R
n is an open set, and (x0, z) ∈ U .

Theorem 1.25 Let U ⊂ R×R
n be an open set, f : U → R

n be continuous, and each components
of f is continuously differentiable with respect to all arguments except for possibly the first
variable. Then for all (x0, z) ∈ U there exists h > 0 such that the IVP (1.1)-(1.2) has a unique
solution on the interval [x0 − h, x0 + h].

Now we show that an nth-order scalar differential equation (1.2), and the corresponding
IVP (1.2)-(1.3) is equivalent to a system of first-order linear differential equations (1.1)-(1.2).
Introduce the variables

y1(x) = y(x), y2(x) = y′(x), y3(x) = y′′(x), . . . yn(x) = y(n−1)(x).

Then clearly,

y′1(x) = y2(x)

y′2(x) = y3(x)

...

y′n−1(x) = yn(x)

y′n(x) = f(x, y1(x), y2(x), . . . , yn(x))
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hold. Define

y = y(x) =











y1(x)
y2(x)
...

yn−1(x)
yn(x)











, z =











z1
z2
...

zn−1
zn











and f(x,y) =











y2
y3
...
yn

f(x, y1, . . . , yn).











.

Then y solves the IVP (1.1)-(1.2).
Let I ⊂ R be an open interval, and let pn−1, . . . , p0 : I → R be continuous functions.

Consider the nth-order scalar linear inhomogeneous differential equation

y(n) + pn−1(x)y
(n−1) + · · ·+ p1(x)y

′ + p0(x)y = f(x), x ∈ I (1.3)

and the corresponding IC

y(x0) = z1, y′(x0) = z2, . . . , y(n−1)(x0) = zn, (1.4)

where z1, z2, . . . , zn ∈ R. According to the previous transformation, we have

f(x,y) =











y2
y3
...
yn

−pn−1(x)yn − · · · − p1(x)y2 − p0(x)y1 + f(x)











.

An application of Theorem 1.25 for the IVP (1.1)-(1.2) implies immediately the next result.

Theorem 1.26 Let pn−1, . . . , p0, f : I → R be continuous functions, x0 ∈ I. The the IVP
(1.3)-(1.4) has a unique solution on the interval I for all z1, . . . , zn.



Chapter 2

Second-order differential equations

In this chapter, we discuss second-order scalar linear differential equations.
Let I ⊂ R be an open interval, p, q, f : I → R. The general form of an explicit second-order

linear inhomogeneous differential equation is:

y′′ + p(x)y′ + q(x)y = f(x), x ∈ I. (2.1)

The corresponding second-order linear homogeneous differential equation is

y′′ + p(x)y′ + q(x)y = 0, x ∈ I. (2.2)

Given an initial time x0 ∈ I and initial values y0 and y′0, we consider the IC

y(x0) = y0, y′(x0) = y′0. (2.3)

The function f in Eq. (2.1) is sometimes called forcing function.
The following existence and uniqueness result follows from Theorem 1.24.

Theorem 2.1 Let p, q, f : I → R be continuous functions, x0 ∈ I. Then the IVP (2.1)-(2.3)
has a unique solution on I for every y0, y

′
0 ∈ R.

2.1 Second-order linear homogeneous differential equations

In this section, we summarize the general properties of the second-order linear homogeneous
differential equation (2.2). We can see that these properties are similar to those of the first-
order linear homogeneous differential equations.

Theorem 2.2 Let y1 and y2 be solutions of Eq. (2.2) on the interval I. Then the function
c1y1 + c2y2 is also a solution of Eq. (2.2) on I for all c1, c2 ∈ R (or for c1, c2 ∈ C), i.e., the set
of solutions of the homogeneous equation (2.2) form a real (or complex) linear space.

Proof: Substitute y(x) = c1y1(x) + c2y2(x) to the left-hand-side of Eq. (2.2):

y′′(x) + p(x)y′(x) + q(x)y(x)

= (c1y1(x) + c2y2(x))
′′ + p(x)(c1y1(x) + c2y2(x))

′ + q(x)(c1y1(x) + c2y2(x))

= c1y
′′
1(x) + c2y

′′
2(x) + p(x)(c1y

′
1(x) + c2y

′
2(x)) + q(x)(c1y1(x) + c2y2(x))

= c1

(

y′′1(x) + p(x)y′1(x) + q(x)y1(x)
)

+ c2

(

y′′2(x) + p(x)y′2(x) + q(x)y2(x)
)

= 0,

since y1 and y2 are both solutions of Eq. (2.2). ✷

Let y1, y2 : I → R be given differentiable functions. The determinant

W (y1, y2)(x) =

∣

∣

∣

∣

y1(x) y2(x)

y′1(x) y′2(x)

∣

∣

∣

∣

= y1(x)y
′
2(x)− y2(x)y

′
1(x)

23
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is called the Wronskian of y1 and y2.
Let y1, y2 : I → R be given functions. We say that the functions y1 and y2 are linearly

independent if
c1y1(x) + c2y2(x) = 0, x ∈ I (2.1)

holds if and only if c1 = c2 = 0. The functions y1 and y2 are linearly dependent, if they are not
linearly independent.

We state the following two results without proof.

Theorem 2.3 Let y1, y2 : I → R be differentiable functions. Then y1 and y2 are linearly
independent on the interval I if there exists x0 ∈ I such that W (y1, y2)(x0) 6= 0. If y1 and y2
are linearly dependent on I, then W (y1, y2)(x) = 0 for all x ∈ I.

Theorem 2.4 Let y1 and y2 be solutions of Eq. (2.2) on I. Then either W (y1, y2)(x) = 0 for
all x ∈ I or W (y1, y2)(x) 6= 0 for all x ∈ I.

The functions y1, y2 : I → R are called fundamental solutions or fundamental system of
Eq. (2.2) if y1 and y2 are solutions of Eq. (2.2) and y1 and y2 are linearly independent on I, i.e.,
W (y1, y2)(x) 6= 0, for x ∈ I.

Theorem 2.5 Let y1 and y2 be fundamental solutions of Eq. (2.2) on I. Then for every initial
values y0 and y′0 there exist c1 and c2 such that c1y1+c2y2 is the solution of the IVP (2.2)-(2.3).

Proof: The linear system

c1y1(x0) + c2y2(x0) = y0

c1y
′
1(x0) + c2y

′
2(x0) = y′0

has a unique solution for c1 and c2, since y1 and y2 are fundamental solutions, so its Wronskian
is not equal to 0 at x0. Define the function y(x) = c1y1(x) + c2y2(x) for x ∈ I. Then y is also
a solution of Eq. (2.2), and it satisfies the IC (2.3). Therefore, by Theorem 2.1, y is the unique
solution of the IVP (2.2)-(2.3). ✷

Corollary 2.6 The set of solutions of Eq. (2.2) is a two-dimensional linear space.

2.2 Second-order linear homogeneous equations with constant

coefficients

Consider the special case of Eq. (2.2) when all coefficients are constants. Let a, b, c ∈ R, a 6= 0.

ay′′ + by′ + cy = 0, x ∈ R. (2.1)

Formula (1.4) shows that the solutions of a first-order linear homogeneous equation with con-
stants coefficients are exponential functions. For our second-order equation (2.1), we also seek
for exponential solutions of the form y(x) = eλx, where λ is a real (or complex) constant. Then
substituting y′(x) = λeλx and y′′(x) = λ2eλx into Eq. (2.1) we get

aλ2eλx + bλeλx + ceλx = 0,
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which holds if and only if λ is a solution of the second-order algebraic equation

aλ2 + bλ+ c = 0. (2.2)

Eq. (2.2) is called the characteristic equation of the differential equation (2.1).
We consider three cases:

Case 1: The characteristic equation (2.2) has two distinct real roots λ1 and λ2. Then the
general solution of Eq. (2.1) is

y = c1e
λ1x + c2e

λ2x, x ∈ R. (2.3)

For this it is enough to check that the solutions y1 = eλ1x and y2 = eλ2x are linearly independent.
Compute the Wronskian of y1 and y2:

W (y1, y2)(x) =

∣

∣

∣

∣

eλ1x eλ2x

λ1e
λ1x λ2e

λ2x

∣

∣

∣

∣

= (λ2 − λ1)e
(λ1+λ2)x 6= 0,

since λ1 6= λ2, so y1 and y2 are linearly independent.

Case 2: The characteristic equation (2.2) has a double real root λ0. This is satisfied if and
only if b2 − 4ac = 0, and then

λ0 = − b

2a
.

We show that beside of the solution y1 = eλ0x, the function y2 = xeλ0x is also a solution of the
differential equation. We have y′2 = eλ0x + λ0xe

λ0x and y′′2 = 2λ0e
λ0x + λ2

0xe
λ0x, so substituting

into Eq. (2.1) we get

a(2λ0e
λ0x + λ2

0xe
λ0x) + b(eλ0x + λ0xe

λ0x) + cxeλ0x = (aλ2
0 + bλ0 + c)xeλ0x + (2aλ0 + b)eλ0x = 0,

which shows that y2 is a solution of the homogeneous equation (2.1). On the other hand, y1 and
y2 are linearly independent since their Wronskian is

W (y1, y2)(x) =

∣

∣

∣

∣

eλ0x xeλ0x

λ0e
λ0x eλ0x + λ0xe

λ0x

∣

∣

∣

∣

= (1 + λ0x− λ0x)e
2λ0x = e2λ0x 6= 0.

Therefore the general solution of Eq. (2.1) in this case is

y = c1e
λ0x + c2xe

λ0x, x ∈ R. (2.4)

Case 3: The characteristic equation (2.2) has two complex roots λ1 = α + iβ and its
conjugate, λ2 = α − iβ. Then, of course, ỹ1(x) = eλ1x and ỹ2(x) = eλ2x are solutions of
Eq. (2.1), but they are complex valued functions:

ỹ1(x) = eλ1x = e(α+iβ)x = eαx(cosβx+ i sinβx),

and similarly,

ỹ2(x) = eλ2x = e(α−iβ)x = eαx(cos(−βx) + i sin(−βx)) = eαx(cosβx− i sinβx).

But then the functions

y1(x) =
1

2
(ỹ1(x) + ỹ2(x)) = eαx cosβx
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and

y2(x) =
1

2i
(ỹ1(x)− ỹ2(x)) = eαx sinβx

are also solutions of Eq. (2.1), and they are real valued functions. We show that y1 and y2 are
linearly independent:

W (y1, y2)(x) =

∣

∣

∣

∣

eαx cosβx eαx sinβx
αeαx cosβx− βeαx sinβx αeαx sinβx+ βeαx cosβx

∣

∣

∣

∣

= e2αx(α cosβx sinβx+ β cos2 βx− α cosβx sinβx+ β sin2 βx)

= e2αxβ

6= 0,

since β 6= 0. Therefore, the general solution of Eq. (2.1) in this case is

y = c1e
αx cosβx+ c2e

αx sinβx, x ∈ R. (2.5)

Example 2.7 Solve the IVP

y′′ + y′ − 6y = 0, y(0) = −1, y′(0) = 2.

The corresponding characteristic equation is

λ2 + λ− 6 = 0,

which yields λ1 = −3 and λ2 = 2. Therefore the general solution of the ODE is

y = c1e
−3x + c2e

2x.

We need to use the IC to determine c1 and c2. First compute y′ = −3c1e
−3x + 2c2e

2x. Substi-
tuting x = 0 to the formulas of the solution and its derivative, we get

c1 + c2 = −1
−3c1 + 2c2 = 2,

whose solution is c1 = −4/5 and c2 = −1/5. Therefore the solution of the IVP is

y = −4

5
e−3x − 1

5
e2x.

✷

Example 2.8 Solve the IVP

4y′′ + 12y′ + 9y = 0, y(0) = −1, y′(0) = 0.

The characteristic equation of this differential equation is

4λ2 + 12λ+ 9 = 0,

whose solution λ0 = −3/2 is a double root. Then the general solution of the ODE is

y = c1e
− 3

2
x + c2xe

− 3

2
x.

Compute y′ = −3
2c1e

− 3

2
x + c2e

− 3

2
x − 3

2c2xe
− 3

2
x. Using the IC we get the linear system

c1 = −1
−3

2c1 + c2 = 0
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which yields c1 = −1 and c2 = −3
2 , hence the solution of the IVP is

y = −e−
3

2
x − 3

2
xe−

3

2
x.

✷

Example 2.9 Consider the IVP

y′′ − 2y′ + 8y = 0, y(0) = 1, y′(0) = −2.

The characteristic equation is
λ2 − 2λ+ 8 = 0,

which gives λ = 1± i
√
7. Therefore the general solution of the ODE is

y = c1e
x cos

√
7x+ c2e

x sin
√
7x.

First compute y′:

y′ = c1e
x cos

√
7x−

√
7c1e

x sin
√
7x+ c2e

x sin
√
7x+

√
7c2e

x cos
√
7x.

The IC yields
c1 = 1
c1 +

√
7c2 = −2

and hence c1 = 1 and c2 = − 3√
7
. Therefore the solution of the IVP is

y = ex cos
√
7x− 3√

7
ex sin

√
7x.

✷

2.3 Second-order linear inhomogeneous differential equations

Consider again the linear inhomogeneous equation

y′′ + p(x)y′ + q(x)y = f(x), x ∈ I (2.1)

and the associated linear homogeneous equation

y′′ + p(x)y′ + q(x)y = 0, x ∈ I. (2.2)

Similarly to the first-order case it is easy to show the next results.

Theorem 2.10 Let y1 and y2 be solutions of the inhomogeneous equation (2.1). Then the
function y = y1 − y2 is a solution of the homogeneous equation (2.2).

Theorem 2.11 Let yH be the general solution of the homogeneous equation (2.2), and yIP be
a particular solution of the inhomogeneous equation (2.1). Then the general solution of the
inhomogeneous equation (2.1) is

y
IH

= y
H
+ y

IP
.

The above theorem yields that we can compute the general solution of an inhomogeneous
equation in two steps: first we compute the general solution of the homogeneous equation, and
then it is enough to find a particular solution to the inhomogeneous equation. In the next two
sections, we discuss two methods for finding particular solutions.
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2.4 Method of undetermined coefficients

We first illustrate the method of undetermined coefficients on several examples and then we
summarize the method.

Example 2.12 Find the general solution of the linear inhomogeneous differential equation

y′′ − 2y′ − 8y = 5e−3x. (2.1)

According to Theorem 2.11, we have to find the general solution of the associated linear homo-
geneous equation and a particular solution to the linear inhomogeneous differential equation.

First we solve the linear homogeneous equation y′′−2y′−8y = 0. Its characteristic equation
is λ2 − 2λ − 8 = 0, which yields λ1 = −2 and λ2 = 4. Therefore the general solution of the
homogeneous equation is

y
H
= c1e

−2x + c2e
4x.

Next we are looking for a particular solution. We need to find a function y that if we substitute
to the left-hand-side of Eq. (2.1), then the linear combination of y′′, y′ and y with constant
coefficients gives back the right-hand-side of the equation, i.e., the function 5e−3x. It is natural
to try to find a particular solution in the form

y
IP

= Ae−3x.

We call this function as a test function. Differentiating y
IP

yields y′
IP

= −3Ae−3x and y′′
IP

=

9Ae−3x. Substituting these formulas into Eq. (2.1) we have

9Ae−3x + 6Ae−3x − 8Ae−3x = 5e−3x.

Note that the above formula works since both the first and the second derivatives of the test
function are exponential functions with exponent −3, so all terms after substitution into the
equation are of the same type. Simplifying this equation we get 7A = 5, hence A = 5/7.
Therefore a possible particular solution of Eq. (2.1) is y

IP
= 5

7 e
−3x, and hence the general

solution of the equation is

y = c1e
−2x + c2e

4x +
5

7
e−3x.

Suppose the IC
y(0) = 5, y′(0) = 3

is also given. Then first compute y′ = −2c1e
−2x + 4c2e

4x − 15
7 e−3x, and then using the general

solution and the IC we get the algebraic system

c1 + c2 +
5

7
= 5,

−2c1 + 4c2 −
15

7
= 3.

Solving the system we get c1 = 2 and c2 =
16
7 , hence the solution of the IVP is

y = 2e−2x +
16

7
e4x +

5

7
e−3x.

✷

Example 2.13 Solve the linear inhomogeneous equation

y′′ − 2y′ − 8y = −25 cos 3x. (2.2)

Since the left-hand-side of Eq. (2.2) is identical to that of Eq. (2.1), the general solution of
the associated homogeneous equation is given in the previous example. We look for a particular
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solution in the form
y
IP

= A cos 3x+B sin 3x.

Then y′
IP

= −3A sin 3x+ 3B cos 3x and y′′
IP

= −9A cos 3x− 9B sin 3x. Plugging these formulas
into Eq. (2.2) we get

−9A cos 3x− 9B sin 3x+ 6A sin 3x− 6B cos 3x− 8A cos 3x− 8B sin 3x = −25 cos 3x,

and hence
(−17A− 6B) cos 3x+ (6A− 17B) sin 3x = −25 cos 3x.

This will be an identity if and only if the coefficients of the same functions are identical on both
sides of the equation, i.e.,

−17A − 6B = −25
6A − 17B = 0.

The solution of this linear system is A = 17/13 and B = 6/13, and hence the general solution
of Eq. (2.2) is

y = c1e
−2x + c2e

4x +
17

13
cos 3x+

6

13
sin 3x.

✷

Example 2.14 Solve the equation

y′′ − 2y′ − 8y = 2x2 − 3x+ 1.

Now it is natural to look for a particular solution in the form

y
IP

= Ax2 +Bx+ C.

Then y′
IP

= 2Ax+B and y′′
IP

= 2A. Substitution into the equation gives

2A− 4Ax− 2B − 8Ax2 − 8Bx− 8C = 2x2 − 3x+ 1,

and hence
−8Ax2 + (−4A− 8B)x+ 2A− 2B − 8C = 2x2 − 3x+ 1.

Comparing the coefficients of the same functions on both sides we get

−8A = 2
−4A − 8B = −3
2A − 2B − 8C = 1,

which yields A = −1/4, B = 1/2 and C = −5/16. Therefore the general solution of the equation
is

y = c1e
−2x + c2e

4x − 1

4
x2 +

1

2
x− 5

16
.

✷

Example 2.15 Solve the equation

y′′ − 2y′ − 8y = 9e−2x sin 3x.

Here we look for a particular solution in the form

y
IP

= Ae−2x cos 3x+Be−2x sin 3x.

Then

y′
IP

= −2Ae−2x cos 3x− 3Ae−2x sin 3x− 2Be−2x sin 3x+ 3Be−2x cos 3x

= (−2A+ 3B)e−2x cos 3x+ (−3A− 2B)e−2x sin 3x,
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and

y′′
IP

= (4A− 6B)e−2x cos 3x+ (6A− 9B)e−2x sin 3x+ (6A+ 4B)e−2x sin 3x

+(−9A− 6B)e−2x cos 3x

= (−5A− 12B)e−2x cos 3x+ (12A− 5B)e−2x sin 3x.

Therefore substitution into the equation and comparing the coefficients of the same functions
on both sides of the equation give after a sort calculation

18A − 9B = 0
−9A − 18B = 9.

The solution of the linear system is A = 2/5 and B = −1/5, and so the general solution of the
differential equation is

y = c1e
−2x + c2e

4x +
2

5
e−2x cos 3x− 1

5
e−2x sin 3x.

✷

Example 2.16 Consider the linear inhomogeneous ODE

y′′ − 2y′ − 8y = 7e4x. (2.3)

We look for a particular solution in the form y
IP

= Ae4x, as we did in Example 2.12. Then
plugging the derivatives y′

IP
= 4Ae4x and y′′

IP
= 16Ae4x into Eq. (2.3) yields

16Ae4x − 8Ae4x − 8Ae4x = 7e4x,

which is a contradiction. Therefore Eq. (2.3) has no solution in the above form. We could have
realized it without the above computation since e4x solves the homogeneous equation, therefore
it cannot be the solution of any corresponding inhomogeneous equation.

Therefore we have to modify our test function. Let us try the function y
IP

= Axe4x, which
is also similar to the right-hand-side. Then y′

IP
= Ae4x + 4Axe4x and y′′

IP
= 8Ae4x + 16Axe4x,

therefore after substitution to the left-hand-side of Eq. (2.3) the function e4x appears, so there
is a chance that the two sides of the equation can be equal:

8Ae4x + 16Axe4x − 2Ae4x − 8Axe4x − 8Axe4x = 7e4x.

After simplification we get
6Ae4x = 7e4x,

and so A = 7/6. Therefore the general solution of the Eq. (2.3) is

y = c1e
−2x + c2e

4x +
7

6
xe4x.

✷

The above examples demonstrate that in the cases when the right-hand-side of

ay′′ + by′ + cy = f(x), x ∈ R

is exponential, sine, cosine or polynomial functions, then the test function y
IP

in the method of
undetermined coefficients can be selected according to Table 2.1.

Here A,B,An, . . . , A0 are unknown constants to be determined, and the test function should
be given by the formula using exponent s = 0. If that formula does not work (since it is a
solution of the corresponding homogeneous equation) then we multiply it by x, i.e., use s = 1 in
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Table 2.1: Test functions
f(x) y

IP

aeαx Aeαxxs (s = 0, 1, 2)

a cosβx+ b sinβx (A cosβx+B sinβx)xs (s = 0, 1, 2)

anx
n + · · ·+ a1x+ a0 (Anx

n + · · ·+A1x+A0)x
s (s = 0, 1, 2)

the table. In case if it still does not work, we use exponent s = 2. It can be proved that one of
the above test functions will always give a particular solution, i.e., there can be find constants
which yield a solution.

Generalizing Example 2.15 one can prove that the method of undetermined coefficients also
works in the case when the forcing function is a product of two or three functions from the
classes of exponential, sine, cosine or polynomial functions. Then the test function is a product
of the test functions from Table 2.1 (of course, omitting superfluous constants).

Theorem 2.17 (principle of superposition) Let y1 and y2 be solutions of

y′′1 + p(x)y′1 + q(x)y1 = f1(x), x ∈ I,

and

y′′2 + p(x)y′2 + q(x)y2 = f2(x), x ∈ I,

respectively. Then the function y(x) = y1(x) + y2(x) is a solution of equation

y′′ + p(x)y′ + q(x)y = f1(x) + f2(x), x ∈ I.

Proof: Plugging y = y1 + y2 into the equation gives:

y′′ + p(x)y′ + q(x)y = (y1 + y2)
′′ + p(x)(y1 + y2)

′ + q(x)(y1 + y2)

= y′′1 + p(x)y′1 + q(x)y1 + y′′2 + p(x)y′2 + q(x)y2

= f1(x) + f2(x). ✷

Example 2.18 Solve the linear ODE

y′′ − 2y′ − 8y = 5e−3x − 25 cos 3x+ 2x2 − 3x+ 1.

Note that in earlier examples, we solved the inhomogeneous equations with right-hand-side equal
to 5e−3x, −25 cos 3x and 2x2 − 3x+ 1, respectively. Therefore the particular solutions obtained
earlier and Theorem 2.17 yield the general solution

y = c1e
−2x + c2e

4x +
5

7
e−3x +

17

13
cos 3x+

6

13
sin 3x− 1

4
x2 +

1

2
x− 5

16
.

✷
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2.5 Method of variation of parameters

Consider the inhomogeneous equation

y′′ + p(x)y′ + q(x)y = f(x), x ∈ I. (2.1)

Suppose we know the fundamental solutions y1 and y2 of the corresponding homogeneous equa-
tion

y′′ + p(x)y′ + q(x)y = 0, x ∈ I, (2.2)

i.e., the general solution
y
H
= c1y1(x) + c2y2(x)

of the homogeneous equation is known. The idea of our method is to try to find a particular
solution of the inhomogeneous equation in the form

y
IP

= u1(x)y1(x) + u2(x)y2(x).

We are looking for coefficient functions u1 and u2 which yield a particular solution. This method
is called the method of variation of parameters or variation of constants. Then we have

y′
IP

= u′1(x)y1(x) + u1(x)y
′
1(x) + u′2(x)y2(x) + u2(x)y

′
2(x).

If we differentiate this expression once more and plug it into Eq. (2.1) then we get one equation
with two unknowns. So this calculation is undetermined. But this means we can specify an
additional constrain on the coefficients. The key idea is that we suppose u1 and u2 satisfy
relation

u′1(x)y1(x) + u′2(x)y2(x) = 0, x ∈ I. (2.3)

This assumption simplifies the calculation significantly since then

y′
IP

= u1(x)y
′
1(x) + u2(x)y

′
2(x),

and hence
y′′
IP

= u′1(x)y
′
1(x) + u1(x)y

′′
1(x) + u′2(x)y

′
2(x) + u2(x)y

′′
2(x).

Therefore substituting into Eq. (2.1) we have

u′1(x)y
′
1(x) + u1(x)y

′′
1(x) + u′2(x)y

′
2(x) + u2(x)y

′′
2(x)

+ p(x)(u1(x)y
′
1(x) + u2(x)y

′
2(x)) + q(x)(u1(x)y1(x) + u2(x)y2(x))

= u1(x)(y
′′
1(x) + p(x)y′1(x) + q(x)y1(x)) + u2(x)(y

′′
2(x) + p(x)y′2(x) + q(x)y2(x))

+ u′1(x)y
′
1(x) + u′2(x)y

′
2(x)

= u′1(x)y
′
1(x) + u′2(x)y

′
2(x).

Therefore, together with Eq. (2.3), u1 and u2 satisfy the system

u′1(x)y1(x) + u′2(x)y2(x) = 0 (2.4)

u′1(x)y
′
1(x) + u′2(x)y

′
2(x) = f(x). (2.5)

For u′1 and u′2 it is a system of linear equations. It has a unique solution, since the determinant
of the coefficients is the Wronskian of y1 and y2, and W (y1, y2)(x) 6= 0, since y1 and y2 are
linearly independent. Then integration gives the formulas of u1 and u2.

Example 2.19 It can be checked easily that the general solution of the homogeneous equation

x2y′′ + 2xy′ − 6y = 0, x > 0



2.6 Applications 33

is
y
H
=

c1
x3

+ c2x
2.

We solve the inhomogeneous equation

x2y′′ + 2xy′ − 6y = x3, x > 0

using the method of variation of parameters. We look for a particular solution in the form

y
IP

=
u1
x3

+ u2x
2

where u1 and u2 are unknown functions (we omit the arguments of u1 and u2 for simplicity).
First we divide the equation by x2 to rewrite it in the explicit form (2.1):

y′′ +
2

x
y′ − 6

x2
y = x, x > 0.

Then using the system (2.4)-(2.5) we get

u′1
x3

+ u′2x
2 = 0

−3
u′1
x4

+ 2u′2x = x.

Computing the solutions of the algebraic system we get u′1 = −1
5x

5 and u′2 = 1
5 , so u1 =

∫

−1
5x

5 dx = − 1
30x

6 and u2 =
∫

1
5 dx = 1

5x. We note that here the constants of the integrations
were omitted since we needed only one possible u1 and u2, not all solutions. Therefore

y
IP

= − 1

30
x6

1

x3
+

1

5
x · x2 = 1

6
x3,

so the general solution is

y =
c1
x3

+ c2x
2 +

1

6
x3, x > 0.

✷

2.6 Applications

In this section, we discuss two classical systems of mechanics, a spring-mass system and the
pendulum. We show that the mathematical models of the motion of the above mechanical
systems can be given by second-order differential equations.

Example 2.20 (spring-mass system) Consider a vertical spring of length l (see Figure 2.1).
We attach a body of mass m to the spring at its centroid, which causes an elongation L.

Without applying any external disturbance the mass is at rest, it hangs in the same position,
which we call static equilibrium. In this case two forces act on the body at its centroid: the
gravitational force of magnitude mg which points downward, and the force due to the spring
acting upward. Hooke’s law yields that the spring force is proportional to the elongation. We
fix a vertical coordinate system so that the downward direction is the positive direction and the
origin is at the position of the static equilibrium. Then the spring force at the static equilibrium
is negative and it equals to Fs = −kL, where k is the spring constant. At the equilibrium, the
two forces balance each other, so mg − kL = 0.

If the body is pulled forward down or pushed up, and then it is released, or a force is applied
to the body continuously, it will be in motion. Our goal is to describe the displacement of the
body measured from the equilibrium position as a function of the time. Let x(t) denote the
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Figure 2.1: spring-mass system

displacement of the body: it is positive if the spring is extended, and it is negative, if the spring
is compressed. We apply Newton’s law of motion

F = ma,

where F is the net force acting on the body, and a is the acceleration of the body, both are
functions of time. We have a = v′ = x′′, where v = x′ is the speed of the body. We consider the
following forces on the body:

(i) the gravitational force always acts downward, so in the positive direction, its value is mg.
(ii) the spring force acts to restore the spring to its original position, i.e., if the spring is

expanded, it acts upwards, so in the negative direction, and if the spring is compressed, it acts
downward, so in the positive direction. In both cases Fs = −k(L + x) gives the correct sign of
the force, L+ x is the total elongation of the spring.

(iii) We assume that the motion of the spring-mass system is located in a fluid where damping
cannot be neglected. Then a damping force is applied to the body which always act opposite
to the direction of the velocity of the body. Experiment gives that (in most circumstances)
magnitude of the damping force is proportional to the velocity of the body. Then Fd = −γv =
−γx′ is the formula of the damping force, where γ is the damping constant. If the speed is
positive, then the body moves downward, and the damping force acts upward. In the case when
the speed is negative, then the body moves upward, and the damping force acts downward, so
it is positive.

(iv) There can be any external force f(t) acting on the body, which can be even time-
dependent.

Then F (t) = mg − k(L+ x)− γx′ + f(t). Using Newton’s law and relation mg = kL we get
the second-order linear differential equation

mx′′ + γx′ + kx = f(t), t ≥ 0. (2.1)

This is a second-order linear differential equation with constant coefficients in the homogeneous
part. We associate the IC

x(0) = x0, x′(0) = v0 (2.2)

to the ODE. Here x0 is the initial displacement, and v0 is the initial speed of the body. These
are values which can be measured, so it is reasonable to assume that they are known quantities.

✷

Example 2.21 (harmonic oscillation) In this example, we consider a special case of Eq. (2.1):
we assume that damping can be omitted, i.e., γ = 0, and there is no external force, i.e., f(t) = 0.
Then the equation simplifies to the linear homogeneous equation

mx′′ + kx = 0. (2.3)

Its characteristic equation is
mλ2 + k = 0,
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whose solutions are λ = ±iω0, where ω0 =
√

k
m . Hence the general solution of Eq. (2.3) is

x(t) = c1 cosω0t+ c2 sinω0t.

This yields a harmonic oscillation for any c1 and c2, since simple manipulations imply

x(t) = R cos(ω0t− δ).

We have

R cos(ω0t− δ) = R(cosω0t cos δ + sinω0t sin δ) = c1 cosω0t+ c2 sinω0t

if
R cos δ = c1 and R sin δ = c2,

i.e.,

R =
√

c21 + c22 and tg δ =
c2
c1
.

ω0 is called natural frequency or natural angular frequency , δ is called phase or phase angle, and
R is called the amplitude of the oscillation.

✷

Example 2.22 (damped oscillation) Here we assume that damping cannot be neglected, but
no external force acts on the body. So we assume γ > 0, and consider

mx′′ + γx′ + kx = 0. (2.4)

The corresponding characteristic equation is

mλ2 + γλ+ k = 0.

We discuss three cases. (i) γ2 − 4mk > 0 (large damping). Then

λ1 =
−γ +

√

γ2 − 4mk

2m
< 0 and λ2 =

−γ −
√

γ2 − 4mk

2m
< 0

are the two real characteristic roots, and therefore the general solution of Eq. (2.4) is

x(t) = c1e
λ1t + c2e

λ2t.

From the fact that both λ1 and λ2 are negative it follows that x(t) → 0 as t → ∞. In this
case the body tends to its equilibrium position with an exponential speed. Figure 2.2 shows a
few typical solutions of the equation. The solutions are generated form the initial conditions
x(0) = 1, x′(0) = 1; x(0) = 0.5, x′(0) = −0.5; x(0) = −0.5, x′(0) = 1 and x(0) = −1, x′(0) = 0 in
all the three figures.

(ii) γ2 − 4mk = 0 (critical damping). Here λ = − γ
2m t is the real and double characteristic

root, therefore the general solution is

x(t) = c1e
− γ

2m
t + c2te

− γ

2m
t.

In this case the motion also tends to the equilibrium position. Figure 2.3 displays some typical
solution curves.

(iii) γ2 − 4mk < 0 (small damping). In this case, there are two complex roots of the
characteristic equation:

λ1,2 = − γ

2m
± iµ, where µ =

√

4km− γ2

2m
,

and hence the general solution is

x(t) = e−
γ

2m
t
(

c1 cosµt+ c2 sinµt
)

.
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The solutions tend to 0, but now the motion is oscillatory, see Figure 2.4. ✷
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Figure 2.2: x′′ + 4x′ + x = 0
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Figure 2.3: x′′ + 4x′ + 4x = 0
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Figure 2.4: x′′+2x′+10x = 0

Example 2.23 (amplitude modulation) Now consider the case when there is no damping,
but a periodic external force is applied to the body. More specifically, consider the equation

mx′′ + kx = a cosωt. (2.5)

Let ω0 be the natural frequency of the system, i.e., ω0 =
√

k
m . First, we suppose ω 6= ω0. We

use the method of undetermined coefficients to find a particular solution of Eq. (2.5) in the form

x
IP

= A cosωt+B sinωt.

Then x′
IP

= −Aω sinωt+Bω cosωt and x′′
IP

= −Aω2 cosωt−Bω2 sinωt. Therefore substituting
the above expressions into Eq. (2.5) we get

(−mAω2 + kA) cosωt+ (−mBω2 + kB) sinωt = a cosωt,

hence

A =
a

k −mω2
=

a

(ω2
0 − ω2)m

and B = 0.

Therefore the general solution of Eq. (2.5) is

x(t) = c1 cosω0t+ c2 sinω0t+
a

(ω2
0 − ω2)m

cosωt.

Suppose that we start the motion of the spring-mass system from rest, i.e., from the IC x(0) = 0
and x′(0) = 0. Short calculation yields c1 = − a

(ω2

0
−ω2)m

and c2 = 0, so the solution of the IVP is

x(t) =
a

(ω2
0 − ω2)m

(

cosωt− cosω0t
)

.

Simple trigonometric manipulations imply

x(t) =
2a

(ω2
0 − ω2)m

sin
(ω0 − ω)t

2
sin

(ω0 + ω)t

2
.

If ω ≈ ω0, then sin (ω0+ω)t
2 oscillates much faster than the function sin (ω0−ω)t

2 , so we can see two

oscillations in the graph of the solution. The expression 2a
(ω2

0
−ω2)m

sin (ω0−ω)t
2 can be considered

as a slowly varying amplitude of the fast oscillation sin (ω0+ω)t
2 , see Figure 2.5. This phenomenon

in electronics is called amplitude modulation, and such a curve is called a beat . ✷
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Figure 2.5: x′′+4x = cos 2.2t, x(0) = 1 = x′(0)
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Figure 2.6: x′′+4x = cos 2t, x(0) = 1 = x′(0)

Example 2.24 (resonance) Now we consider again the above example in the case when the
forcing frequency is equal to the natural frequency of the system, i.e., ω = ω0. In this case the
test function of the previous example is a solution of the homogeneous equation. Therefore here
we are looking for a particular solution in the form

x
IP

= t(A cosω0t+B sinω0t).

A little calculation gives that the function

x = c1 cosω0t+ c2 sinω0t+
a

2mω0
t sinω0t

is the general solution of Eq. (2.5). This is an oscillatory function, but it is not bounded, see
Figure 2.6. Such a phenomenon is called resonance. In practice, of course, the spring breaks if
the elongation becomes large. Also, the assumption that the spring force depends linearly on
the displacement is valid only for small elongation only. ✷

Example 2.25 (forced vibration with damping) Suppose that the damping can not be
neglected and a periodic forcing function acts to the body:

mx′′ + γx′ + kx = a cosωt. (2.6)

We look for a particular solution in the form

x
IP

= A cosωt+B sinωt.

Computing x′
IP

= −Aω sinωt+Bω cosωt and x′′
IP

= −Aω2 cosωt−Bω2 sinωt and substituting
them to Eq. (2.6) we get

(−mAω2 + γBω + kA) cosωt+ (−mBω2 − γAω + kB) sinωt = a cosωt,

hence

−mAω2 + γBω + kA = a

−mBω2 − γAω + kB = 0.

It follows from the definition of ω0 that k = mω2
0, therefore we have

mA(ω2
0 − ω2) + γBω = a

mB(ω2
0 − ω2)− γAω = 0.

Its solution is

A =
am(ω2

0 − ω2)

m(ω2
0 − ω2)2 + γ2ω2

and B =
aγω

m(ω2
0 − ω2)2 + γ2ω2

,
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so the particular solution is

x
IP

= A cosωt+B sinωt = R cos(ωt− δ),

where

R =
√

A2 +B2 =
|a|

√

m(ω2
0 − ω2)2 + γ2ω2

and tg δ =
γω

m(ω2
0 − ω2)

.

Suppose, e.g., that Case (iii) of Example 2.22 holds, i.e., the damping is small. Using the
notation of Example 2.25 we get that the general solution is

x(t) = x
H
(t) + x

IP
(t) = e−

γ

2m
t(c1 cosµt+ c2 sinµt) +R cos(ωt− δ).

Here the solution can be viewed as a sum of two functions. We have seen in Example 2.25 that
the solution of the homogeneous equation, x

H
(t), tends to 0 as t → ∞ in all the three cases. This

part of the solution is called transient solution. Therefore, for large t, this part of the solution
is negligible, and x(t) ≈ x

IP
(t). Hence starting from any IC, for large t the solution becomes

close to a periodic function with frequency equals to the frequency of the forcing function. We
say that the solution tends to a periodic steady state or to a forced response. ✷
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Figure 2.7: x′′ + x′ + 4x = cos 3t, x(0) = 1 = x′(0)
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Figure 2.8: mathematical pendulum

Example 2.26 (the pendulum) Consider a mathematical pendulum, i.e., a pendulum where
the mass m is suspended at the end of a weightless rod of length L, and the rod is attached to a
frictionless pivot, see Figure 2.8. Then the mass moves along a circle of radius L. The angle of
the rod from the vertical direction measured in radians is denoted by θ = θ(t). We assume the
positive direction is the counterclockwise direction. Therefore, if the rod is rotated by angle θ
then the distance done by the body along the circumference of the circle of radius L is s = Lθ.
The circumferential speed of the body is v = Lθ′, and its circumferential acceleration is a = Lθ′′,
both are tangential to the circle. We apply Newton’s Second Law computing the forces in the
tangential direction.

We consider three forces on the body, the gravitational force mg, the force Fr acting by
the rod to the body, and the damping force Fd. The gravitational force acts in the downward
vertical direction, its tangential component is −mg sin θ, see Figure 2.8. We suppose that the
damping force is proportional to the velocity, and its direction is opposite to the direction of the
motion. So we have Fs = −γLθ′. We assume no other force acts to the body. Then Newton’s
Second Law yields

mLθ′′ = −γLθ′ −mg sin θ,

which gives

θ′′ +
γ

m
θ′ +

g

L
sin θ = 0, t ≥ 0. (2.7)
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This is a second-order nonlinear differential equation since sin θ appears in the equation. We
associate the IC

θ(0) = θ0 and θ′(0) = θ′0

to Eq. (2.7), which is the initial angle θ0 and the initial angular velocity θ′0.
It is known that if θ ≈ 0 then sin θ ≈ θ. So for small angles Eq. (2.7) can be approximated

by the linear equation

θ′′ +
γ

m
θ′ +

g

L
θ = 0, t ≥ 0. (2.8)

This is a second-order linear homogeneous equation with positive constant coefficients, and this
equation is identical to the spring-mass model equation without external force, so the behavior
of the solution is the same as that of the spring-mass model. Therefore for small γ > 0 it exhibits
a damped oscillation, i.e., it tends to zero in an oscillatory fashion.

In the case of a large angle rotation, the nonlinear model describes the motion. We note
that we do not have an analytic method to find its solutions. Of course, numerical solution can
be obtained easily. ✷





Chapter 3

Systems of linear differential equations

In this chapter, we give a short introduction to the theory of the systems of linear differential
equations. First, we start with an overview of the necessary notions and results from linear
algebra.

3.1 Background from linear algebra

Let A be an n× n real matrix and I be the n× n identity matrix. The nth-order polynomial

p(λ) := det(A− λI)

is called the characteristic polynomial of matrix A, the roots of p are called eigenvalues of A,
and the non-zero solutions of the equation

Aξ = λξ

or equivalently the equation
(A− λI)ξ = 0

are called the eigenvectors of the matrix A. If λ is a multiple root of order k of the characteristic
polynomial p, then we say that the algebraic multiplicity of λ is k.

We summarize some known properties of the eigenvalues and eigenvectors in the next theo-
rem.

Theorem 3.1 Let A be an n× n real matrix.

(i) The eigenvectors corresponding to an eigenvalue λ of A form a linear subspace of Cn.

(ii) If λ is a real eigenvalue of A, then the corresponding eigenvector ξ can be real too.

(iii) If λ1, . . . , λs are pairwise distinct eigenvalues of A, then the corresponding eigenvectors

ξ(1), . . . , ξ(s) are linearly independent.

(iv) If A is symmetric, then its has n linearly independent eigenvectors.

(v) If A has a complex eigenvalue λ = α + iβ with a corresponding eigenvector ξ = u + iv
(u,v ∈ R

n) then u and v are linearly independent.

(vi) If λ = α + iβ is a complex eigenvalue of A with a corresponding eigenvector ξ = u + iv
then λ̄ = α− iβ is also an eigenvalue of A with a corresponding eigenvector ξ̄ = u− iv.

The set of eigenvectors corresponding to a fixed eigenvalue λ is called the eigenspace associ-
ated to λ. The dimension of the eigenspace associated to λ is called the geometric multiplicity of
λ. It is known that the geometric multiplicity is always less or equal to the algebraic multiplicity
of λ. It follows from part (iv) of the previous theorem that for symmetric matrices the geometric
multiplicity is always equal to the algebraic multiplicity of any eigenvalue. We will see examples
later that for non-symmetric matrices the geometric multiplicity can be strictly less than the
algebraic multiplicity.

41
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Example 3.2 Consider the matrix

A =
(

2 2
−3 −5

)

.

Its characteristic polynomial is

p(λ) = det
(

2− λ 2
−3 −5− λ

)

= λ2 + 3λ− 4,

hence the eigenvalues of A are λ1 = −4 and λ2 = 1. Clearly, the algebraic multiplicity of both
eigenvalues are 1, and so the geometric multiplicities are also equal to 1.

Consider the eigenvector equation
(

2− λ 2
−3 −5− λ

)(

ξ1
ξ2

)

=
(

0
0

)

.

First consider the eigenvalue λ1 = −4. Substituting to this value to the above equation we get

6ξ1 + 2ξ2 = 0

−3ξ1 − ξ2 = 0.

The two equations are dependent, so we can omit any of the equations. We consider, e.g.,
−3ξ1 − ξ2 = 0, which has infinitely many solutions ξ2 = −3ξ1. One possible solution is

ξ(1) =
(

1
−3

)

.

Now consider the second eigenvalue λ2 = 1. Then the eigenvector equations are

ξ1 + 2ξ2 = 0

−3ξ1 − 6ξ2 = 0,

which gives, e.g.,

ξ(2) =
( −2

1

)

.

✷

3.2 Linear systems of differential equations

Let I ⊂ R be an open interval, t0 ∈ I, aij , fj : I → R (i, j = 1, . . . , n) functions, and consider
the n-dimensional systems of linear differential equations

x′1(t) = a11(t)x1(t) + · · ·+ a1n(t)xn(t) + f1(t)

...

x′n(t) = an1(t)x1(t) + · · ·+ ann(t)xn(t) + fn(t)

and the corresponding IC
x1(t0) = z1, . . . , xn(t0) = zn.

We can rewrite the above problem in a vectorial form

x′ = A(t)x+ f(t), t ∈ I, (3.1)

and
x(t0) = z, (3.2)

where A : I → R
n×n, f : I → R

n,

A(t) = (aij(t))n×n, x(t) = (x1(t), . . . , xn(t))
T , f(t) = (f1(t), . . . , fn(t))

T , z = (z1, . . . , zn)
T .
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We will assume that A and f are continuous functions.

Consider the associated homogeneous system

x′ = A(t)x, t ∈ I. (3.3)

Applying Theorem 1.25 for this problem, we get the following result.

Theorem 3.3 Suppose A : I → R
n×n and f : I → R

n are continuous functions. Then the IVP
(3.1)-(3.2) has a unique solution on the interval I for all z ∈ R

n.

Just like for scalar linear homogeneous equations, any linear combination of two solutions is
also a solution of the equation.

Theorem 3.4 The set of solutions of the homogeneous Eq. (3.3) form a vector space.

The set {x(1), . . . ,x(n)} is called the fundamental set of solutions of the homogeneous Eq. (3.3)
on the interval I, if x(1), . . . ,x(n) are solutions of Eq. (3.3) and they are linearly independent on
the interval I.

We put the formula of the vector function x(1) to the first column of a matrix, the formula of
the vector function x(2) to the second column, and so on, the formula of the vector function x(n)

to the nth column. The resulting matrix is denoted by (x(1)(t), . . . ,x(n)(t)). Its determinant is
called the Wronskian of the solutions x(1), . . . ,x(n):

W (t) = det(x(1)(t), . . . ,x(n)(t)).

The following results can be proved.

Theorem 3.5 The vector valued functions x(1), . . . ,x(n) are linearly independent on the interval
I, if and only if their Wronskian is not identically equal to 0 on the interval I.

Theorem 3.6 Let x(1), . . . ,x(n) be solutions of the Eq. (3.3) corresponding to the IC

x(1)(t0) = z(1), . . . , x(n)(t0) = z(n), (3.4)

respectively. Then the functions x(1), . . . ,x(n) are linearly independent on I if and only if the
vectors

z(1), . . . , z(n)

are linearly independent, i.e.

W (t0) 6= 0.

Theorem 3.7 The set of solutions of the homogeneous Eq. (3.3) is an n-dimensional vector
space.
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3.3 Homogeneous linear systems with constant coefficients

Let A ∈ R
n×n, and consider the homogeneous linear system with constant coefficients

x′ = Ax, t ∈ R. (3.1)

We are looking for solutions in the form

x(t) = eλtξ,

where ξ is a real or complex vector, λ is a real or complex constant. Then

x′(t) = λeλtξ,

so substituting into Eq. (3.1) we get

λeλtξ = Aeλtξ.

This equation holds if
(A− λI)ξ = 0,

i.e., λ is an eigenvalue of the matrix A, and ξ is the eigenvector corresponding to λ.
According to Theorem 3.7, it is enough to find n linearly independent solutions, since then

their linear combinations give all solutions of Eq. (3.1). We consider several cases.

Case 1: pairwise distinct eigenvalues

Suppose λ1, . . . , λn are pairwise distinct eigenvalues of the matrix A, and ξ(1), . . . , ξ(n) are
the eigenvectors corresponding to λ1, . . . , λn, respectively. It is known from linear algebra (see

Theorem 3.1) that the vectors ξ(1), . . . , ξ(n) are linearly independent. Then the functions

x(1)(t) = eλ1tξ(1), . . . , x(n)(t) = eλntξ(n), t ∈ R (3.2)

are solutions of the homogeneous Eq. (3.1). On the other hand,

W (x(1), . . . ,x(n))(0) = det(x(1)(0), . . . ,x(n)(0)) = det(ξ(1), . . . , ξ(n)) 6= 0,

since ξ(1), . . . , ξ(n) are linearly independent. Therefore the solutions x(1), . . . ,x(n) are linearly
independent, hence (3.2) forms a fundamental set of solutions of Eq. (3.1). Therefore the general
solution of Eq. (3.1) is

x(t) = c1e
λ1tξ(1) + · · ·+ cne

λntξ(n). (3.3)

If all eigenvalues are real, the fundamental set of solutions of Eq. (3.2) consists of real functions,
but if the matrix A has complex eigenvalues, then some of the functions in (3.2) are complex
valued. In the next case we will show that these complex solutions can be replaced by real
solutions.

Example 3.8 Solve the system

x′ =
(

2 2
−3 −5

)

x (3.4)

corresponding to the IC

x(0) =
( −5

0

)

.

The eigenvalues of the coefficient matrix are λ1 = −4 and λ2 = 1, and the associated eigenvectors
are ξ(1) = (1,−3)T and ξ(2) = (−2, 1)T , respectively. Therefore the general solution is

x(t) = c1e
−4t
(

1
−3

)

+ c2e
t
( −2

1

)

, (3.5)
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so its component functions are

x1(t) = c1e
−4t − 2c2e

t

x2(t) = −3c1e
−4t + c2e

t.

The IC yields
c1 − 2c2 = −5

−3c1 + c2 = 0,

which gives c1 = 1 and c2 = 3. Therefore the solution of the IVP is

x(t) = e−4t
(

1
−3

)

+ 3et
( −2

1

)

, (3.6)

and hence its components are

x1(t) = e−4t − 6et

x2(t) = −3e−4t + 3et.

✷

Case 2: complex eigenvalues

Suppose λ = α+ iβ is a complex eigenvalue of A, and

ξ = u+ iv

is the corresponding eigenvector. (Here u and v are the real and imaginary parts of the complex
vector ξ.) Then it is known that λ̄ = α − iβ is also an eigenvalue of A, and the corresponding
eigenvector is

ξ̄ = u− iv.

Then

x(t) = eλtξ

= e(α+iβ)t(u+ iv)

= eαt(cosβt+ i sinβt)(u+ iv)

= eαt
(

u cosβt− v sinβt+ i(v cosβt+ u sinβt)
)

is a complex valued solution of Eq. (3.1). Like in scalar equations, it can be shown that the real
and imaginary parts of a complex solution are also solutions of Eq. (3.1). Therefore

x(1)(t) = eαt(u cosβt− v sinβt) and x(2)(t) = eαt(v cosβt+ u sinβt)

are both solutions, and it can be shown that the vectors x(1)(t) and x(2)(t) are always linearly
independent. Hence in the formula of the general solution (3.3), the complex solutions eλtξ and

eλ̄tξ̄ can be replaced by the real solutions x(1) and x(2).

Example 3.9 Solve the IVP

x′ =
( −9 4

−10 3

)

x, x(0) =
( −2

3

)

.

The eigenvalues of the coefficient matrix are λ1 = −3+2i and λ2 = −3−2i, and the corresponding
eigenvectors are ξ(1) = (2, 3 + i)T and ξ(2) = (2, 3− i)T . Therefore the complex solution is

e(−3+2i)t
(

2
3 + i

)

= e−3t(cos 2t+ i sin 2t)
(

2
3 + i

)

= e−3t
(

2 cos 2t+ 2i sin 2t
3 cos 2t− sin 2t+ i(cos 2t+ 3 sin 2t)

)

.
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Therefore, the general solution is

x(t) = c1e
−3t
(

2 cos 2t
3 cos 2t− sin 2t

)

+ c2e
−3t
(

2 sin 2t
cos 2t+ 3 sin 2t

)

.

The IC yields
2c1 = −2
3c1 + c2 = 1,

and so c1 = −1 and c2 = 4. Hence the solution of the IVP is

x(t) = −e−3t
(

2 cos 2t
3 cos 2t− sin 2t

)

+ 4e−3t
(

2 sin 2t
cos 2t+ 3 sin 2t

)

= e−3t
( −2 cos 2t+ 8 sin 2t

cos 2t+ 13 sin 2t

)

.

✷

Case 3/a: multiple eigenvalues

We consider the case of a multiple eigenvalue in the 3-dimensional case. The general case
is similar. First, we suppose that λ is an eigenvalue of A with algebraic multiplicity 3, and
ξ(1), ξ(2), ξ(3) are linearly independent eigenvectors to λ. Then

x(1)(t) = eλtξ(1), x(2)(t) = eλtξ(2), x(3)(t) = eλtξ(3)

are three linearly independent solutions, since the vectors x(1)(0) = ξ(1), x(2)(0) = ξ(2), x(3)(0) =

ξ(3) are linearly independent. Then the general solution is

x(t) = eλt
(

c1ξ
(1) + c2ξ

(2) + c3ξ
(3)
)

.

In the second case, we suppose the eigenvalues of the matrix A are λ1 and λ2, where λ1 is
a double, λ2 is a single eigenvalue, and ξ(11) and ξ(12) are two linearly independent eigenvectors
corresponding to λ1. Let ξ

(2) be the eigenvector corresponding to λ2. Then it is easy to see that
the general solution is

x(t) = eλ1t
(

c1ξ
(11) + c2ξ

(12)
)

+ c3e
λ2tξ(2).

Example 3.10 Solve the linear system

x′ =

(

0 −2 1
−2 0 −1
−2 2 −3

)

x.

The characteristic polynomial of the coefficient matrix is

p(λ) = det

( −λ −2 1
−2 −λ −1
−2 2 −3− λ

)

= −λ3 − 3λ2 + 4

= −λ3 + λ2 − 4λ2 + 4

= −(λ− 1)(λ+ 2)2.

So the eigenvalues of A are λ1 = 1 and λ2 = −2, where the algebraic multiplicity of λ1 is 1, and
that of λ2 is 2.
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Consider first λ1 = 1. The corresponding eigenvector equation is

−ξ1 − 2ξ2 + ξ3 = 0

−2ξ1 − ξ2 − ξ3 = 0

−2ξ1 + 2ξ2 − 4ξ3 = 0.

If we multiply the first equation by −1 and add it to the second equation, and we multiply the
resulting equation by 2 we get the third equation. So we can omit one equation, e.g., the third
one. Adding the remaining two equations we get that ξ1 = −ξ2. So if we set ξ1 = 1 then we
have ξ2 = −1 and therefore we get ξ3 = −1. Hence

ξ(1) =

(

1
−1
−1

)

is an eigenvector corresponding to λ1 = 1.

Now consider λ2 = −2. Then the eigenvector equations are

2ξ1 − 2ξ2 + ξ3 = 0

−2ξ1 + 2ξ2 − ξ3 = 0

−2ξ1 + 2ξ2 − ξ3 = 0.

Clearly, the second and third equations can be omitted, so only one equation remains:

2ξ1 − 2ξ2 + ξ3 = 0.

We can set, e.g., the values of ξ1 and ξ2 independently, hence we get easily that the vectors

ξ(2) =

(

1
0

−2

)

and ξ(3) =

(

0
1
2

)

are both eigenvectors corresponding to λ2, and they are linearly independent. Therefore the
eigenspace of λ2 is two-dimensional, so the geometric multiplicity of A is 2. Therefore the
general solution of the equation is

x(t) = c1e
t

(

1
−1
−1

)

+ c2e
−2t

(

0
1
2

)

+ c3e
−2t

(

1
0

−2

)

.

✷

In the next example, we show a two-dimensional system, where the geometric multiplicity
of the eigenvalue is two, i.e., there are two linearly independent eigenvectors.

Example 3.11 Consider the system

x′ =
( −3 0

0 −3

)

x.

It is easy to check that the eigenvalue of the coefficient matrix is λ = −3, which has algebraic

multiplicity 2. The geometric multiplicity is also 2, since, e.g.,
(

1
0

)

and
(

0
1

)

are eigenvectors.

Therefore, the general solution of the system is

x(t) = e−3t
[

c1

(

1
0

)

+ c2

(

0
1

)]

= e−3t
(

c1
c2

)

.

✷
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Case 3/b: multiple eigenvalues

Suppose again that the algebraic multiplicity of the eigenvalue λ is at least 2, but the geo-
metric multiplicity is less than the algebraic multiplicity. Let ξ be an eigenvector corresponding
to λ. Then eλtξ is a solution, but we need one more solution corresponding to λ, which is
linearly independent from the first solution.

Analogously to the scalar case, we are looking for a second solution in the form

teλtξ + eλtη. (3.7)

Substituting into the Eq. (3.1) we get

eλtξ + λteλtξ + λeλtη = Ateλtξ +Aeλtη.

This yields a solution if the coefficients of the functions teλt and eλt are identical on both sides
of the equation:

λξ = Aξ

ξ + λη = Aη,

or in an equivalent form,

(A− λI)ξ = 0 (3.8)

(A− λI)η = ξ. (3.9)

Then Eq. (3.8) means that ξ is an eigenvector of A corresponding to the eigenvalue λ. The
solution η of the Eq. (3.9) is called the generalized eigenvector of A corresponding to the
eigenvalue λ. Clearly, the generalized eigenvector does not belong to the eigenspace of λ, so it
is always linearly independent of ξ. The following theorem holds.

Theorem 3.12 Let λ be an eigenvalue of A with geometric multiplicity less than its algebraic
multiplicity. Then Eq. (3.9) has at least one solution η, which does not belong to an eigenspace
corresponding to any eigenvalue.

Example 3.13 Consider the system

x′ =
( −3 1

−1 −1

)

x.

Its characteristic polynomial is

p(λ) = det
( −3− λ 1

−1 −1− λ

)

= λ2 + 4λ+ 4 = (λ+ 2)2,

hence the algebraic multiplicity of the eigenvalue λ = −2 is 2.
Consider the eigenvector equation

( −3− λ 1
−1 −1− λ

)(

ξ1
ξ2

)

=
(

0
0

)

.

Substituting λ = −2 into the above equation, we get

−ξ1 + ξ2 = 0

−ξ1 + ξ2 = 0.

One possible solution is

ξ =
(

1
1

)

,
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and we can observe that all other solutions are constant multiples of this solution, hence the
geometric multiplicity of λ = −2 is 1.

We need to find a generalized eigenvector. Consider the generalized eigenvector equation
( −3− λ 1

−1 −1− λ

)(

η1
η2

)

=
(

ξ1
ξ2

)

.

Substituting λ and ξ, we have

−η1 + η2 = 1

−η1 + η2 = 1.

The two equations are identical, so we omit one, and we get infinitely many solution for η. One
possible solution is

η =
(

0
1

)

.

Therefore (3.7) gives the solution

teλtξ + eλtη = te−2t
(

1
1

)

+ e−2t
(

0
1

)

= e−2t
(

t
t+ 1

)

.

Clearly, this is independent of the first solution, hence the general solution of the system is

x(t) = c1e
−2t
(

1
1

)

+ c2e
−2t
(

t
t+ 1

)

= e−2t
(

c1 + c2t
c1 + c2(t+ 1)

)

.

✷

Example 3.14 Solve the system

x′ =

(

3 −6 0
−10 7 −8
−8 8 −7

)

x.

Consider the characteristic polynomial of the coefficient matrix

p(λ) = det

(

3− λ −6 0
−10 7− λ −8
−8 8 −7− λ

)

We expand it with respect to the third column:

p(λ) = 8 · det
(

3− λ −6
−8 8

)

+ (7 + λ) · det
(

3− λ −6
−10 7− λ

)

= 8(−8λ− 24) + (−7− λ)(λ2 − 10λ− 39)

= −64(λ+ 3)− (7 + λ)(λ+ 3)(λ− 13)

= −(λ+ 3)[64 + (7 + λ)(λ− 13)]

= −(λ+ 3)[λ2 − 6λ− 27)]

= −(λ+ 3)2(λ− 9).

This shows that λ1 = 9 is a single, λ2 = −3 is a double eigenvalue. To compute the eigenvector
corresponding to λ1 = 9, we consider

−6ξ1 − 6ξ2 = 0

−10ξ1 − 2ξ2 − 8ξ3 = 0

−8ξ1 + 8ξ2 − 16ξ3 = 0.

If we multiply the first equation by -2, the second by 2 and we add the equations, we get the
third equation. This means that we can omit the third equation. Then we get

−6ξ1 − 6ξ2 = 0

−10ξ1 − 2ξ2 − 8ξ3 = 0.
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One possible solution is ξ(1) = (−1, 1, 1)T .
Now consider λ2 = −3. We get the corresponding eigenvector equations

6ξ1 − 6ξ2 = 0

−10ξ1 + 10ξ2 − 8ξ3 = 0

−8ξ1 + 8ξ2 − 4ξ3 = 0.

Twice the third equation plus the first one gives the second equation. Therefore we can omit
the second equation:

6ξ1 − 6ξ2 = 0

−8ξ1 + 8ξ2 − 4ξ3 = 0.

So the geometric multiplicity of λ2 = −3 is 1, and one possible corresponding eigenvector is
ξ(2) = (1, 1, 0)T .

To write down the third solution, we need to find the generalized eigenvector corresponding
to λ2 = 3. Eq. (3.9) with ξ = ξ(2) yields

6η1 − 6η2 = 1

−10η1 + 10η2 − 8η3 = 1

−8η1 + 8η2 − 4η3 = 0.

The second equation can be omitted, since twice the third equations plus the first equation
equals to the second one:

6η1 − 6η2 = 1

−8η1 + 8η2 − 4η3 = 0.

The remaining two equations are independent. For example set η1 = 1, then then η2 = 0 and
η3 = −2, hence

η =

(

1
0

−2

)

.

Therefore, the general solution is

x(t) = c1e
9t

( −1
1
1

)

+ c2e
−3t

(

1
1
0

)

+ c3

[

te−3t

(

1
1
0

)

+ e−3t

(

1
0

−2

)]

.

✷

Example 3.15 Consider the system

x′ =

(

3 −1 −2
−1 3 2
1 −1 0

)

x.

The characteristic polynomial of the coefficient matrix is

p(λ) = det

(

3− λ −1 −2
−1 3− λ 2
1 −1 −λ

)

= −λ3 + 6λ2 − 12λ+ 8

= −(λ− 2)3.

Hence λ = 2 is a triple eigenvalue of A. The eigenvector equations are

ξ1 − ξ2 − 2ξ3 = 0
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−ξ1 + ξ2 + 2ξ3 = 0

ξ1 − ξ2 − 2ξ3 = 0.

Here two equations can be omitted, so we get

ξ1 − ξ2 − 2ξ3 = 0.

Here we can find two linearly independent solutions. For example

ξ(1) =

(

2
0
1

)

and ξ(2) =

(

1
1
0

)

are two eigenvectors. We need the generalized eigenvector:

η1 − η2 − 2η3 = ξ1

−η1 + η2 + 2η3 = ξ2

η1 − η2 − 2η3 = ξ3,

where ξ = (ξ1, ξ2, ξ3)
T is an eigenvector of the coefficient matrix. We can see that neither ξ(1)

nor ξ(2) can be used, since the above system has no solution. We look for the right hand side in
the form ξ = c1ξ

(1) + c2ξ
(2), where the scalars c1 and c2 are to be determined. Then we get

η1 + η2 + 2η3 = 2c1 + c2

η1 + η2 + 2η3 = c2

−η1 − η2 − 2η3 = c1,

which has a solution if and only if

2c1 + c2 = c1 and c1 = −c2,

for example, c1 = 1 and c2 = −1. Then

ξ =

(

1
−1
1

)

,

so the generalized eigenvector equations are

η1 − η2 − 2η3 = 1

−η1 + η2 + 2η3 = −1

η1 − η2 − 2η3 = 1.

Simplifying it we get
η1 − η2 − 2η3 = 1,

which gives, e.g.,

η =

(

2
1
0

)

.

Therefore the general solution of the system is

x(t) = e2t

{

c1

(

2
0
1

)

+ c2

(

1
1
0

)

+ c3

[

t

(

1
−1
1

)

+

(

2
1
0

)]}

.

✷

Case 3/c: multiple eigenvalues

Suppose A is a 3× 3 matrix, where its eigenvalues λ has an algebraic multiplicity 3, but its
geometric multiplicity is only 1. Let ξ be a corresponding eigenvector. Then the generalized
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eigenvector equation (3.9) has a solution η, but suppose there is no other generalized eigenvector
linearly independent from η. Then eλtξ and teλtξ+ eλtη are two linearly independent solutions
of Eq. (3.1), but we need a third solution which is linearly independent from the above two
solutions. We look for the third solution in the form

x(t) =
1

2
t2eλtξ + teλtη + eλtω.

We can easily check that the above function x(t) is a solution of Eq. (3.1) if and only if

(A− λI)ξ = 0,

(A− λI)η = ξ,

(A− λI)ω = η.

Such a vector ω is called the generalized eigenvector of rank 3. The eigenvector ξ is a generalized
eigenvector of rank 1, the vector η is called a generalized eigenvector of rank 2.

Example 3.16 Consider the system

x′ =

( −1 −1 −1
1 −2 −1

−1 1 0

)

x.

Compute the eigenvalues of the coefficient matrix:

p(λ) = det

( −1− λ −1 −1
1 −2− λ −1
−1 1 −λ

)

= −λ3 − 3λ2 − 3λ− 1

= −(λ+ 1)3,

So λ = −1 is a triple eigenvalue of the matrix. The eigenvector equation is
(

0 −1 −1
1 −1 −1

−1 1 1

)(

ξ1
ξ2
ξ3

)

=

(

0
0
0

)

,

hence

−ξ2 − ξ3 = 0

ξ1 − ξ2 − ξ3 = 0.

For example a corresponding eigenvector is

ξ =

(

0
−1
1

)

,

and the geometric multiplicity is only 1. The generalized eigenvector equation is
(

0 −1 −1
1 −1 −1

−1 1 1

)(

η1
η2
η3

)

=

(

0
−1
1

)

,

and hence

−η2 − η3 = 0

η1 − η2 − η3 = −1

−η1 + η2 + η3 = 1.
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The third equation can be omitted, but the first two equations are independent.

−η2 − η3 = 0

η1 − η2 − η3 = −1.

One possible solution is η1 = −1, η2 = 1 and η3 = −1, hence

η =

( −1
1

−1

)

,

but there is no other linearly independent solution of the equation. We need to find a generalized
eigenvector of rank 3:

(

0 −1 −1
1 −1 −1

−1 1 1

)(

ω1
ω2
ω3

)

=

( −1
1

−1

)

.

The third equation can be omitted:

−ω2 − ω3 = −1

ω1 − ω2 − ω3 = 1.

One solution is

ω =

(

2
1
0

)

.

Hence the general solution of the system is

x(t)= e−t

{

c1

(

0
−1
1

)

+ c2

[

t

(

0
−1
1

)

+

( −1
1

−1

)]

+ c3

[

t2

2

(

0
−1
1

)

+ t

( −1
1

−1

)

+

(

2
1
0

)]}

.

✷

3.4 Applications

Example 3.17 Suppose given two tanks connected by two pipes (see Figure 3.1) containing salt
solution. The first tank initially contains A1 kg salt dissolved in V1 l of solution, the second tank
contains A2 kg salt dissolved in V2 l of solution. The solution is pumped from the first tank into
the second tank with the rate of r l/min through the first pipe, and similarly, the fluid from the
second tank is pumped into the first one through the second pipe with the velocity r l/min. We
suppose that the volume of the solution in the pipes can be neglected, and the pipes are short,
so we omit the time while the solution travels in the pipes. We also assume that the solution
in both tanks are well-stirred, ie., the concentration in a tank is homogeneous. Compute the
amount of the salt in both tanks at time t.

First, note that the volume of the solutions in both tanks and the total mass of salt in the
tanks remain constant as time goes by. The mass of the salt in tank 1 and 2 at time t are denoted
by Q1 = Q1(t) and Q2 = Q2(t), respectively. Then the concentration of the solutions in the
tanks are Q1/V1 kg/l and Q2/V2 kg/l, respectively. The amount of salt in tank 1 is decreasing
with a rate of rQ1/V1 kg/min because of the outflow from the tank, and it is increasing with the
rate of rQ2/V2 kg/min because of the inflow into the tank. Therefore, the following equations
describe the mass of salt in tanks

Q′
1 = −rQ1

V1
+ rQ2

V2
, Q1(0) = A1

Q′
2 = rQ1

V1
− rQ2

V2
, Q2(0) = A2.

(3.1)
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V

V
1

2

Figure 3.1: double tank

Consider the situation when initially the first tank contains 100 l of pure water, and the
second tank contains 2 kg salt dissolved in 75 l solution. Suppose the solutions are pumped in
pipes with a rate of 3 l/min. Then Eq. (3.1) has the form

Q′
1 = − 3

100Q1 +
1
25Q2, Q1(0) = 0

Q′
2 = 3

100Q1 − 1
25Q2, Q2(0) = 2.

The characteristic polynomial of the coefficient matrix is

det

(

− 3
100 − λ 1

25
3

100 − 1
25 − λ

)

=

(

λ+
3

100

)(

λ+
1

25

)

− 3

100

1

25
= λ

(

λ+
7

100

)

.

This yields the eigenvalues λ = 0,− 7
100 , and the corresponding eigenvectors (4, 3)T and (−1, 1)T .

Therefore, the general solution of the system is
(

Q1
Q2

)

= c1

(

4
3

)

+ c2e
− 7

100
t
( −1

1

)

.

The initial conditions give

Q1 =
8

7
− 8

7
e−

7

100
t, Q2 =

6

7
+

8

7
e−

7

100
t.

✷
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t

Q

Figure 3.2: The mass of salt in tanks, red: Q1(t), blue: Q2(t)

In the next examples, we show nonlinear population models.

Example 3.18 (predator-prey model) Suppose we have a population where there are two
species: a predator and a prey. So we suppose that the first population preys upon the second
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one, but the second population lives on a different kind of food. An example is foxes and rabbits
living in a same area, or a lake with two kind of fishes where the first species preys on the second
one.

Let x = x(t) and y = y(t) denote the number or the size of the prey and the predator
population at time t, respectively. We suppose that without the presence of predators the prey
population increases ideally, i.e., it can be described by the Malthus-model with a growth rate
a > 0 (in the environment food is sufficient for the preys). Similarly, the size of the predator
population decreases exponentially without the prey population with a negative growth rate
−c. On the other hand, the size of the prey population decreases when the predator population
is present. It is natural to assume that the mortality rate is proportional to the number of
encounters between the two species, so the rate of decrease is assumed to be −bxy. Similarly,
the rate of increase of the predator population has the form dxy. We get therefore the predator-
prey model

x′ = x(a− by)
y′ = y(−c+ dx),

(3.2)

which is a two-dimensional system of nonlinear differential equations. Here all parameters are
positive: a, b, c, d > 0.

In Figure 3.3, we plotted the numerical solution of (3.2) corresponding to parameters a = 2,
b = 0.5, c = 1, d = 0.25 and initial conditions x(0) = 10 and y(0) = 6. The blue curve
represents the prey, the red curve represents the predator population. We can observe that the
corresponding solutions are periodic. We can see that when the predator population is small,
the size of the prey population is increasing, and vice versa, when the predator population is
small, the prey population increases. ✷
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0

2

4

6

8

10

t

x,y

Figure 3.3: predator-prey model, blue:
prey, red: predator population
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Figure 3.4: competing species, blue: x(t),
red: y(t)

Example 3.19 (competing species) Now we consider another situation of a two species
model. We suppose that the two species are similar, both compete for the same food. We
assume that in the absence of the other population the size of both species can be described by
the logistic model, and the rate of change of each population decreases is proportional to the
number of encounters of the two species. The resulting model has the form

x′ = x(a− bx− cy)
y′ = y(d− ex− fy),

(3.3)

where a, b, c, d, e, f > 0.
In Figure 3.4, we plotted the numerical solution of (3.3) with a = 3, b = 2, c = 1, d = 2,

e = 1, f = 1 and the initial conditions x(0) = 1.5 and y(0) = 2. The blue curve is the graph
of x and the red curve is the graph of y. We observe that both solutions converge to a positive



56 3 Systems of linear differential equations

limit, which means that both species survive and after long time, there is balance of the two
species. In Example 4.15 below, we examine again this particular system and we give a more
complete analysis of the behavior of solutions. ✷



Chapter 4

Stability theory of differential equations

In this chapter, we investigate some basic geometric properties of autonomous systems, the
notion of Liapunov stability, the classification of equilibriums of a planar linear system, the
method of linearization and the Liapunov function technique.

4.1 Autonomous systems

The general form of a first-order explicit nonlinear system is

x′ = f(t,x),

where f : R × R
n → R

n. In many applications the variable t denotes time, so when the
right-hand-side does not depend on t we call the equation autonomous or time-independent or
time-invariant . Therefore, the general form of a first-order autonomous differential equation is

x′ = f(x), (4.1)

where f : Rn → R
n, or f : D → R

n and D ⊂ R
n. It can be checked by substitution that if y(t)

is a solution of Eq. (4.1), then the function x(t) = y(t + τ) is also a solution of Eq. (4.1) with
arbitrary τ ∈ R. Therefore time translation of a solution of an autonomous equation is also a
solution of the same equation. So without the loss of generality, we assume that the initial time
is t0 = 0, so the initial condition associated to Eq. (4.1) is

x(0) = z. (4.2)

We assume throughout this chapter that the IVP (4.1)-(4.2) has a unique solution corresponding
to any z ∈ R

n, and this solution is denoted by x(t; z).
A constant solution x(t) = u of Eq. (4.1) is called equilibrium solution, and u is called

equilibrium point or critical point or just simply equilibrium. The derivative of a constant
solution is constant 0, so the equilibrium points are the roots of the function f .

Theorem 4.1 The vector u is an equilibrium point of Eq. (4.1) if and only if f(u) = 0.

An integral curve or a solution curve of a solution x(t) = (x1(t), . . . , xn(t))
T , t ∈ I is the

curve
{(t,x(t)) : t ∈ I} ⊂ R× R

n,

i.e., the graph of the solution. In practice we usually draw the ith component integral curves
{(t, xi(t)) : t ∈ I} (i = 1, . . . , n).

For 2 or 3-dimensional systems there is an other frequently used illustration of the solutions.
We call the curve

{x(t) : t ∈ I} ⊂ R
n

as the trajectory or orbit of the solution, the space R
n is called the phase space (in the 2-

dimensional case phase plane). A set of trajectories of a differential equation is called phase
portrait of the equation. Typically, we draw the trajectories as directed curves, since we are
interested in seeing the path of the solution as time increases.

Example 4.2 Consider the second-order linear homogeneous scalar equation

v′′ + v = 0.

57
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It is easy to see that its general solution is v(t) = c1 cos t+ c2 sin t. We can rewrite the second-
order equation in a system form by introducing the variables x = v, y = v′ and x = (x, y)T :

x′ =
(

0 1
−1 0

)

x.

We solve this system using the ICs

x(0) = (0.5, 0)T , x(0) = (1, 0)T , x(0) = (0, 1.5)T , x(0) = (0, 2)T ,

respectively. The corresponding component-wise integral curves can be seen in Figures 4.1 and
4.2. For example the solution corresponding to x(0) = (1, 0)T is x(t) = (cos t,− sin t)T . Its
trajectory is

x = cos t, y = − sin t,

which yields a circle centered at the origin with radius 1, since

x2 + y2 = 1

is satisfied along the solution. For the general solution x = c1 cos t+ c2 sin t and y = −c1 sin t+
c2 cos t we get

x2 + y2 = (c1 cos t+ c2 sin t)
2 + (−c1 sin t+ c2 cos t)

2

= c21 cos
2 t+ c22 sin

2 t+ 2c1c2 cos t sin t+ c21 sin
2 t+ c22 cos

2 t− 2c1c2 cos t sin t

= c21 + c22.

Therefore each trajectories are circles centered at the origin. See Figure 4.3, where four trajec-
tories (circles) are displayed together with the direction field of the system. We can see that the
trajectories are tangent to the direction field.

✷
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Figure 4.1: x(t)
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Figure 4.2: y(t)
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Figure 4.3: phase plain

The next results summarize some important geometrical properties of autonomous systems.

Theorem 4.3 Different trajectories of an autonomous differential equation do not intersect
each other.

Theorem 4.4 A trajectory of an autonomous differential equation is either

(i) a simple curve (which has no intersection with itself) or

(ii) a simple closed curve or

(iii) a single point.



4.2 Stability notions 59

A trajectory is a single point if and only if it corresponds to a constant equilibrium. It is a
simple closed curve if and only if it corresponds to a periodic solution.

Theorem 4.5 If for a solution x the limit

lim
t→∞

x(t) = u (or lim
t→−∞

x(t) = u)

exists and it is finite, then u is an equilibrium point of Eq. (4.1).

4.2 Stability notions

The norm of a vector x = (x1, . . . , xn)
T ∈ R

n is defined by ‖x‖ =
(

∑n
i=1 x

2
i

)1/2
. Let u be a

fixed equilibrium of Eq. (4.1). The equilibrium u is called stable, if for every ε > 0 there exists
δ > 0, such that if ‖z− u‖ < δ, then ‖x(t; z)− u‖ < ε holds for all t ≥ 0. The equilibrium u is
called unstable, if it is not stable.

The equilibrium u is asymptotically stable, if it is stable, and there exists σ > 0 such that if
‖z− u‖ < σ, then limt→∞ x(t; z) = u.

u
u+ε

u
u
u+δ

t0 t

x

−
−

δ
ε

Figure 4.4: stable equilibrium

u
u+ε
u+σ

−
u
u

−ε
σ

t0 t

x

Figure 4.5: asymptotically stable equilibrium

If an equilibrium is stable, then all solutions remain close to it assuming that the initial
condition is close enough to the equilibrium (see Figure 4.4). If the equilibrium is asymptotically
stable, then all solutions converge to the equilibrium, assuming the IC is close enough to the
equilibrium (see Figure 4.5).

The above definitions of stability are called Liapunov stability. We note that there are many
different variants of the notion of stability investigated in the engineering and mathematical
literature.

Example 4.6 Consider the scalar equation

x′ = x− x3.

It has three equilibriums: u = 0, 1 and −1, which are the roots of the equation u − u3 = 0. In
Figure 4.6, some integral curves and the directional field are displayed. It can be seen that if
the solution is between the lines x = 0 and x = 1, then the right hand side of the equation is
positive, so the derivative of the solution is positive, therefore the solution is increasing. It can
be shown that all solutions in this horizontal strip converge to 1. Similar argument gives that
all solutions which start above 1 will converge to 1 monotone decreasingly, all solutions which
start between 0 and −1 converge to −1 monotone decreasingly, and finally, all solutions which
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start below −1 converge to −1 monotone increasingly. This means, in particular, that 1 and −1
are asymptotically stable equilibriums and 0 is an unstable equilibrium.

✷

0 1 2 3 4 5
−2

−1

0

1

2

t

x

Figure 4.6: integral curves of Example 4.6

Example 4.7 Consider again the 2× 2 system examined in Example 4.2 whose trajectories can
be seen in Figure 4.3. The system has only one equilibrium, u = 0. This is stable, since if we
take any ε > 0, then all trajectories starting from the neighborhood of the origin of radius δ = ε
will remain inside the neighborhood of radius ε, because all trajectories are circles around the
origin. The equilibrium is not asymptotically stable since the trajectories do not converge to
the origin. This can also be seen from the formula of the solutions x(t) = c1 cos t+ c2 sin t and

y(t) = −c1 sin t+ c2 cos t, because its amplitude is constant
√

x2(t) + y2(t) =
√

c21 + c22. ✷

4.3 Scalar nonlinear autonomous equations

Example 4.8 Consider again the equation x′ = x − x3 examined in Example 4.6. There is
a simple graphical visualization of the trajectories of the scalar equation. Since it is a scalar
equation, the trajectories are one-dimensional objects, so they are graphed on the real line.

The trajectory of an equilibrium is a point on the real line. The trajectory of a solution
corresponding to an initial value between 0 and 1 is the open interval (0, 1), since, as it was
explained in Example 4.6, the solution approaches to 1 monotone increasingly as t → ∞, and
it can be shown that the solution tends to 0 monotone decreasingly as t → −∞. Hence the
trajectory of any solution starting between 0 and 1 is the whole interval (0,1). Similarly, (−1, 0),
(1,∞) and (−∞,−1) are trajectories of the equation besides the three equilibrium points −1, 0
and 1.

This property can be easily visualized in Figure 4.7. Here the horizontal axis is the x-axis,
the phase space of the solution. The equilibrium points are denoted by circles on the x-axis,
and they divide the x-axis into 4 intervals.

On the vertical axis, the graph of the right-hand side of the equation, i.e., in this case the
function x− x3 is plotted. On the interval (0, 1) the function is positive, therefore the solution
is monotone increasing. Therefore the interval (0, 1) on the x-axis is directed to the right.
Similarly, the interval (−∞,−1) is directed to the right since the graph on this interval is above
the x-axis. The intervals (−1, 0) and (1,∞) are directed to the left, since the graph over these
intervals are below the x-axis.
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The equilibrium points −1 and 1 are asymptotically stable, since all solution starting close
to the equilibrium tend to it. But 0 is an unstable equilibrium, since the solutions which start
close to 0 go away from 0. In the figure, the stable equilibriums are denoted by a solid dot, the
unstable equilibrium is denoted by an open circle. ✷

x’

x−1 0 1

Figure 4.7: red: trajectories of x′ = x−x3,
blue: graph of x− x3

x’

xu
1

u
2

u
3

u
4

Figure 4.8: red: trajectories of x′ = f(x),
blue: graph of f(x)

In general, consider the scalar nonlinear autonomous differential equation

x′ = f(x). (4.1)

The equilibriums of Eq. (4.1) are the solutions of f(u) = 0. The dynamics of the solutions can
be visualized in Figure 4.8. In this figure, Eq. (4.1) has four equilibriums, u1, u2, u3 and u4. u1
and u3 are unstable, and u2 and u4 are asymptotically stable. The asymptotically stable and
the unstable equilibriums are represented by a solid and open circles, respectively.

We can see that a trajectory of a scalar vector field can converge to an equilibrium in a
monotonic way, or it can converge to ∞ or −∞, or it is a single point (an equilibrium point).
This is the only dynamics which can happen, no oscillation can occur in the scalar case. We will
see that more complicated dynamics can happen in higher dimension.

4.4 Two-dimensional autonomous homogeneous linear systems

Consider
x′ = Ax, (4.1)

where A is a 2× 2 invertible matrix. Then the only equilibrium of the equation is u = 0. It is
known from linear algebra that A is invertible if and only if 0 is not an eigenvalue of A.

Let λ1 and λ2 be the eigenvalues of A. We consider 6 cases.

Case 1: λ1 6= λ2 are real eigenvalues of A of the same sign (λ1λ2 > 0)

In this case the real eigenvalues are either both positive or both negative. The general
solution of the equation is

x(t) = c1e
λ1tξ(1) + c2e

λ2tξ(2), (4.2)

where c1, c2 are arbitrary constants and ξ(1), ξ(2) are the eigenvectors of A.
Consider the special case when c2 = 0 and c1 6= 0. Then the corresponding solution is

x = c1e
λ1tξ(1), i.e.,

x1 = c1e
λ1tξ

(1)
1

x2 = c1e
λ1tξ

(1)
2 .
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Dividing the two equations, we get

x2
x1

=
ξ
(1)
2

ξ
(1)
1

,

therefore

x2 =
ξ
(1)
2

ξ
(1)
1

x1.

Its graph is a line through the origin with slope ξ
(1)
2 /ξ

(1)
1 . Hence the trajectory is the open

half-line through the vector ξ(1) if c1 > 0, and the open half-line through the vector −ξ(1) if
c1 < 0. Similarly, the trajectory of the solution corresponding to c1 = 0 and c2 6= 0 is the open
half-line starting at the origin through the vector ξ(2) or the opposite direction −ξ(2).

In the general case when c1 6= 0 and c2 6= 0 the trajectories are curves defined by the system

x1 = c1e
λ1tξ

(1)
1 + c2e

λ2tξ
(2)
1 (4.3)

x2 = c1e
λ1tξ

(1)
2 + c2e

λ2tξ
(2)
2 . (4.4)

If both λ1 and λ2 are negative, then the above equations yield x1(t) → 0 and x2(t) → 0 if
t → ∞, hence the curves approach the origin as t → ∞. Therefore in this case the origin is
asymptotically stable, and all trajectories are directed towards the origin. In the opposite case
when both eigenvalues are positive then x1(t) → ∞ and x2(t) → ∞ as t → ∞. Hence the
trajectories are directed away from the origin and go to infinity.

Suppose λ1 < λ2 < 0. Then Eq. (4.2) yields

x(t) = eλ2t
(

c1e
−(λ2−λ1)tξ(1) + c2ξ

(2)
)

. (4.5)

Since e−(λ2−λ1)t → 0 as t → ∞, for large t we have

x(t) ≈ c2e
λ2tξ(2), (4.6)

hence the graph of the solution is close to the line determined by the vector ξ(2). It can be
shown that these curves are tangent to the line through ξ(2). A typical phase portrait of the
system can be seen in Figure 4.9. The equilibrium is called an asymptotically stable node or
sometimes an asymptotically stable improper node.

Conversely, if 0 < λ2 < λ1, then the difference is that as t → ∞ both coordinates of the
solution go to infinity along the trajectory. And when t → −∞, then the solutions converge to
the origin. It can be shown that if t is negative and its absolute values is large, then from (4.5)

it follows (4.6), hence the trajectories converge to the line through ξ(2) as t → −∞. Typical
trajectories can be seen in Figure 4.10. In this case the the origin is called unstable node or an
unstable improper node.

Case 2: λ1 = λ2 are real eigenvalues of A with geometric multiplicity 2

The solution of Eq. (4.1) is again (4.2), but this parametric equation defines a half-line not
only for the case c1 = 0 or c2 = 0, but also for c1 6= 0 and c2 6= 0. Indeed, in this case the system
(4.3)-(4.4) has the form

x1 = eλ1t
(

c1ξ
(1)
1 + c2ξ

(2)
1

)

x2 = eλ1t
(

c1ξ
(1)
2 + c2ξ

(2)
2

)

,

which yields x2 = mx1 with m = (c1ξ
(1)
2 + c2ξ

(2)
2 )/(c1ξ

(1)
1 + c2ξ

(2)
1 ). Therefore in this case,

all non-equilibrium trajectories are open half-lines starting at the origin. If λ1 < 0, then all
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Figure 4.9: asymptotically stable node
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Figure 4.10: unstable node

trajectories are directed toward the origin, and in the case λ1 > 0 all trajectories are directed
away from the origin (see Figures 4.11 and 4.12). The equilibrium is called node or proper node
(to distinguished it from Case 1), which is asymptotically stable if λ1 < 0, and it is unstable
if λ1 > 0. In this case, the eigenvectors do not denote special direction. In fact, all nonzero
vectors are eigenvectors.
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Figure 4.11: asymptotically stable node
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Figure 4.12: unstable node

Case 3: λ1 = λ2 real eigenvalues of A with geometric multiplicity 1

In this case, the general solution of (4.1) has the form

x(t) = c1e
λ1tξ(1) + c2e

λ1t
(

tξ(1) + η
)

,

where η is the generalized eigenvector corresponding to λ1. For c2 = 0 and c1 6= 0, we get the
half-line trajectories from the origin through the vectors ξ(1) and −ξ(1), respectively. In general,
the solution x is a multiple with the scalar time-dependent factor eλ1t of the vector

v(t) = c1ξ
(1) + c2η + tc2ξ

(1).

The graph of v(t) is a line parallel to the vector ξ(1). (See Figure 4.13, where it is the line

through the vector a = c1ξ
(1) + c2η parallel to the vector ξ(1).) Therefore all half-lines starting

from the origin intersect this trajectory in a single point. The trajectory is plotted in Figure 4.13
which is tangent to the line through the origin with direction ξ(1).

The equilibrium is also called improper node or sometimes degenerate node. It is asymptot-
ically stable if λ1 < 0, and it is unstable if λ1 > 0 (see Figures 4.14 and 4.15).
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Figure 4.13: construction of
the trajectory
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Figure 4.14: asymptotically
stable improper node
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Figure 4.15: unstable im-
proper node

Case 4: λ1 6= λ2 real eigenvalues of A of opposite sign (λ1λ2 < 0)

Suppose, e.g., λ2 < 0 < λ1. The general solution of Eq. (4.1) is again (4.2), so there are
two lines, more precisely, four half-line trajectories (the cases of c1 = 0 or c2 = 0). For large t
eλ2t ≈ 0, therefore

x(t) ≈ c1e
λ1tξ(1)

holds, so the trajectories approach the line determined by the vector ξ(1). In the opposite case,
when t → −∞ it holds eλ1t ≈ 0, which yields that the trajectories approach the line determined
by ξ(2) as t → −∞. Therefore the shapes of the trajectories are similar to “hyperbolas”, as
it can be seen in Figure 4.16. The direction of the two half-lines corresponding to the positive
eigenvalue is away from the origin, and the direction of the half-lines corresponding to negative
eigenvalue is to the origin. The directions of the other trajectories are fit to these directions
(see Figure 4.16). The line determined by the positive eigenvalue is called unstable subspace,
the subspace corresponding to the negative eigenvalue is called stable subspace. All trajectories
approach to the unstable subspace as t → ∞, and to the stable subspace as t → −∞. The
equilibrium is called saddle point . A saddle point is always unstable, since every solutions which
do not start on the stable subspace go away from any neighborhood of the origin.
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Figure 4.16: saddle point, unstable

Case 5: λ1,2 = α± iβ (α 6= 0) complex eigenvalues of A

Let ξ = u+ iv be the eigenvector of A corresponding to λ = α+ iβ. Then

Aξ = λξ = (α+ iβ)(u+ iv) = αu− βv + i(βu+ αv),

so taking the real and imaginary parts of the equation we get

Au = αu− βv and Av = βu+ αv.
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Let T be the 2× 2 matrix whose first column is u and its second column is v, i.e., T = (u,v).
Then

AT = (Au,Av) = (αu− βv, βu+ αv) = (u,v)
(

α β
−β α

)

= T
(

α β
−β α

)

.

This implies that

T−1AT =
(

α β
−β α

)

.

Let x = Ty, i.e., y = T−1x. Then

y′ = T−1x′ = T−1Ax = T−1ATy,

i.e., the new variable y = (y1, y2)
T satisfies the differential equation

y′1 = αy1 + βy2
y′2 = −βy1 + αy2.

(4.7)

Consider the polar coordinates form (r, θ) of (y1, y2). Then y1 = r cos θ and y2 = r sin θ and
thus

r2 = y21 + y22 and tg θ =
y2
y1

.

Differentiating both sides of the first equation and using relations (4.7), we get

2rr′ = 2y1y
′
1 + 2y2y

′
2 = 2y1(αy1 + βy2) + 2y2(−βy1 + αy2) = 2α(y21 + y22) = 2αr2.

Therefore equation r′ = αr holds along the motion, so r = c1e
αt. This yields that the distance

from the origin along the motion increases exponentially if α > 0, and it is exponentially
decreasing to 0 if α < 0.

Differentiating the equation of θ, we get

1

cos2 θ
θ′ =

y′2y1 − y′1y2
y21

=
(−βy1 + αy2)y1 − (αy1 + βy2)y2

y21
= −β

y21 + y22
y21

= −β
r2

y21
,

so θ′ = −β, hence θ = −βt + θ0. Therefore the point rotates with a constant speed around
the origin along the motion. This yields that the trajectories of the y variable are spirals, see
Figures 4.17 and 4.18.
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Figure 4.17: trajectories of Eq. (4.7),
λ = α± iβ, α < 0
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Figure 4.18: trajectories of Eq. (4.7),
λ = α± iβ, α > 0

Applying the linear transformation T on the spirals, we get curves of the form shown in
Figures 4.19 and 4.20. The name of the equilibrium is spiral point, or focus in this case which
is asymptotically stable if α < 0, and it is unstable if α > 0.
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Figure 4.19: asymptotically stable spiral
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Figure 4.20: unstable spiral

Case 6: λ1,2 = ±iβ are complex eigenvalues of A

The derivation of the differential equations for the polar coordinates r and θ are valid in
the case when α = 0, so in this case, we have r′ = 0, hence r is constant along the solutions.
Hence the trajectories of Eq. (4.7) are circles centered at the origin (see Figure 4.21). The linear
transformation T deforms the circles into ellipses, see Figure 4.22. The equilibrium is called
center . The center is always stable but it is not asymptotically stable.
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Figure 4.21: trajectories of Eq. (4.7), λ = ±iβ
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Figure 4.22: center, stable

4.5 Stability of linear systems

Consider the linear homogeneous system

x′ = A(t)x, (4.1)

where A : [0,∞) → R
n×n is continuous. u = 0 is an equilibrium of the system, i.e., the constant

function 0 is a solution of the equation, and if we assume that the matrix A(t) is invertible for
all t ≥ 0, then 0 is the only equilibrium point.

The following theorem can be proved.

Theorem 4.9 The equilibrium u = 0 of Eq. (4.1) is

(a) stable if and only if all solutions of Eq. (4.1) are bounded;

(b) asymptotically stable if and only if all solutions x of Eq. (4.1) satisfy

lim
t→∞

x(t) = 0.
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Consider now the autonomous version of Eq. (4.1), i.e., consider

x′ = Ax. (4.2)

Then the stability of the trivial equilibrium u = 0 is determined by the eigenvalues of the
coefficient matrix A.

Theorem 4.10 Let λ1, . . . , λn be the eigenvalues of the n× n matrix A. Then the equilibrium
u = 0 of Eq. (4.2) is

(a) stable if and only if
Reλi ≤ 0, i = 1, . . . , n,

and if Reλi = 0 for some i, then the geometric multiplicity of λi equals to its algebraic
multiplicity;

(b) asymptotically stable if and only if

Reλi < 0, i = 1, . . . , n.

In some special cases, the asymptotic stability can be determined without computing the
eigenvalues of A.

Theorem 4.11 Let A = (aij) be an n× n matrix which satisfies

aii < 0, i = 1, . . . , n.

If the matrix A is row diagonally dominant, i.e.,

|aii| >
n
∑

j=1

j 6=i

|aij |, i = 1, . . . , n,

or if A is column diagonally dominant, i.e.,

|ajj | >
n
∑

i=1

i 6=j

|aij |, j = 1, . . . , n,

then the equilibrium u = 0 of Eq. (4.2) is asymptotically stable.

4.6 Stability of nonlinear systems

Consider first the so-called quasi-linear differential equation

x′ = Ax+ g(x), (4.1)

where we assume g(0) = 0 and

lim
x→0

‖g(x)‖
‖x‖ = 0. (4.2)

The first condition implies that u = 0 is an equilibrium of Eq. (4.1), the second condition yields
that the function g contains only terms which are higher-order than linear.

Omitting the nonlinear terms in Eq. (4.1), i.e., the function g, we get the so-called linearized
equation:

x′ = Ax. (4.3)

The next theorem shows that the asymptotic stability and the instability properties of the
equilibrium u = 0 of the linearized equation Eq. (4.3) are preserved for the equilibrium u = 0
of the nonlinear equation Eq. (4.1).
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Theorem 4.12 If the equilibrium u = 0 of the linearized equation Eq. (4.3) is asymptotically
stable, then the equilibrium u = 0 of the quasi-linear equation Eq. (4.1) is also asymptotically
stable.

If the matrix coefficient A of the linearized equation Eq. (4.3) has an eigenvalue with positive
real part, then the equilibrium u = 0 of the quasi-linear equation Eq. (4.1) is unstable.

If the equilibrium u = 0 of the linearized equation Eq. (4.3) is stable but not asymptotically
stable, then the equilibrium u = 0 of the quasi-linear equation can be asymptotically stable,
stable or unstable depending on the nonlinear term g (see Examples 4.19 and 4.20 below).

In the two-dimensional case we can draw the trajectories of the quasi-linear equation in the
phase plane. It can be shown that the shape of the trajectories are similar to the shape of the
trajectories of the corresponding linearized equation, in a small neighborhood of the origin they
can be obtained from the trajectories of the linearized equation using a nonlinear deformation.

Example 4.13 Determine the stability property of the trivial equilibrium (0, 0) of the nonlinear
system

x′ = x+ y − 2xy

y′ = 4x+ y + x2.

Nonlinear terms of the system are

g(x, y) =

(

−2xy
x2

)

.

This function satisfies condition (4.2), since using the polar transformation x = r cos θ, y = r sin θ
we get

lim
x→0

‖g(x)‖2
‖x‖2 = lim

(x,y)→(0,0)

(−2xy)2 + x4

x2 + y2

= lim
r→0

4r4 cos2 θ sin2 θ + r4 cos4 θ

r2

= lim
r→0

r2(4 cos2 θ sin2 θ + cos4 θ) = 0.

The associated linearized equation is

x′ = x+ y

y′ = 4x+ y.

The eigenvalues of the coefficient matrix
(

1 1
4 1

)

are 3 and −1, so the trivial equilibrium of the linearized equation is a saddle point, which is
unstable. Since the coefficient matrix has a positive eigenvalue, we get that the trivial equilibrium
(0, 0) of the nonlinear equation is also unstable. ✷

Consider now the general autonomous nonlinear system

x′ = f(x), (4.4)

and let u be a fixed equilibrium. We are interested in examining the behavior of the difference
x−u for a solution x starting from an initial condition close to u. So introduce the new variable

y = x− u.
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Then, using that u is constant, we get that y satisfies the differential equation

y′ = x′ = f(x) = f(y + u).

Consider the first-order Taylor approximation of f around u, where the error term is denoted
by g:

f(y + u) = f(u) + f ′(u)y + g(y)

Here f ′ denotes the Jacobian of f , i.e., the n × n matrix where element in the ith row and the
jth column is the partial derivative of the ith component function of f with respect to the jth
variable.

Since u is an equilibrium, f(u) = 0, thus we get the quasi-linear system

y′ = f ′(u)y + g(y).

Theorem 4.12 yields the following result.

Theorem 4.14 Let u be an equilibrium of Eq. (4.4). Then if the trivial equilibrium 0 of the
linearized equation

y′ = f ′(u)y

is asymptotically stable, then the equilibrium u of the nonlinear equation Eq. (4.4) is also asymp-
totically stable. If the matrix f ′(u) has an eigenvalue with positive real part, then the equilibrium
u of the nonlinear equation Eq. (4.4) is unstable.

Example 4.15 Find all equilibriums of the nonlinear system

x′ = x(3− 2x− y)

y′ = y(2− x− y),

and determine the stability properties of the equilibriums.
The equilibriums are the solutions of the nonlinear algebraic system

x(3− 2x− y) = 0

y(2− x− y) = 0.

We have four cases:
(i) x = 0 and y = 0, hence (0, 0) is an equilibrium.
(ii) x = 0 and 2− x− y = 0. Then the solution is (0, 2).
(iii) 3− 2x− y = 0 and y = 0. The corresponding equilibrium is (1.5, 0).
(iv) 3− 2x− y and 2− x− y = 0. This yields the equilibrium (1, 1).

The right-hand-side in vector form is

f(x, y) =

(

3x− 2x2 − xy
2y − xy − y2

)

,

its Jacobian is

f ′(x, y) =
(

3− 4x− y −x
−y 2− x− 2y

)

.

Consider the four equilibriums:
(i) (0, 0). In this case

f ′(0, 0) =
(

3 0
0 2

)

,

which is diagonal matrix, so its eigenvalues are 3 and 2. Therefore the linearized equation is an
unstable node, so the equilibrium (0, 0) of the nonlinear system is also unstable.

(ii) (0, 2). We have

f ′(0, 2) =
(

1 0
−2 −2

)

,
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which is a lower triangular matrix, so its eigenvalues are the diagonal elements, 1 and −2.
Therefore, the trivial equilibrium of the linearized equation is a saddle point, which is unstable.
Therefore the equilibrium (0, 2) of the nonlinear system is also unstable.

(iii) (1.5, 0). In this case

f ′(1.5, 0) =
( −3 −1.5

0 0.5

)

,

which is upper triangular, so its eigenvalues are −3 and 0.5. Therefore the trivial equilibrium of
the linearized equation is a saddle point, which is unstable. Therefore the equilibrium (1.5, 0)
of the nonlinear system is also unstable.

(iv) (1, 1). We have

f ′(1, 1) =
( −2 −1

−1 −1

)

,

which have eigenvalues λ1,2 =
−3±

√
5

2 . Therefore the trivial equilibrium of the linearized equation
is an asymptotically stable node, so the equilibrium (1, 1) of the nonlinear equation is also
asymptotically stable.

In Figure 4.23 we plotted the trajectories of the nonlinear system. We can see that in a small
neighborhood of the given equilibrium the shape of the trajectories are similar to the shape of
the trajectories of the associated linearized equation. ✷
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Figure 4.23: trajectories of the nonlinear system of Example 4.15

4.7 Liapunov functions

Let U ⊂ R
n be an open set satisfying 0 ∈ U . A function V : U → R is called positive (negative)

definite if
V (0) = 0 and V (x) > 0 (V (x) < 0) x 6= 0, x ∈ U.

A function V is called positive (negative) semidefinite if

V (0) = 0 and V (x) ≥ 0 (V (x) ≤ 0) x 6= 0, x ∈ U.

Clearly, V is a negative (semi)definite function if and only if −V is a positive (semi)definite
function. In many applications, the domain of V is U = R

n.

Example 4.16 Let
V (x, y) = ax2 + bxy + cy2
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be a quadratic two-variable function. Suppose a 6= 0. We rewrite V as

V (x, y) = a
(

x2 +
b

a
xy
)

+ cy2 = a
((

x+
b

2a
y
)2

− b2

4a2
y2
)

+ cy2 = a
(

x+
b

2a
y
)2

+
4ac− b2

4a
y2.

This shows that if
a > 0 and 4ac− b2 ≥ 0,

then V is positive semidefinite. And if

a < 0 and 4ac− b2 ≥ 0,

then V is negative semidefinite.
V is positive definite if and only if

a > 0 and 4ac− b2 > 0,

since if V (x, y) = 0, then

a
(

x+
b

2a
y
)2

= 0 and
4ac− b2

4a
y2 = 0,

which yields y = 0, and so x = 0.
Similarly, V is negative definite if and only if

a < 0 and 4ac− b2 > 0.

✷

The n-dimensional quadratic function has the general form

V : Rn → R, V (x1, . . . , xn) =
n
∑

i=1

n
∑

j=1

aijxixj .

We can rewrite it using a vector notation as

V (x) = xTAx,

where
x = (x1, . . . , xn)

T , A = (aij).

The following theorem is valid.

Theorem 4.17 (Sylvester) The quadratic function V (x) = xTAx is positive definite if and
only if all the leading principal minors of the matrix A are positive, i.e.,

a11 > 0,
∣

∣

∣

a11 a12
a21 a22

∣

∣

∣ > 0,

∣

∣

∣

∣

∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣

∣

∣

∣

∣

> 0, . . . ,

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

...
an1 an2 an3 · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0.

Consider again the nonlinear system

x′ = f(x) (4.1)

where we assume f(0) = 0, i.e., u = 0 is an equilibrium of the system. In this section, we
investigate the stability of the trivial equilibrium 0.
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The component functions of f are denoted by f(x) = (f1(x), . . . , fn(x))
T . Let V : R

n → R

be continuously partially differentiable with respect to all variables. Compute the derivative of
the composite function V (x(t)), where x(t) = (x1(t), . . . , xn(t))

T is a solution of Eq. (4.1):

dV

dt
(x(t)) =

∂V

∂x1
(x(t))x′1(t) + · · ·+ ∂V

∂xn
(x(t))x′n(t)

=
∂V

∂x1
(x(t))f1(x(t)) + · · ·+ ∂V

∂xn
(x(t))fn(x(t)).

The above formula motivates the following definition. The derivative of V with respect to
Eq. (4.1) is defined by the formula

V ′(x) =
∂V

∂x1
(x)f1(x) + · · ·+ ∂V

∂xn
(x)fn(x).

If the function V ′(x) is negative definite, then for every solution x(t) the composite function
V (x(t)) is monotone decreasing. Moreover, if V (x(t)) → 0 as t → ∞, then x(t) → 0 holds. This
is the background of the following theorem.

Theorem 4.18 (Liapunov) Suppose f(0) = 0, U ⊂ R
n is an open set, 0 ∈ U . Let V : U → R

be continuously differentiable with respect to all variables.

(a) If V is positive definite and V ′ is negative semidefinite, then the equilibrium 0 of Eq. (4.1)
is stable.

(b) If V is positive definite and V ′ is negative definite, then the equilibrium 0 of Eq. (4.1) is
asymptotically stable.

(c) If in every neighborhood of 0 there exists x such that V (x) > 0 and V ′ is positive definite,
then the equilibrium 0 of Eq. (4.1) is unstable.

A function V is called Liapunov function if its is positive definite and its derivative V ′ with
respect to Eq. (4.1) is negative semidefinite.

Example 4.19 Finding a Liapunov function in the form V (x, y) = ax2 + by2 show that the
trivial equilibrium (0, 0) of the system

x′ = −x3 − 2xy

y′ = 2x2 − 6y

is asymptotically stable.
Since we need V to be positive definite, we assume a > 0 and b > 0. Compute

V ′(x, y) = 2ax(−x3 − 2xy) + 2by(2x2 − 6y) = −2ax4 + (4b− 4a)x2y − 12by2.

For example if a = b, e.g., a = b = 1, then the term x2y cancels out, so

V ′(x, y) = −2x4 − 12y2

is negative definite. Therefore Theorem 4.18 yields that the trivial equilibrium is asymptotically
stable.

We note that the method of linearization does not work for this system, because its linearized
systems is x′ = 0, y′ = 0, which is stable but not asymptotically stable. Therefore Theorem 4.14
is not applicable. ✷
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Example 4.20 Finding a Liapunov function in the form V (x, y) = ax2 + by2 show that the
trivial equilibrium of the system

x′ = −x+ 5y2

y′ = −3xy

is stable.
Assuming a > 0 and b > 0 yields that V is positive definite. Consider

V ′(x, y) = 2ax(−x+ 5y2) + 2by(−3xy) = −2ax2 + (10a− 6b)xy2.

We can see that if 10a − 6b 6= 0, then the term (10a − 6b)x2y may take positive value, so the
sign of V ′ may be positive. Therefore V ′ is not necessary negative semidefinite. Therefore, we
select the parameters so that 10a − 6b = 0 holds. For example, let a = 3 and b = 5. Then
V ′(x, y) = −6x2, which is negative semidefinite, but not negative definite, since V (0, y) = 0 for
all y. So we can conclude that the trivial equilibrium is stable. ✷

4.8 Applications

Example 4.21 (damped pendulum) Consider again the equation of the pendulum which
was investigated in Example 2.26:

θ′′ +
γ

m
θ′ +

g

L
sin θ = 0. (4.1)

Here we suppose that γ > 0, i.e., the damping force cannot be neglected. Using the new variables
x1 = θ and x2 = θ′, we get an equivalent system

x′1 = x2

x′2 = − g

L
sinx1 −

γ

m
x2.

Its equilibriums are solutions of the algebraic system

x2 = 0

− g

L
sinx1 −

γ

m
x2 = 0,

which are x1 = kπ (k ∈ Z) and x2 = 0. There are infinitely many equilibriums, but they
determine two positions of the motions: the lower (l is even) and upper (l is odd) positions of
the pendulum, where it is in rest.

Use the method of linearization to determine the stability of the equilibrium points. Compute
first the Jacobian of the function

F (x1, x2) =

(

x2
− g

L sinx1 − γ
mx2

)

.

We have

F ′(x1, x2) =

(

0 1
− g

L cosx1 − γ
m

)

. (4.2)

Consider two cases:
1. Suppose k = 2j is even (lower rest position). Then

F ′(2jπ, 0) =

(

0 1
− g

L − γ
m

)

.
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The eigenvalues of this matrix are

λ1,2 =
− γ

m ±
√

γ2

m2 − 4g
L

2
. (4.3)

We distinguish three subcases:

(a) 0 < γ2

m2 < 4g
L (small damping). Then the eigenvalues are complex numbers with negative

real parts. Therefore, the trivial equilibrium is an asymptotically stable spiral, and hence the
equilibrium of the nonlinear system is also asymptotically stable.

(b) γ2

m2 = 4g
L (critical damping). In this case, the eigenvalue of the matrix is a negative real

number which has algebraic multiplicity 2 and geometric multiplicity 1. Therefore the trivial
equilibrium of the linearized equation is an asymptotically stable improper node, and hence the
equilibrium of the nonlinear system is also asymptotically stable.

(c) γ2

m2 > 4g
L (large damping). In this case, the two eigenvalues are both real, and we

can check that both are negative. Therefore the trivial equilibrium of the linearized equation
is an asymptotically stable node, and hence the equilibrium of the nonlinear system is also
asymptotically stable.

We have seen that in all the above cases the lower rest position is asymptotically stable.

2. Let k = 2j + 1 be odd (upper rest position). Then

F ′((2j + 1)π, 0) =

(

0 1
g
L − γ

m

)

,

therefore its eigenvalues are

λ1,2 =
− γ

m ±
√

γ2

m2 + 4g
L

2
.

These are always real numbers, one is positive and the other is negative. Therefore the triv-
ial equilibrium of the linearized equation is a saddle point, which is unstable, and hence the
equilibrium of the nonlinear system is also unstable.

Some numerically generated trajectories are plotted in Figure 4.24 in the case of a small
damping. We can see that the shapes of the trajectories of the linearized system are preserved
in a small neighborhood of the equilibrium point for the nonlinear system. The trajectories are
deformations of a spiral in the lower rest positions and deformations of a saddle point in the
upper rest positions. ✷
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Figure 4.24: m = 1, L = 1, γ = 0.5
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Figure 4.25: m = 1, L = 1, γ = 0

Example 4.22 (undamped pendulum) Consider again the pendulum equation Eq. (4.1) in
the case when the damping is omitted, i.e., γ = 0:

θ′′ +
g

L
sin θ = 0. (4.4)
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Rewriting it in a system form, we get

x′1 = x2

x′2 = − g

L
sinx1.

Here, similar to Example 4.21, the equilibrium points are (kπ, 0) where k ∈ Z.
In the upper rest position (when k is odd) the Jacobian matrix (4.2) with γ = 0 has one

positive and one negative eigenvalue, so the equilibrium of the nonlinear system is unstable by
the method of linearization.

In the lower rest points (for even k), it follows from relation (4.3) that the Jacobian has
purely imaginary eigenvalues. Therefore the trivial equilibrium of the linearized equation is a
center, so it is stable but not asymptotically stable. Therefore the method of linearized stability
does not work for this case.

We apply the method of Liapunov functions in this case. In conservative mechanical systems
the total energy is constant during the motion. In this case, we can select the total energy
function as the Liapunov function. In the pendulum system, the potential energy of the mass
m, i.e., the work done in lifting the mass from the lowest position to the position with angle
θ = x1 is mgL(1 − cosx1). Its kinetic energy is 1

2mL2(θ′)2 = 1
2mL2x22. Consider therefore the

function

V (x1, x2) = mgL(1− cosx1) +
1

2
mL2x22,

which is the total energy function. Let U be an open neighborhood of (0, 0) which does not
contain other equilibrium points. Then 1 − cosx1 > 0 holds for x1 6= 0 in U , therefore V is
positive definite on U . Compute V ′:

V ′(x1, x2) = mgL sinx1 · x′1 +mL2x2x
′
2

= mgL sinx1 · x2 −mL2x2
g

L
sinx1

= 0.

In particular, we got that V ′ is negative semidefinite. Therefore Theorem 4.18 yields that the
origin is stable.

Consider now the general (2jπ, 0) lower rest point. Introduce the new variables y1 = x1−2jπ
and y2 = x2. Then y′1 = x′1 = x2 = y2, y

′
2 = x′2 = − g

L sinx1 = − g
L sin(y1 + 2jπ) = − g

L sin y1,
hence we get

y′1 = y2

y′2 = − g

L
sin y1.

We have seen that the origin is a stable equilibrium of this system, it follows that (2jπ, 0) is a
stable equilibrium of the pendulum system.

In Figure 4.25, some trajectories of the undamped pendulum system can be seen. The lower
rest positions are deformations of a center, and the upper rest points are deformations of a
saddle points. We can observe that there are special trajectories which connect the consecutive
upper rest positions, i.e., there is a special starting position and initial velocity that the motion
approaches to the upper rest position as t → ∞. If the initial velocity is smaller then the
pendulum oscillates periodically (its trajectory is a closed curve). And if the initial velocity is
larger than this critical velocity, then the pendulum will rotate around forever. ✷





Chapter 5

Elements of bifurcation in differential equations

In this chapter, we present several simple examples which illustrate some basic notions of
bifurcation theory.

5.1 Scalar differential equations

We have seen in Section 4.3 that the dynamics of a scalar differential equation is simple. The
main question is to determine the equilibriums and their stability properties. The situation is
more interesting if the equation contains one or more parameters, and we are interested in how
the dynamics changes when we change the parameters. The goal is to find a critical parameter
value or values where passing this critical value some qualitative property of the differential
equation (e.g., the number of equilibrium points or their stability property) changes. Such
critical parameter value is called bifurcation point , change in dynamics is called bifurcation. In
this section without trying to present a complete theory, we rather show some typical elementary
examples and notions.

Example 5.1 Consider the scalar autonomous differential equation

x′ = x2 + a, (5.1)

where a ∈ R is a parameter in the equation.
First compute the equilibriums of Eq. (5.1), i.e., solve the algebraic equation u2 + a = 0.

Depending on the parameter a is positive, 0 or negative, this equations has 2, 1 or 0 solutions,
respectively, see Figures 5.1–5.3. Here a = 0 is a critical value, since if the parameter value is
below it, the equation has 2 equilibriums, and above this critical parameter value the equation
has no equilibrium. We can see that as a approaches to 0 from below then the two equilibriums,
u1 = −

√
−a and u2 =

√
−a both approach to 0, to the only equilibrium point in the case when

a = 0. Further, if a > 0 but arbitrary small, then the equilibrium point disappears. Such a
situation where equilibriums are destroyed or created as the parameter approaches to the critical
value is called saddle-node bifurcation or fold bifurcation.
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Figure 5.1: a < 0

x’

xu
1

Figure 5.2: a = 0

x’

x

Figure 5.3: a > 0

The most common way to depict the bifurcation can be seen in Figure 5.4, where values
of the equilibrium points are plotted as a function of the parameter. Such a picture is called
bifurcation diagram. For a < 0 there are two equilibrium points, x = ±

√
−a, which gives two

branches of the parabola. The negative equilibrium is asymptotically stable, and the positive

77
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equilibrium is unstable. It is a common notation in bifurcation diagrams that the solid curve
represents asymptotically stable equilibriums, the dotted curve denotes unstable equilibriums.
In this picture, as the parameter increases and passes through the critical value, two equilibriums
collide and disappear. For the equation x′ = x2 − a the situation is opposite, as the parameter
increases through the critical 0 parameter value, at 0 an equilibrium appears and for positive
parameter values two equilibrium appear, see Figure 5.5. Both figures (and similar figures)
describe saddle-node bifurcation. ✷

x

a

Figure 5.4: saddle-node, x′ = x2 + a

x

a

Figure 5.5: saddle-node, x′ = x2 − a

Example 5.2 Consider the scalar equation

x′ = ax− x2, (5.2)

where a ∈ R is a parameter. It is easy to check that for a 6= 0 the equation has two equilibriums,
u1 = 0 and u2 = a. For a = 0 the two equilibriums coincide. For a < 0 equilibrium u1 is
asymptotically stable, the equilibrium u2 is unstable, but for a > 0 the situation is opposite, u1
is unstable and u2 is asymptotically stable. See the bifurcation diagram in Figure 5.9. Such a
situation where stability properties of two branches of equilibrium points interchange is called
transcritical bifurcation. ✷
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Figure 5.6: a < 0

x’

xu
1

Figure 5.7: a = 0
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Figure 5.8: a > 0

Example 5.3 Consider the scalar equation

x′ = ax− x3, (5.3)

where a ∈ R is a parameter. For a < 0 the equation has only one equilibrium, u1 = 0, for
a > 0 it has three equilibriums, u1 = 0, u2 = −√

a and u3 =
√
a. At a = 0 all equilibriums

coincide. It follows from Figure 5.10 and 5.11 that u1 is asymptotically stable for a ≤ 0, and
it becomes unstable for a > 0 (see Figure 5.12). For a > 0, the other two equilibriums are
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x

a

Figure 5.9: transcritical bifurcation, x′ = ax− x2

asymptotically stable. The bifurcation diagram can be seen in Figure 5.13. Such bifurcation
where two equilibriums appear or disappear is called pitchfork bifurcation. ✷
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Figure 5.12: a > 0
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Figure 5.13: pitchfork bifurcation, x′ = ax− x3

Example 5.4 Assume that we have a population which is described by the logistic equation
(see Example 1.21)

P ′ = rP

(

1− P

K

)

.

We assume that there is a continuous harvesting (fishing in the lake, hunting animals, or death
due to predators) of the population which has the form AP

B+P , where A ad B are positive con-
stants, i.e., the equation describing the change of the population is

P ′ = rP

(

1− P

K

)

− AP

B + P
.
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The specific form of harvesting means that the rate tends monotone increasingly to a constant
A as P → ∞. Using the new variable x(t) = P (t/r)/K we can transform the above equation
into

x′ = x(1− x)− ax

b+ x
, (5.4)

where a = A/(rK) and b = B/K are positive parameters.
We can rewrite Eq. (5.4) in the form x′ = f(x), where

f(x) = x(g1(x)− g2(x)), g1(x) = 1− x and g2(x) =
a

b+ x
.

Clearly, u is an equilibrium of Eq. (5.4) if either u = 0 or g1(u) = g2(u). Therefore u0 = 0 is
always an equilibrium of Eq. (5.4).

We fix b = 1 first, and investigate the dependence of Eq. (5.4) on the single parameter a. If
a < 1, then the graphs of g1 and g2 have two intersections u1 = −

√
1− a and u2 =

√
1− a (see

Figure 5.14). It is easy to check that f is positive on (−1, u1) and (0, u2), and it is negative on
(u1, 0) and (u1,∞). This means that u1 and u2 are asymptotically stable and u0 is unstable.

If a ≥ 1 then the only equilibrium of Eq. (5.4) is u0 = 0 (see Figures 5.15 and 5.16), which is
asymptotically stable. This means that a = 1 is a pitchfork bifurcation for the case when b = 1
is fixed. The corresponding bifurcation diagram can be seen in Figure 5.17.
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Figure 5.15: a = 1, b = 1
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Figure 5.16: a > 1, b = 1
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Figure 5.17: pitchfork bifurcation, b = 1

Now consider the case when 0 < b < 1 is fixed. Then for a < b, we have three equilibriums
again,

u0 = 0, u1 =
1− b−

√

(1− b)2 − 4(a− b)

2
and u2 =

1− b+
√

(1− b)2 − 4(a− b)

2
.

(5.5)
It follows from Figure 5.18 that u1 and u2 are asymptotically stable and u0 is unstable. For
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a = b the equilibriums u0 = u1 = 0 and u2 are both asymptotically stable. For a > b but close
to b again, there are three equilibriums: 0 = u0 < u1 < u2 defined by (5.5), see Figure 5.20.
We observe that u0 and u2 are asymptotically stable and u1 is unstable. But further increasing
a, there is a critical parameter value when the graphs of g1 and g2 are tangential at a point x.
This happens when

1− x =
a

b+ x
and

d

dx
(1− x) =

d

dx

a

b+ x
.

Solving the above system, we get

a =
(b+ 1)2

4
and x =

1− b

2
.

So a = a0 := (b+1)2

4 is again a bifurcation point. For a = a0, there are two equilibrium points,
u0 = 0 and u1 = u2 = (1− b)/2. u0 is asymptotically stable and u1 is unstable. And for a > a0,
there is only one equilibrium, which is asymptotically stable. Here a = b is a transcritical, and
a = a0 is a saddle-node bifurcation point. See the bifurcation diagram in Figure 5.21, where the
three branches of equilibrium points u0, u1 and u2 are denoted by green, red and blue colors. We
note that as a approaches b from below then the bifurcation diagram in Figure 5.21 approaches
to Figure 5.17, where b = a0 = 1. ✷
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Figure 5.20: a > b, b < 1
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Figure 5.21: transcritical bifurcation at a = b, saddle-node bifurcation at a = a0, b < 1

5.2 Two-dimensional systems

We show only two simple examples for the two-dimensional case. A more systematic study is
beyond the goal of these lecture notes.
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Example 5.5 Consider now a two-dimensional system

x′ = a− x2,
y′ = −y.

(5.1)

To find the equilibriums, consider the algebraic system

a− x2 = 0,

−y = 0.

Clearly, if a < 0, it has no solution, for a = 0 the only equilibrium is at u0 = (0, 0), and for
a > 0 there are two equilibriums u1 = (

√
a, 0) and u2 = (−√

a, 0). Therefore at a = 0 there is
again a saddle-node bifurcation. The trajectories are shown in Figures 5.22–5.24. The picture
show that for a > 0 the equilibrium u1 is a saddle, u2 is an asymptotically stable node. This
example was the motivation for the terminology of the saddle-node bifurcation. ✷
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Figure 5.24: a > 0

Example 5.6 Consider the planar system

x′ = µx− y − x(x2 + y2),
y′ = x+ µy − y(x2 + y2),

(5.2)

where µ ∈ R is a parameter.
(x, y) is an equilibrium of Eq. (5.2), if and only if

µx− y = x(x2 + y2), (5.3)

x+ µy = y(x2 + y2) (5.4)

holds. Multiplying the first equation by x, the second by y and adding together the two equations
we get

µx2 − xy + xy + µy2 = (x2 + y2)2,

which gives

µ(x2 + y2) = (x2 + y2)2.

Hence (0,0) is always a solution of this equation, but for µ ≤ 0 there is no other solution.
Therefore, for µ ≤ 0 there is only the trivial equilibrium of Eq. (5.2). For µ > 0 we show that
there is no other equilibrium, as well. It follows from the above equation that either x2+y2 = 0,
i.e., the equilibrium is (0, 0), or µ = x2 + y2 with some µ > 0. Substituting it into (5.3) and
(5.4) we get after simplification that y = 0 and x = 0, so the contradiction yields that the only
equilibrium is (0, 0).

We introduce the polar coordinates r and θ defined by x = r cos θ and y = r sin θ. Then
r2 = x2 + y2. Consider this relation along a solution x(t) and y(t). Then differentiating both
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sides with respect to t and using Eq. (5.2) we get

2rr′ = 2xx′ + 2yy′

= 2x(µx− y − x(x2 + y2)) + 2y(x+ µy − y(x2 + y2))

= 2µx2 + 2µy2 − 2(x2 + x2)2

= 2µr2 − 2r4.

Therefore r satisfies the equation

r′ = µr − r3 (5.5)

along a solution. Similarly, differentiating both sides of tg θ = y
x , we get

1

cos2 θ
θ′ =

y′x− yx′

x2

=
(x+ µy − y(x2 + y2))x− y(µx− y − x(x2 + y2))

x2

=
x2 + y2

x2

=
r2

x2
.

Therefore θ satisfies

θ′ = 1 (5.6)

along a solution (except for the trivial solution). It follows from (5.6) that there is no other
equilibrium than the trivial equilibrium for any µ ∈ R.

Its linearized equation associated to Eq. (5.2) is

x′ = µx− y
y′ = x+ µy,

(5.7)

whose coefficient matrix is
(

µ −1
1 µ

)

.

The eigenvalues of it are λ = µ± i. Therefore the trivial solution of Eq. (5.7) is asymptotically
stable for µ < 0 (see Figure 5.20 where all trajectories in a neighborhood of the origin spiral
toward the origin), and it is unstable for µ > 0, and hence the same property holds for the
trivial solution of the nonlinear equation (5.2). Therefore µ = 0 is a bifurcation point, since the
stability property of the equilibrium changes. But for µ > 0 some other interesting phenomenon
happens: Eq. (5.5) has a positive equilibrium solution, r =

√
µ. To a solution with constant r

there corresponds a circle trajectory by (5.6), i.e, Eq. (5.2) has a periodic solution. It can be
seen in Figure 5.26 that the trajectories approach the circle. Such a closed trajectory which
attracts nearby trajectories as t → ∞ or as t → −∞ is called a limit cycle.

Figure 5.25: µ < 0 Figure 5.26: µ > 0
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For µ < 0 Eq. (5.2) has no periodic solution, since r is strictly decreasing along a solution
by (5.5). Such a bifurcation where stability of an equilibrium point is lost due to the fact that
the eigenvalues of the linearized equation cross the imaginary axis is called Hopf bifurcation.
Crossing a Hopf bifurcation point a periodic solution appears. In Eq. (5.2) the periodic solution
is stable, i.e., trajectories which start close to the periodic orbit approach it as t → ∞ (see
Figure 5.26). ✷



Chapter 6

Time delays in modeling

In many dynamical models the present state of the system is determined by the past history
of the system, in the simplest case, by the state of the system τ time ago, where τ > 0 is a fixed
constant. Such differential equations are called delay differential equations. In this chapter, we
present two simple applications where time delay appears naturally in the model.

6.1 Self regulation population model with delayed regulation

In Example 1.21, we introduced the logistic differential equation (1.4) as a widely used model
for a single species population. The logistic equation has been used successfully to model the
growth of yeast cells, fruit flies, the population of Sweden and USA, the Pacific Halibut fishery
and so on. But there are many experiments where we observe oscillation in the size of the
population which does not appear in the classical logistic model (1.4).

We can get more complicated behavior of the solution if we introduce time delays in dif-
ferential equations. The delays or time lags can represent gestation times, incubation periods,
transport delays, etc., in the model, so they can be introduced naturally in biological models.

In 1948, Hutchinson introduced a time delay in the self-regulatory mechanisms in the logistic
equation. He showed that the time lag induced oscillations of the solution which explains the
same observation in some animal populations, e.g., Daphnia (water flea). Hutchinson assumed
that the per capita growth rate has the form

N ′(t)

N(t)
= r −mN(t− τ), t ≥ 0,

where r,m > 0 and τ > 0 are given constants. The constant τ is called delay or time lag.
(In fact, it might be considered as the reaction time of the system.) So the simplest delayed
logistic equation is as follows

N ′(t) = N(t) (r −mN(t− τ)) , t ≥ 0, (6.1)

or equivalently

N ′(t) = rN(t)

(

1− N(t− τ)

K

)

, t ≥ 0; K =
r

m
. (6.2)

The derivation of (6.1) was given by Hutchinson (1948) and an other way by Cunningham
(1954).

At the initial time t = 0, the right-hand-side of (6.2) uses the values of the solution at −τ ,
and as t ∈ [0, τ ], the delayed argument t − τ takes values in the interval [−τ, 0]. Therefore, in
order to get a unique solution of the delay equation (6.2), we have to specify the initial value of
the solution on the interval [−τ, 0].

Therefore, we associate an initial condition to (6.2) in the form

N(t) = ϕ(t), −τ ≤ t ≤ 0, (6.3)

where ϕ : [−τ, 0] → [0,∞) is a given continuous function. ϕ is called initial function.
Solution of problem (6.2)-(6.3) can be given by using the so-called method of steps. Namely,

if τ > 0 and t ∈ [0, τ ], then t− τ ∈ [−τ, 0] and hence

N(t− τ) = ϕ(t− τ), t ∈ [0, τ ].

85
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φ

2τ 3τ 4τ0−τ τ

N

t

Figure 6.1: Method of steps

Thus the delayed logistic equation has the form

N ′(t) = rN(t)

(

1− ϕ(t− τ)

K

)

, t ∈ [0, τ ],

and hence
N(t) = N1(t), 0 ≤ t ≤ τ,

where

N1(t) = ϕ(0) exp

(∫ t

0
r

(

1− ϕ(s− τ)

K

))

ds, 0 ≤ t ≤ τ.

In general,
N(t) = Nn(t), (n− 1)τ ≤ t ≤ nτ, n ≥ 1,

where

Nn(t) = Nn−1((n− 1)τ) exp

(

∫ t

(n−1)τ
r

(

1− Nn−1(s− τ)

K

)

)

ds,

for (n− 1) τ ≤ t ≤ nτ, n ≥ 1.
The sequence of functions Nn : [(n− 1) τ, nτ ] −→ R is well-defined, and the function

N : [0,∞) −→ R defined by

N(t) = Nn(t), (n− 1)τ ≤ t ≤ nτ, n ≥ 1,

is the unique solution of the delayed logistic equation (6.2) with initial condition (6.3).
Now consider a special case of (6.2) with the parameter values:

r = 1, K = 1 and ϕ(t) = 0.5, −τ ≤ t ≤ 0,

where τ ≥ 0 is an arbitrarily fixed parameter. In Figures 6.2–6.6, we plotted the numerical
solution of the corresponding IVPs with the special parameter values

τ =
1

2e
≈ 0.1839, τ =

1

e
≈ 0.3679, τ =

2

e
≈ 0.7358, τ =

π

2
≈ 1.571, τ = π ≈ 3.142,

respectively. We observe that for small delays most of the solutions behave similarly to the
solutions of the classical logistic equation, i.e., they converge monotone increasingly to the
carrying capacity K. But as the time delay reaches and passes a critical value (a bifurcation
point), in this case τ = 1

e , the monotonicity is lost and all solutions oscillate, but their limit is
still K. Increasing the delay further, we observe a periodic solution (another bifurcation point),
and for large delay the convergence is lost, the solution oscillates unboundedly.

Since the solution N(t) the IVP (6.2)-(6.3) is positive whenever ϕ(t) > 0, −τ ≤ t ≤ 0, the
function

x(t) = ln
N(t)

K
t ≥ −τ,
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Figure 6.2: τ = 1/2e
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Figure 6.3: τ = 1/e
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0 10 20 30 40 50
0

0.5

1

1.5

t

N

Figure 6.5: τ = π/2
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Figure 6.6: τ = π

is well defined. Clearly, N(t) = K ex(t), t ≥ −τ.
Then

x′(t) =
N ′(t)

N(t)
= r

(

1− N(t− τ)

K

)

= r(1− ex(t−τ)), t ≥ −τ.

So IVP (6.2)-(6.3) is equivalent to the IVP

x′(t) = r(1− ex(t−τ)), t ≥ 0, (6.4)

and

x(t) = ln
ϕ(t)

K
, −τ ≤ t ≤ 0. (6.5)

Eq. (6.4) is a delay differential equation, where the initial function ln ϕ(t)
K is continuous on [−τ, 0],

but it is not necessarily positive (in general it is not positive).
We say that a function x : [0,∞) → R is oscillatory, if there exist two sequences (tn)n≥1

and (sn)n≥1 such that tn, sn → ∞ as n → +∞, and x(tn) < 0 < x(sn), n ≥ 1. We say that a
delay differential system is oscillatory, if all non-trivial solutions are oscillatory. Otherwise, i.e.,
when there is at least one non-trivial solution which is not oscillatory, we say that the equation
is non-oscillatory.

Clearly
x(t) > 0 ⇐⇒ N(t) > K

x(t) = 0 ⇐⇒ N(t) = K

and
x(t) < 0 ⇐⇒ N(t) < K.

So N is oscillatory (non-oscillatory) about K if and only if x is oscillatory (non-oscillatory)
about zero. The solution N tends to K as t → +∞ if and only if x tends to 0 as t → +∞.

This means that the carrying capacityK attracts the solutions of Eq. (6.2) if the zero attracts
the solutions of Eq. (6.4) at infinity.
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It is clear that N(t) = K, t ≥ −τ, is a solution of Eq. (6.2) since

K ′ = 0 = rK(1−K/K).

K is an equilibrium of Eq. (6.2). The other equilibrium of Eq. (6.2) is N = 0 (zero solution).
Equation (6.4) has only one equilibrium solution, namely the zero solution. Since

f(x) = r(1− ex) = −rx+ r(1− ex + x) = −rx+ rx
1 + x− ex

x
,

where
1 + x− ex

x
→ 0, as x → 0,

the linearized version of Eq. (6.4) is as follows (see the related Theorem 4.12 for ODEs):

y′(t) = −ry(t− τ), t ≥ 0. (6.6)

In the following table, we summarize conditions for stability of the trivial solution and the
oscillatory property of the equation for different parameter values. It can be shown that the
above properties depend on the value of the product of the coefficient r and the time delay τ in
the equation:

Table 6.2: Properties of Eq. (6.6)

condition stability oscillation

0 ≤ rτ ≤ 1
e asymptotically stable non-oscillatory

1/e < rτ < π
2 asymptotically stable oscillatory

rτ = π
2 stable, has periodic solutions oscillatory

rτ > π
2 unstable, has unbounded solution oscillatory

In Figures 6.7–6.11, we plotted the numerical solution of the linear equation (6.6) corre-
sponding to the constant ϕ(t) = 0.5 initial function and the special parameter values

rτ =
1

2e
, rτ =

1

e
, rτ =

2

e
, rτ =

π

2
, rτ = π,

respectively. We observe the qualitative properties described in Table 6.2.
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Figure 6.7: rτ = 1/2e,
asymptotically stable, non-
oscillatory
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Figure 6.9: rτ = 2/e,
asymptotically stable, oscilla-
tory



6.2 Two connected mixing tanks model with time delay 89

0 5 10 15 20 25 30

−0.4

−0.2

0

0.2

0.4

0.6

t

y

Figure 6.10: rτ = π/2, stable, oscillatory,
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Figure 6.11: rτ = π, unstable, oscillatory,
most of the solutions are unbounded

6.2 Two connected mixing tanks model with time delay

In Example 3.17 we considered two tanks connected by two pipes (see Figure 3.1). In the
derivation of the model equation (3.1) one assumption was that there is no time needed to flow
the fluid through pipes (pipes were assumed to be short). Now we omit this assumption, so we
assume time τ is needed for the fluid to flow through both pipes (length and width of pipes are
equal). The rest of the assumptions are the same. Then at time t the outflow rate from the first
tank is again rQ1(t)/V1 kg/min, but the inflow rate is rQ2(t− τ)/V2 kg/min. Similar formulas
are true for the second tank. Hence the modified model is the linear delay differential system

Q′
1(t) = −rQ1(t)

V1
+ rQ2(t−τ)

V2
, Q1(0) = A1

Q′
2(t) = rQ1(t−τ)

V1
− rQ2(t)

V2
, Q2(0) = A2.

(6.1)

In Figure 6.12, we plotted the numerical solution of (6.1) corresponding to parameter values
used in Example 3.17 and with the time delay τ = 15. We observe that both solutions converge
to a constant value (same as in Example 3.17), but the monotonicity of the convergence is lost
due to presence of time delay.
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Figure 6.12: Tank model with time delay, red: Q1(t), blue: Q2(t)

Generalizations of the model (6.1) can be used in many applications. For example, compart-
ment systems or neural networks consist of units (like tanks) and data or material flow between
the different units. In many cases time delay is assumed to exist between connections. For more
examples of applications modeled by time delay systems, we refer to [4], [5] and [6].





Chapter 7

First-order difference equations and discrete

population models

In this chapter, we show some basic solution techniques of first-order linear difference equa-
tions through discrete population models.

7.1 Introduction

Difference equations usually describe the evolution of certain phenomenon over the course of
time. As an example, we shall consider populations with a fixed interval between generations
or possibly a fixed interval between measurements. Thus we shall describe population size by a
sequence {x(n)}, with x(0) = x0 denoting the initial population size, x(1) is the population size
at the next generation (at time t1), x(2) is the population size at the next generation (at time
t2), and so on. Usually the time interval between the generations is taken to be a constant.

Assume that in certain population size of the (n + 1)st generation x(n + 1) is a function
of n and the size of the nth generation x(n). Then the relation between x(n + 1) and x(n) is
expressed in the first-order difference equation

x(n+ 1) = f(n, x(n)), n ≥ n0, (7.1)

under the initial condition
x(n0) = x0, (7.2)

where f : Z+ × R → R. Here Z+ is the set of non-negative integers.
Eq. (7.1) is called first-order non-autonomous or time-variant difference equation. Here n0

is the initial time, and x0 is the initial size of the population at n = n0. It can be shown easily
by iteration that the IVP (7.1)-(7.2) has a unique solution x(n) = x(n, n0, x0), n ≥ n0.

It is clear that
x(n0 + 1) = f(n0, x(n0)) = f(n0, x0).

We have

x(n0 + 2) = f(n0 + 1, x(n0 + 1)) = f(n0 + 1, f(n0, x(n0))) = f(n0 + 1, f(n0, x0)).

In a similar way, we get

x(n0 + 3) = f(n0 + 2, x(n0 + 2)) = f(n0 + 2, f(n0 + 1, f(n0, x0))),

and so on.
If the function f in Eq. (7.1) does not depend on time n, i.e., if it is replaced by a function

g : R → R, then we have
x(n+ 1) = g(x(n)), n ≥ n0, (7.3)

with an initial condition
x(n0) = x0. (7.4)

Eq. (7.3) is called time-invariant or autonomous difference equation. Starting from an initial
condition x0 at time n0, the solution of IVP (7.3)-(7.4) is given by the sequence

x0, g(x0), g(g(x0)), g(g(g(x0))), . . .

91
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We introduce the notations

g0(x0) = x0, g1(x0) = g(x0), g2(x0) = g(g(x0)), . . . , gn(x0) = g(gn−1(x0)), . . . ,

where gn is called the nth iterate of g.
Now we show the construction of the model equations for unstructured populations in discrete

time. Unstructured means that we ignore differences between individuals. We start with it
because it is the easiest case to construct the model. The starting point for modeling population
change is the fundamental Birth, Death, Immigration, Emigration (“BDIE”) Balance Law for
the total population size x(n):

x(n+ 1) = x(n) + Birth−Death + Immigration− Emigration, (7.5)

where (7.5) is always true, but it is vacuous until we specify values B, D, I and E over the
time interval between tn and tn+1, Clearly, tn < tn+1 and x(n) and x(n+ 1) denote size of the
population at time tn and tn+1, respectively.

7.2 Linear population models

To construct the first simple mode, we start from the next simplest possible assumptions:

• The population is closed, i.e., the immigration and emigration are not present (I = E = 0).

• The Birth and Death equal to the number of nth generation times a constant, i.e.,

B(n) = bx(n) and D(n) = dx(n).

Here constants

b =
B(n)

x(n)
and d =

D(n)

x(n)
, n ≥ n0

are called per capita birth and death rate, respectively.
Under the above conditions, the model equation is

x(n+ 1) = x(n) + (b− d)x(n) = rx(n),

where r = 1+ b− d is the per capita growth rate. Clearly, d ≤ 1, and hence r ≥ 0. The obtained
linear first-order difference equation is

x(n+ 1) = rx(n), n ≥ n0 (7.1)

with the initial condition

x(n0) = x0, (7.2)

where x0 > 0. Simple calculation shows that the sequence

x(n) = x0r
n−n0 , n ≥ 0

is the unique solution of IVP (7.1)-(7.2). Since r > 0, we have three possible cases:

(i) x(n) = x0r
n−n0 → 0 as n → ∞, if 0 < r < 1, (or equivalently 0 ≤ b < d ≤ 1);

(ii) x(n) = x0, n ≥ 0, if r = 1, (or equivalently 0 ≤ b = d ≤ 1);

(iii) x(n) = x0r
n−n0 → ∞ as n → ∞, if r > 1, (or equivalently b > d).
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In a more realistic case, birth rate and death rate may vary in time, and hence the per capita
growth rate is also time-dependent:

r = r(n) ≥ 0, n ≥ n0.

In that case, our model equation is

x(n+ 1) = r(n)x(n), n ≥ n0, (7.3)

with the initial condition
x(n0) = x0. (7.4)

Equation (7.3) is a first-order linear homogeneous difference equation. By mathematical induc-
tion, we get the following result.

Proposition 7.1 The homogeneous equation (7.3) with initial condition (7.4) has exactly one
solution given in the form

x(n) = r(n− 1) · · · r(n0)x0 =
n−1
∏

i=n0

r(i) · x0, n > n0. (7.5)

Eq. (7.3) holds if either the population is closed, i.e., I(n) = E(n) = 0, or the migration
M(n) = I(n)−E(n) = 0, n ≥ 0. If the migration is not identically zero, then from the “BDIE”
Balance Law (7.1) we get the linear inhomogeneous model equation

x(n+ 1) = r(n)x(n) +M(n), n ≥ n0 (7.6)

with an initial condition
x(n0) = x0. (7.7)

One can easily show the next result.

Proposition 7.2 The unique solution x(n) of IVP (7.3)-(7.4) is given by

x(n) =
n−1
∏

i=n0

r(i) · x0 +
n−1
∑

j=n0





n−1
∏

i=j+1

r(i)



M(j), n > n0. (7.8)

As a simple corollary of the above statement, we get

Proposition 7.3 (i) If r(n) = r is constant, then the solution of equation

x(n+ 1) = rx(n) +M(n), n ≥ n0

with condition (7.7) is given by

x(n) = rn−n0x0 +
n−1
∑

j=n0

rn−j−1M(j), n > n0. (7.9)

(ii) If r(n) = r and M(n) = M both are constants, then the solution of the equation

x(n+ 1) = rx(n) +M

with condition (7.7) is given by

x(n) =

{

rn−n0x0 +
rn−n0−1

r−1 M =
(

x0 − M
1−r

)

rn−n0 + 1
1−rM, if r 6= 1,

x0 + (n− n0)M, if r = 1
(7.10)

for n ≥ n0.
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It is clear that negative values of x(n) for population equations have no biological meaning
because the size of a population is nonnegative. For this reason, our model equations are valid
until the solution is nonnegative. We say that the population becomes extinct once there is an
n1 such that x(n1) ≤ 0. For example the population could become extinct if the growth rate r
is less than 1 and the per generation migration rate M = I − E becomes negative.

Solving the next examples, we shall utilize our knowledge on homogeneous and inhomoge-
neous first-order difference equations.

Example 7.4 Suppose a certain population is growing at the rate of 2% per year, and the
migration rate M is constant. Let x0 > 0 be the size of the initial population. Formulation of
the model here is based on the fact that the growth rate is r = 1 + 0.02 = 1.02 per year. Then
the size of the population x(n) in the nth year satisfy

x(n+ 1) = 1.02x(n) +M, n ≥ 0. (7.11)

Applying formula (7.10), we get the explicit solution of Eq. (7.11) as follows

x(n) =

(

x0 +
M

0.02

)

1.02n − M

0.02
= 1.02nx0 +

1.02n − 1

0.02
M, n ≥ 0. (7.12)

If the immigration is stronger than the emigration, i.e., the migration rate is nonnegative, then
x(n) ≥ x0 > 0, n ≥ 0, and the population growth unboundedly. Thus strong immigration may
produce survival of the population.

Now, assume that the emigration is stronger than the immigration, i.e., M = I − E < 0, or
equivalently I < E. Let n1 > 0 be such that x(n1) < 0, i.e.,

x(n1) = 1.02n1x0 +
1.02n1 − 1

0.02
M < 0.

The last inequality holds if and only if

M <
1.02n1

1− 1.02n0

0.02x0. (7.13)

Since the sequence 1.02n

1−1.02n (n ≥ 0) is monotone decreasing and its limit is −1, (7.13) is satisfied
with an n1 if and only if

I − E = M < −0.02x0 = −(r − 1)x0.

This yields that strong emigration may produce the extinction of the population. ✷

Example 7.5 Suppose a certain population is decreasing at the rate 1% per year. Then r =
1− 0.01 = 0.99, and the model equation is

x(n+ 1) = 0.09x(n) +M, n ≥ 0,

assuming that the migration rate per year M is constant. The solution is

x(n) =

(

x0 −
M

0.01

)

0.99n +
M

0.01
= 0.99nx0 +

1− 0.99n

0.01
M, n ≥ 0.

This explicit formula allows the reader to show:

(i) If x0 > 0 and M = I − E > 0, then x(n) > 0, moreover the size x(n) of the population
approaches to 100M at infinity, and hence the population survives.

(ii) If x0 > 0 and M = 0, then x(n) > 0 and x(n) → 0 as n → ∞. Hence the population
becomes extinct at infinity.

(iii) If x0 > 0 and M = I − E < 0, then the population becomes extinct at a finite time.

✷



Chapter 8

Higher-order difference equations

This chapter contains some basic knowledge and some motivating applications related to
higher-order linear difference equations.

8.1 Introduction

Consider the higher-order linear difference equations with constant coefficients

x(n) = a1x(n− n1) + · · ·+ akx(n− nk), n ≥ nk + 1, (8.1)

where a1, . . . , ak are real constants, ak 6= 0, k ≥ 1, and the positive integers n1, . . . , nk are such
that

1 ≤ n1 ≤ n2 ≤ · · · ≤ nk. (8.2)

A sequence (x(n))n≥1 of real numbers is called the solution of Eq. (8.1) if it satisfies (8.1) for
any n ≥ nk + 1. From (8.1) it is clear that the solution of (8.1) exists and it is unique if the
initial values

x(1) = z1, . . . , x(nk) = znk
(8.3)

are given.
Looking for the representation of the solution of Eq. (8.1), we start with a simple procedure.

We suppose that a solution of Eq. (8.1) is in the form

x(n) = λn, n ≥ 1.

Then substituting this into (8.1) we get that

λn = a1λ
n−n1 + · · ·+ akλ

n−nk , n ≥ 1.

Assuming that λ 6= 0, we can multiply both sides of the above relation with λ−n+nk , we get

λnk = a1λ
nk−n1 + · · ·+ ak−1λ

nk−nk−1 + ak,

or equivalently

λnk − a1λ
nk−n1 − · · · − ak−1λ

nk−nk−1 − ak = 0 (8.4)

should hold. Since ak 6= 0, λ = 0 is not a solution of (8.4). Eq. (8.4) is called the characteristic
equation of Eq. (8.1), and the related polynomial

p(λ) = λnk − a1λ
nk−n1 − · · · − ak−1λ

nk−nk−1 − ak (8.5)

is called the characteristic polynomial of Eq. (8.1). A root of the characteristic equation is called
eigenvalue.

From the theory of difference equations it is known that determining the roots of the char-
acteristic equation one may give a closed formula for the solution of Eq. (8.1). The theory is
similar to that of the linear differential equations, but in the next section here we show only the
general solution of the second-order homogeneous linear difference equations.
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8.2 Second-order linear homogeneous difference equations

Consider the second-order linear difference equation

x(n) = a1x(n− 1) + a2x(n− 2), n ≥ n0, (8.1)

where a1, a2 ∈ R and a2 6= 0. This is a special case of Eq. (8.1) with n1 = 1 and n2 = 2. Thus
in virtue of (8.4) the characteristic equation and polynomial of (8.1) are

λ2 − a1λ− a2 = 0 (8.2)

and
p(λ) = λ2 − a1λ− a2, (8.3)

respectively.
In terms of the eigenvalues, i.e., the roots of (8.2), we have three situations to contemplate.

Case A: The discriminant d = a21 + 4a2 of Eq. (8.2) is positive. In this case, the problem
has two different eigenvalues λ1 and λ2 which are the roots of (8.2), namely

λ1 =
a1 +

√

a21 + 4a2
2

and λ1 =
a1 −

√

a21 + 4a2
2

. (8.4)

Because λ1 6= λ2, it can be checked easily that the general solution of Eq. (8.1) is given by

x(n) = c1λ
n
1 + c2λ

n
2 , (8.5)

where c1 and c2 are arbitrarily fixed real numbers.
In applications we are looking for such solution of Eq. (8.1) where the initial values x(n0−1)

and x(n0 − 2) of the solution satisfy the initial conditions

x(n0 − 1) = φ1, x(n0 − 2) = φ2. (8.6)

Formula (8.5) is a solution of the IVP (8.1)-(8.6) if c1 and c2 satisfy the system

c1λ
n0−1
1 + c2λ

n0−1
2 = φ1

c1λ
n0−2
1 + c2λ

n0−2
2 = φ2

}

. (8.7)

This is a linear system for c1 and c2, which has a unique solution since

det

(

λn0−1
1 λn0−1

2

λn0−2
1 λn0−2

2

)

= (λ1λ2)
n0−2(λ1 − λ2) 6= 0.

Summary: Assume that the discriminant d = a21 + 4a2 > 0. Then the IVP (8.1) and (8.6)
has a unique solution in the form (8.5), where c1 and c2 are solutions of the system (8.7).

Case B: The discriminant d = a21 + 4a2 of Eq. (8.2) is zero. Since a2 6= 0 we have a1 6= 0.
Thus the characteristic equation has only one root

λ1 =
a1
a2

6= 0. (8.8)

Since λ1 is the only root of the characteristic polynomial and also

p′(λ1) = 2λ1 − a1 = 0, (8.9)

λ1 is a double root of (8.2). Clearly, λn
1 is a solution of Eq. (8.1), and beacuse of the relation

(8.9) one can easily show that
nλn

1
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is also a solution of Eq. (8.1). The general solution of (8.1) can be given in the form

x(n) = c1λ
n
1 + c2nλ

n
1 , (8.10)

where c1 and c2 are arbitrary constants. The formula (8.10) is the solution of the IVP (8.1) and
(8.6) if c1 and c2 satisfy

c1λ
n0−1
1 + c2(n0 − 1)λn0−1

1 = φ1

c1λ
n0−2
1 + c2(n0 − 2)λn0−2

1 = φ2.

Simple calculation shows that the above system is equivalent to

c1 + c2(n0 − 1) = λ−n0+1
1 φ1

c1 + c2(n0 − 2) = λ−n0+2
1 φ2

}

. (8.11)

Obviously system (8.11) always has a unique solution.
Summary: Assume that the discriminant d = a21 + 4a2 = 0. Then the IVP (8.1) and (8.6)

has a unique solution in the form (8.10), where c1 and c2 are solutions of the system (8.11).

Case C: The discriminant d = a21 + 4a2 of Eq. (8.2) is negative. Then the characteristic
equation (8.2) has two distinct complex roots

λ1 =
a1
2

+

√

−4a2 − a21
2

i and λ2 =
a1
2

−
√

−4a2 − a21
2

i. (8.12)

Since a21 + 4a2 < 0 the imaginary part

√
−4a2−a2

1

2 is nonzero, and a2 < 0.
Rewriting λ1 and λ2 into exponential and trigonometric forms we get

λ1 = reiω = r(cosω + i sinω) and λ2 = re−iω = r(cosω − i sinω),

where

r =





(a1
2

)2
+

(

√

−4a2 − a21
2

)2




1/2

=
√

|a2|, (8.13)

Comparing the trigonometric and canonical forms, we get

r cosω =
a1
2

and r sinω =

√

−4a2 − a21
2

6= 0. (8.14)

There are two cases:

C1: a1 = 0 and a2 6= 0. Then r =
√

|a2| and (8.14) yield

cosω = 0 and sinω > 0,

and hence
ω =

π

2
.

C2: a1 6= 0 and a2 6= 0. Then r =
√

|a2| and

r cosω =
a1
2

6= 0 and r sinω =

√

−4a2 − a21
2

6= 0.

Thus

tgω =
r sinω

r cosω
=

√

−4a2 − a21
a1

,
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and hence

ω = arctg

√

−4a2 − a21
a1

.

As a consequence of C1 and C2 we get

ω =

{

arctg

√
−4a2−a2

1

a1
, if a1 6= 0,

π
2 , if a1 = 0,

(8.15)

where 4a2 + a21 < 0.
With r and ω defined by (8.13) and (8.15), respectively, we get

λn
1 = rneinω = rn(cosnω + i sinnω) and λn

2 = rne−inω = rn(cosnω − i sinnω)

for any integer n. Since λn
1 and λn

2 are solutions of Eq. (8.1), their sum and difference are also
solutions of Eq. (8.1), we get that the sequences

λn
1 + λn

2

2
= rn cosnω and

λn
1 − λn

2

2i
= rn sinnω

are also solutions. Thus the general solution of Eq. (8.1) can be written in the form

x(n) = c1r
n cosnω + c2r

n sinnω (8.16)

with two arbitrary constants c1 and c2, where

r =
√

|a2| and ω =

{

arctg

√
−4a2−a2

1

a1
, if a1 6= 0,

π
2 , if a1 = 0.

(8.17)

The general solution satisfies the initial condition (8.6) if c1 and c2 are solutions of

c1r
n0−1 cos(n0 − 1)ω + c2r

n0−1 sin(n0 − 1)ω = φ1

c1r
n0−2 cos(n0 − 2)ω + c2r

n0−2 sin(n0 − 2)ω = φ2

}

.

This is equivalent to

c1 cos(n0 − 1)ω + c2 sin(n0 − 1)ω = r−n0+1φ1

c1 cos(n0 − 2)ω + c2 sin(n0 − 2)ω = r−n0+2φ2

}

. (8.18)

The above linear system always has a unique solution since

det

(

cos(n0 − 1)ω sin(n0 − 1)ω
cos(n0 − 2)ω sin(n0 − 2)ω

)

= cos(n0 − 1)ω sin(n0 − 2)ω − sin(n0 − 1)ω cos(n0 − 2)ω

= − sinω 6= 0.

Summary: Assume that the discriminant d = a21 + 4a2 < 0. Then the IVP (8.1) and (8.6) has
a unique solution in the form (8.16), where r and ω are defined by (8.17), and c1 and c2 are
solutions of the system (8.18).

Next we show numerical examples for each cases.

Example 8.1 Solve the IVP

x(n) = 3x(n− 1) + 4x(n− 2), n ≥ 0, x(−1) = 2, x(−2) = −2.

This is a second-order linear homogeneous equation with characteristic equation

λ2 − 3λ− 4 = 0.
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The eigenvalues λ1 = −1 and λ2 = 4 are distinct reals. Therefore the general solution is

x(n) = c1(−1)n + c24
n.

Using the initial conditions, we get

c1(−1)−1 + c24
−1 = 2

c1(−1)−2 + c24
−2 = −2,

which gives c1 = −2 and c2 = 0. Therefore the solution of the IVP is the sequence

x(n) = −2(−1)n, n ≥ −2.

✷

Example 8.2 Solve the IVP

x(n) = 6x(n− 1)− 9x(n− 2), n ≥ 0, x(−1) = 0, x(−2) = 1.

Its characteristic equation is
λ2 − 6λ+ 9 = 0.

The eigenvalue λ1 = 3 is a double root. Therefore the general solution is

x(n) = c13
n + c2n3

n.

Using the initial conditions, we get

c13
−1 + c2(−1)3−1 = 0

c13
−2 − c22 · 3−2 = 1,

which gives c1 = −9 and c2 = −9. Therefore the solution of the IVP is the sequence

x(n) = −9 · 3n − 9n3n, n ≥ −2.

✷

Example 8.3 Solve the IVP

x(n) = 2x(n− 1)− 4x(n− 2), n ≥ 0, x(−1) = 2, x(−2) = −1.

Its characteristic equation is
λ2 − 2λ+ 4 = 0.

The eigenvalues are λ1 = 1 +
√
3i and λ2 = 1−

√
3i. The trigonometric form of the eigenvalue

is λ1 = 2(cos π
3 + i sin π

3 ), therefore the general solution has the form

x(n) = c12
n cos

(π

3
n
)

+ c22
n sin

(π

3
n
)

.

Using the initial conditions we get

c12
−1 cos(−π/3) + c22

−1 sin(−π/3) = 2
c12

−2 cos(−2π/3) + c22
−2 sin(−2π/3) = −1,

which gives c1 = 8 and c2 = 0. Therefore the solution of the IVP is the sequence

x(n) = 8 · 2n cos
(π

3
n
)

, n ≥ −2.

✷
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8.3 Application of higher-order difference equations

Teletype and telegraphy are two examples of discrete channel for transmitting information.
Generally, a discrete channel will mean a system where by a sequence of choices from a finite
set of elementary symbols S1, . . . , Sk can be transmitted from one point to another. Each of the
symbols Si is assumed to have a certain duration in time ni seconds (not necessary the same
for different Si, for example dots and dashes in telegraphy). Messages are transmitted by first
encoding them into string or sequences of these symbols. Let N(n) be the number of possible
message sequences of duration n. In fact, the transmission of each of these messages requires
exactly n units of time.

In the general case with different length and symbols and constraints on the allowed se-
quences, the following definition is introduced in [8]. The capacity C of a discrete channel is
given by

C = lim
n→∞

log2N(n)

n
(8.1)

if this limit is a finite number, whereN(n) is the number of allowed signals (which are represented
with message sequences) of duration n, and log2 denotes the logarithm base 2. It is known that
the limit in question will exist as a finite number in most of the cases of interest.

Now we discuss a case when the limit in the above definition exists as a finite number.
Suppose all sequences of the symbols S1, S2, . . . , Sk are allowed and the symbols have durations
1 ≤ n1 ≤ n2 ≤ · · · ≤ nk. What is the channel capacity?

N(n), the number of sequences of duration n is equal to the sum of the number of sequences
ending with S1, . . . , Sk, and these are N(n−n1), . . . , N(n−nk), respectively, for any n ≥ nk+1.
Thus the sequence N(n) satisfies the higher-order difference equation

N(n) = N(n− n1) + · · ·+N(n− nk), n ≥ nk + 1 (8.2)

with initial conditions
N(1) = u1, . . . , N(nk) = unk

. (8.3)

Looking for a solution of (8.2) in the form λn, we get that λn obeys

λn = λn−n1 + · · ·+ λn−nk ,

or equivalently,
λnk − λnk−n1 − · · · − λnk−nk−1 − 1 = 0. (8.4)

As in the previous section, Eq. (8.4) is called the characteristic equation of (8.2), and its roots
are called eigenvalues. The characteristic polynomial of Eq. (8.2) is

p(λ) = λnk − λnk−n1 − · · · − λnk−nk−1 − 1. (8.5)

Let us consider an interesting special case when we have only two symbols S1 and S2. Say
S1 is the symbol of a dot which requires exactly 1 unit of time (n1 = 1), and S2 is the symbol
of a dash which requires exactly two units of time (n2 = 2).

Our goal is to find the channel capacity. In virtue of the general equation (8.2), we have
that the number of sequences N(n) of the same duration n satisfies

N(n) = N(n− 1) +N(n− 2), n ≥ 3, (8.6)

with an initial condition
N(1) = 1 and N(2) = 2. (8.7)

In fact, only S1 can be transmitted during one unit of time, and only S1S1 and S2 are the
sequences which can be transmitted during two units of time.
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The related characteristic equation to Eq. (8.6) is

λ2 − λ− 1 = 0,

which has two distinct real roots

λ1 =
1 +

√
5

2
and λ2 =

1−
√
5

2
.

Thus the solution of the IVP (8.6)-(8.7) is

N(n) = c1λ
n
1 + c2λ

n
2 = c1

(

1 +
√
5

2

)n

+ c2

(

1−
√
5

2

)n

,

where c1 and c2 satisfy the system

c1λ1 + c2λ2 = 1
c1λ

2
1 + c2λ

2
2 = 2.

(8.8)

Multiplying both sides of the first equation with λ1 and after subtracting it from the second
equation, we get

(λ2
2 − λ1λ2)c2 = 2− λ1,

and hence

c2 =
2− λ1

λ2(λ2 − λ1)
.

By the definition of λ1 and λ2 we get λ2 − λ1 = −
√
5 and 2− λ1 =

3−
√
5

2 , and hence

2− λ1

λ2
=

3−
√
5

1−
√
5
=

(3−
√
5)(1 +

√
5)

(1−
√
5)(1 +

√
5)

=
−2 + 2

√
5

−4
= λ2.

Thus

c2 = −λ2
1√
5
.

Substituting this into the first equation in (8.8), we get

c1 =
1− c2λ2

λ1
=

1 + λ2
2

1√
5

λ1
=

1√
5

√
5 + λ2

2

λ1
=

1√
5
λ1.

Substituting c1 and c2 into the formula of the solution we get that

N(n) =
1√
5

(

1 +
√
5

2

)n+1

− 1√
5

(

1−
√
5

2

)n+1

, n ≥ 1.

Now we are looking for the capacity of the channel in this special case. From the latest formula,
we get

N(n) =

(

1 +
√
5

2

)n+1
1√
5



1−
(

1−
√
5

1 +
√
5

)n+1


 ,

where
∣

∣

∣

∣

∣

1−
√
5

1 +
√
5

∣

∣

∣

∣

∣

=

√
5− 1

1 +
√
5
< 1.
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Therefore

2
√
5

3 +
√
5
= 1−

(

1−
√
5

1 +
√
5

)2

< 1−
(

1−
√
5

1 +
√
5

)n+1

≤ 1− 1−
√
5

1 +
√
5
=

2
√
5

1 +
√
5
, n ≥ 1,

and hence

log2N(n)

n
=

1

n
log2





(

1 +
√
5

2

)n+1
1√
5



1−
(

1−
√
5

1 +
√
5

)n+1








=
1

n
log2

(

1 +
√
5

2

)n+1

+
1

n
log2

1√
5
+

1

n
log2



1−
(

1−
√
5

1 +
√
5

)n+1




=
n+ 1

n
log2

1 +
√
5

2
+

1

n
log2

1√
5
+

1

n
log2



1−
(

1−
√
5

1 +
√
5

)n+1




has the limit

C = lim
n→∞

log2N(n)

n
= log2

1 +
√
5

2
.

We note that 1+
√
5

2 is the greatest real eigenvalue of the equation (8.6).

Now we turn back to the calculation of the channel capacity under the next condition.

Condition A: All sequences of the symbols S1, . . . , Sk are allowed and the symbols have
duration n1 ≤ n2 ≤ · · · ≤ nk, respectively, where ni (1 ≤ i ≤ k) and k ≥ 2 are positive integers.

Earlier in this section, we showed that under Condition A, if N(n) represents the number
of sequences of duration n then N(n) satisfies Eq. (8.2), its characteristic equation is (8.4), and
the characteristic polynomial p has the form (8.5). Clearly, 0 is not a root of p. We rewrite p in
the form

p(λ) = λnk(1− λ−n1 − · · · − λ−nk).

Therefore, p is strictly monotone increasing on the interval (0,∞) since it is a product of two
stricly monotone increasing functions on (0,∞), the functions λnk and 1 − λ−n1 − · · · − λ−nk .
On the other hand,

p(1) = 1− k · 1 < 0, and lim
λ→∞

p(λ) = ∞.

We have therefore the following result.

Proposition 8.4 Assume Condition A. Then the characteristic polynomial p defined by (8.5)
has exactly one positive real root λp, and it satisfies λp > 1.

Using a much more sophisticated calculation we may get the following theorem.

Theorem 8.5 Assume Condition A, and suppose the positive real root λp of the characteristic
polynomial p defined by (8.5) is a simple root. Then

(i) λp > 1 and every (complex or real) root λ of (8.4) obeys

|λ| < λp;
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(ii) the channel capacity C exists and it satisfies

C = log2 λp. (8.9)

Example 8.6 Now we illustrate the above theorem. We have 6 symbols, S1, . . . , S6 with dura-
tions 2, 4, 5, 7, 8 and 10, respectively. We assume that all sequences of the signals are allowed.
The difference equation with respect to N(n) is

N(n) = N(n− 2) +N(n− 4) +N(n− 5) +N(n− 7) +N(n− 8) +N(n− 10), n ≥ 11,

and its characteristic equation is

λ10 − λ8 − λ6 − λ5 − λ3 − λ2 − 1 = 0.

Then Theorem 8.5 is applicable. Numerical approximation shows that λp ≈ 1.4529, and hence

C = log2 λp ≈ 0.53894.

✷

In the case, when N(n) = 0 for arbitrary large n the definition of capacity in the form of
(8.1) is not defined, and this example also demonstrates that formula (8.9) in Theorem 8.5 may
hold without the simplicity assumption of the positive eigenvalue.

Example 8.7 Consider the teletype where all symbols are of the same duration say n1 unit
of time, and any sequence of the 32 symbols are allowed. In this case, the following heuristic
argument gives us the channel capacity without using the difference equation.

Each symbol represent five bits of information. If the system transmits m symbols per
second, i.e., the duration of each symbol is n1 =

1
m seconds, it is natural to say that the channel

has a capacity of 5m bits per seconds, as it is given by formula

C =
5

n1
.

This does not mean that the teletype channel will always be transmitting information at this rate.
This is the maximum possible rate and whether or not the actual rate reaches this maximum
depends on the source of information which feeds the channel.

In this case n1 = · · · = n32, k = 32, and Eq. (8.2) reduces to

N(n) = 32N(n− n1), n ≥ n1 + 1.

Suppose for definiteness that n1 is even. Then for all odd n there is no message of length odd,
so N(n) = 0 for all odd n. Therefore the capacity of the channel cannot be defined by formula
(8.1) in this case.

The characteristic equation is
λn1 = 32,

and its positive root is λp =
n1

√
32. If we compute formula (8.9) we get

log2 λp = log2
n1

√
32 = log2 2

5/n1 =
5

n1
, (8.10)

so it gives the capacity of the channel in this case, too, despite the fact that the multiplicity of
λp is 32. ✷





Chapter 9

Stability theory for difference equations

In this chapter, we present some basic results and definitions for stability and bifurcation
theory for difference equations.

9.1 Linear difference equations

Consider again the higher-order scalar linear difference equation

x(n) = a1x(n− n1) + · · ·+ akx(n− nk), n ≥ nk + 1, (9.1)

where a1, . . . , ak are real constants, ak 6= 0, k ≥ 1, and we associate the IC

x(1) = z1, . . . , x(nk) = znk
(9.2)

to (9.1). We have seen in the previous chapter that the characteristic equation of (9.1) has the
form

λnk − a1λ
nk−n1 − · · · − ak−1λ

nk−nk−1 − ak = 0, (9.3)

and its characteristic polynomial p(λ) is defined by (8.5).
We say that the trivial (constant x(n) = 0) solution of Eq. (9.1) is stable if for every ε > 0

there exists δ > 0 such that

|z1| < δ, |z2| < δ, . . . , |znk
| < δ

implies
|x(n)| < ε, n ≥ nk + 1.

We say that the trivial solution of Eq. (9.1) is asymptotically stable if it is stable and there exists
σ > 0 such that

lim
n→∞

x(n) = 0

for all solutions corresponding to IC (9.2) with

|z1| < σ, |z2| < σ, . . . , |znk
| < σ.

If the trivial solution is not stable, we say that it is unstable.
We have the following results which are the discrete analogue of Theorems 4.9 and 4.10.

Theorem 9.1 The trivial solution of Eq. (9.1) is

(a) stable if and only if all solutions of Eq. (9.1) are bounded;

(b) asymptotically stable if and only if all solutions x of Eq. (9.1) satisfy

lim
n→∞

x(n) = 0.

Theorem 9.2 Let λ1, . . . , λnk
be the eigenvalues of Eq. (9.1), i.e., the roots of (9.3). Then the

trivial solution of Eq. (9.1) is

105
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(a) stable if and only if
|λj | ≤ 1, j = 1, . . . , nk,

and if |λj | = 1 for some j, then it is a simple root of (9.3), i.e., p′(λj) 6= 0;

(b) asymptotically stable if and only if

|λj | < 1, j = 1, . . . , nk.

Example 9.3 Find the stability of the trivial solution of the second-order scalar equation

x(n) =
3

2
x(n− 1)− 1

2
x(n− 2), n ≥ 2.

Its characteristic equation is

λ2 − 3

2
λ+

1

2
= 0,

which gives λ = 1 and λ = 1
2 . Therefore Theorem 9.2 yields that the trivial solution of the

difference equation is stable but it is not asymptotically stable. ✷

9.2 First-order nonlinear scalar autonomous difference equa-

tions

Consider the first-order nonlinear scalar autonomous difference equation

x(n) = f(x(n− 1)), n ≥ 1 (9.1)

with the associated IC
x(0) = x0, (9.2)

where x0 ∈ R.
We say that u is an equilibrium or constant steady state of Eq. (9.1) if x(n) = u is a constant

solution of Eq. (9.1), i.e.,
u = f(u). (9.3)

Other words, we say that u is a fixed point of Eq. (9.1). Eq. (9.3) is called a fixed point equation.
We say that an equilibrium u of (9.1) is stable if for every ε > 0 there exists δ > 0 such that

if |x0 − u| < δ, then corresponding solution x if the IVP (9.1)-(9.2) satisfies |x(n) − u| < ε for
all n ≥ 0. The equilibrium u is asymptotically stable if it is stable and there exists σ > 0 that if
|x0 − u| < σ then the corresponding solution of the IVP (9.1)-(9.2) satisfies

lim
n→∞

x(n) = u.

One way to graph solutions of a difference equation is the so-called cobweb diagram. Here
the graph of the function f (red curve) and the graph of the identity function (magenta line) is
depicted. Then the sequence x(n) is depicted starting from an initial value x0, see Figures 9.1
and 9.2. The next element of the sequence is x(1) = f(x0), and then x(2) = f(x(1)), and so
on. Blue dots on the graph correspond to (x0, 0) and (x(i), x(i + 1)), i = 1, 2, . . .. So the first
and second coordinates of these points are values of the solution sequence. The fixed point u of
f corresponds to the point (u, u) where the graph of f and the graph of the identity function
intersect each other (magenta circle). The solution converges to the equilibrium u if blue dots
on the graph of f converge to the point (u, u). We can see in Figure 9.1 that the solution tends
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to u monotonically if we start the sequence close enough to u and 0 < f ′(u) < 1. Figure 9.2
shows the case when −1 < f ′(u) < 0. In this case, the solution again converges to u, but the
convergence is oscillatory around u. In the latter case the blue stairs spiral around (u, u) and
approach to it. In both cases, the equilibrium is asymptotically stable.

Figure 9.3 shows the case when f ′(u) > 1. We can see that the solution gets farther from
the equilibrium as time increases, so in this case the equilibrium is unstable. Figure 9.4 shows
the case when f ′(u) < −1. In this case the stairs spiral away from (u, u), so the equilibrium is
unstable.

Motivated by the previous case we can formulate the following result, which can be proved
rigorously too.

x
0

Figure 9.1: 0 < f ′(u) < 1

x
0

Figure 9.2: −1 < f ′(u) < 0

x
0

Figure 9.3: 1 < f ′(u)

Theorem 9.4 Let u be an equilibrium of Eq. (9.1) and suppose f is continuously differentiable
in a neighborhood of u. Then

(i) if |f ′(u)| < 1, then u is an asymptotically stable equilibrium, and

(ii) if |f ′(u)| > 1, then u is an unstable equilibrium.

x
0

Figure 9.4: f ′(u) < −1

x
0

Figure 9.5: f ′(u) = 1, f ′′(u) > 0

x
0

Figure 9.6: period 2 solution

In the critical case, when |f ′(u)| = 1 higher-order derivatives can determine the stability of
the equilibrium. We have the following result.

Theorem 9.5 Let u be an equilibrium of Eq. (9.1) and suppose f is three times continuously
differentiable in a neighborhood of u, and |f ′(u)| = 1. Then

(i) if f ′(u) = 1 and f ′′(u) 6= 0, then u is unstable;
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(ii) if f ′(u) = 1, f ′′(u) = 0 and f ′′′(u) > 0 then u is unstable;

(iii) if f ′(u) = 1, f ′′(u) = 0 and f ′′′(u) < 0 then u is asymptotically stable;

(iv) if f ′(u) = −1 and −2f ′′′(u)− 3(f ′′(u))2 < 0 then u is asymptotically stable;

(v) if f ′(u) = −1 and −2f ′′′(u)− 3(f ′′(u))2 > 0 then u is unstable.

Note that part (i) of the above theorem is illustrated in Figure 9.5.
Finally, we investigate periodic solutions of (9.1). x(n) is a periodic solution of Eq. (9.1)

with period p if
x(n+ p) = x(n), n ≥ 0.

For a 2-periodic case the solution of (9.1) has the form

x0, x1, x0, x1, . . . ,

where x1 = x(1). In Figure 9.6, a two-periodic solution is illustrated in a cobweb diagram.
Then, clearly, both x0 and x1 are equilibriums of

y(n) = f(f(y(n− 1))), n ≥ 1. (9.4)

The opposite case can be proved easily, thus we get the next result.

Proposition 9.6 Let x(n) be the solution of the IVP (9.1)-(9.2). Then x(n) is a p-periodic
solution of Eq. (9.1) if and only if x0 is an equilibrium of the difference equation

y(n) = fp(y(n− 1)), n ≥ 1,

where fp is the pth iterate of the function f .

We say that a periodic solution x(n) of (9.1) corresponding to IC (9.2) is asymptotically
stable/unstable if the equilibrium x0 of Eq. (9.4) is asymptotically stable/unstable.

Example 9.7 Find all 2-periodic solutions of the difference equation

x(n) = −x(n− 1)2 + 1.

We consider the second iterate function of f :

f2(x) = f(f(x)) = −(−x2 + 1)2 + 1 = −x4 + 2x2.

Its equilibriums are the solutions of

−u4 + 2u2 = u,

which has four solutions u1 = 0, u2 = 1, u3 = −1−
√
5

2 and u4 = −1+
√
5

2 . It is easy to check that
u3 and u4 are equilibriums of f as well, hence the solutions starting from u3 and u4 are constant.
So these initial values do not give rise to a nontrivial 2-periodic solution. But it is easy to see
that the solution starting from u1 is 2-periodic:

0, 1, 0, 1, . . . ,

and hence the initial value u2 = 1 generates essentially the same sequence.
Therefore the given difference equation has essentially one 2-periodic solution.
Now check the stability property of the 2-periodic solution. For this, compute the derivative

of the 2nd iterate function g := f2:

g′(x) = (−x4 + 2x2)′ = −4x3 + 4x.
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We have g′(0) = 0, so by Theorem 9.4, the zero solution of the second iterate equation y(n) =
f(f(y(n− 1)) is asymptotically stable, and therefore the 2-periodic solution 0, 1, 0, 1, . . . is also
asymptotically stable. Similarly, g′(1) = 0, so the sequence 1, 0, 1, 0, . . . is also asymptotically
stable.

It is easy to check that equilibriums u3 and u4 of the difference equation are both unstable.
✷

9.3 Bifurcation and chaos in difference equations: discrete lo-

gistic equation

We consider the discrete analogue of the classical logistic differential equation, the so-called
discrete logistic equation

x(n) = rx(n− 1)

(

1− x(n− 1)

K

)

, n ≥ 1. (9.1)

Dividing both sides of (9.1) by K and introducing y(n) = x(n)/K we get

y(n) = ry(n− 1)(1− y(n− 1)), n ≥ 1. (9.2)

This contains only a single parameter r. From the biological meaning of the model, we assume
r > 0, and we are interested in only nonnegative solutions of this equation. Eq. (9.2) has the
form of (9.1) with f(x) = rx(1− x).

We investigate the stability properties of the equilibriums and periodic solutions of (9.2). It
is easy to check that Eq. (9.2) has two equilibriums,

u1 = 0 and u2 =
r − 1

r
.

First, consider the equilibrium u1. We have f ′(x) = r − 2rx, so f ′(u1) = f ′(0) = r. Therefore,
if 0 < r < 1, then the equilibrium u1 = 0 is asymptotically stable by Theorem 9.4. But as r
passes 1, the equilibrium u1 becomes unstable. Hence r = 1 is a bifurcation point.

Now consider the equilibrium u2. If 0 < r < 1 then u2 < 0, so the population model
is not defined. Hence only 1 nonnegative equilibrium exists. If r passes 1 the equilibrium
becomes positive, i.e., the second equilibrium appears in the equation. The second equilibrium
is asymptotically stable if

f ′(u2) = r − 2ru2 = 2− r ∈ (−1, 1).

Hence if 1 < r < 3, u2 is asymptotically stable, and for r > 3 the equilibrium u2 becomes
unstable. r = 3 is again a bifurcation point.

Next we examine whether Eq. (9.2) has 2-periodic solutions. For this we have to find the
equilibrium of the second iterate function:

r2x(1− x)(1− rx(1− x)) = x.

With a tedious computation, we get the solutions

u1 = 0, u2 =
r − 1

r
, u3 =

r + 1−
√

(r − 3)(r + 1)

2r
and u4 =

r + 1 +
√

(r − 3)(r + 1)

2r
.

Since u1 and u2 are fixed points of f , they do not generate nontrivial 2-periodic solutions. If
r < 3 then u3 and u4 are not real, but for r > 3 they are reals. Since u3 and u4 are not
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fixed points of f , they generate 2-periodic solutions: u3, u4, u3, u4, . . ., so there is essentially one
2-periodic solution of Eq. (9.2).

To test the stability of the periodic solution, we first compute the derivative of the second
iterate function g := f2:

g′(x) = (f(f(x)))′ = f ′(f(x))f ′(x),

so we have
g′(u3) = f ′(f(u3))f

′(u3) = f ′(u4)f
′(u3).

Hence if −1 < f ′(u4)f
′(u3) < 1, then the 2-periodic solution is asymptotically stable. One can

check that this holds if 3 < r < 1+
√
6. If r passes 1+

√
6 ≈ 3.4495, then the 2-periodic solution

becomes unstable. Hence r1 := 1 +
√
6 is a bifurcation value.

One can show that if r > r1, then Eq. (9.2) has a 4-periodic solution, which is asymptotically
stable for r1 < r < r2 with r2 ≈ 3.5441, and it is unstable for r > r2. And it can be continued to
show that passing r2 an 8-periodic solution appears, and so on. There is a sequence of parameters
rk where a period doubling bifurcation occurs, and the monotone increasing sequence rk has a
finite limit close to 3.57.

In Figures 9.7–9.9, we plotted the solutions of (9.2) for different parameter values. In Fig-
ure 9.7, the solution corresponds to r = 2 and x0 = 0.85 can be seen. We can observe the
convergence of the solution to the positive equilibrium u2. In Figure 9.8, we generated a solu-
tion with r = 3.3 and x0 = 0.15. We plotted the first 20 terms of the solution, but we can observe
that after a few terms two values are repeated in the sequence, so the solution approaches the
2-periodic solution. In Figure 9.9, the parameter value r = 3.9 is used. We generated the first
150 terms of the sequence. It looks that the values in the sequence are “random” values without
any regularity. Such a behavior is called chaotic. The definition of chaos is not universally
accepted yet in the mathematical literature, but in almost all definitions, it is common that a
chaotic behavior is aperiodic and it is sensitive for small changes in the initial conditions.
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Figure 9.7: r = 2, x0 = 0.85

x
0

Figure 9.8: r = 3.3, x0 = 0.15

x
0

Figure 9.9: r = 3.9, x0 = 0.15



Chapter 10

Hybrid systems and a control application

In this section, we show a control problem where a so-called hybrid system, i.e., a system with
continuous and discrete arguments appears naturally in the model. Moreover, in this application
a time delay is introduced into the model.

10.1 Problem formulation

We study the problem of adjusting the concentration of salt to a desired level in a mixing tank
(see Figure 10.1). We assume that at time t = 0, the tank contains V liters of solution with an
initial salt concentration of c0 grams per liter. Salt concentration in the incoming fluid is s gram
per liter. We suppose that the incoming fluid is immediately mixed thoroughly, so we assume
the concentration in the tank is uniform.

concentration: s grams/liter

inflow

inflow rate: r liter/second

outflow

concentration: c grams/liter

ouflow rate: r liter/second

Figure 10.1: a mixing tank

Our goal is to find the incoming concentration of salt s, so that the concentration of salt
in the tank attains (and remains at) a predetermined concentration k.

The volume of the solution at the tank is constant V , since inflow and outflow rates are the
same. The rate of change of the mass of salt equals to the rate it enters minus the rate at which
salt leaves the tank. The rate of change salt enters to the tank is s g/l · r l/sec=sr g/sec, and
the rate of change salt leaves the tank is c(t) g/l · r l/sec=rc(t) g/sec. The mass of salt at time
t is V c(t). Therefore

d

dt
(V c(t)) = inflow rate − outflow rate = sr − c(t)r,

so the concentration c satisfies the first-order inhomogeneous linear differential equation

c′(t) + pc(t) = ps, t ≥ 0 (10.1)

where
p =

r

V

is a constant, and the initial condition is c(0) = c0. The solution of the IVP is

c(t) = s+ (c0 − s) e−pt t ≥ 0.

From the above formula, it is clear that c(t) → s monotone decreasingly for c0 > s and monotone
increasingly for c0 < s. Therefore if s 6= k then c(t) either never gets close to k or c(t) reaches

111
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k in finite time, but then the solution gets far from the level k. If s = k then the solution
approaches k, but never reaches it in finite time. So our goal cannot be accomplished under the
above circumstances.

Next, we suppose that we have a device which can control the concentration s of the inflow
fluid depending on the instantaneous concentration of the solution in the tank (see Figure 10.2).
Such a control mechanism is called feedback .

s(c)

feedback

Figure 10.2: a mixing tank with a feedback control

With this control law, the differential equation (10.1) now becomes

c′ = −pc+ ps(c), (10.2)

where the inflow concentration s(c) depends on c.

A simple example of a feedback control law is the following one:

s = s(c) =

{

0 if c > k,
k if c = k,
z if c < k,

(10.3)

where z is some convenient value greater than k. The corresponding solution can be obtained
as follows.

Case 1: If c0 = k, then s(c) = k, and the solution is c(t) = k for t ≥ 0. Hence the desired
concentration is reached at t∗ = 0.

Case 2: If c0 > k, then s(c) = 0 and the solution of Eq. (10.2) is

c(t) = c0e
−pt.

The desired concentration will be attained at t = t∗, where c(t∗) = k. Hence t∗ = 1
p ln

(

c0
k

)

.

At this time, the definition of the function s changes, so the solution continues with the solution
obtained in Case 1, so the solution remains constant k for t ≥ t∗.

Case 3: If c0 < k, then s(c) = z, and from Eq. (10.2) the solution is

c(t) = z + (c0 − z) e−pt,

where z > k > c0. The desired concentration will be obtained when c(t∗) = k, and this gives

t∗ =
1

p
ln

(

z − c0
z − k

)

.

But for t ≥ t∗ the solution remains constant k by Case 1.

So the problem is solved from theoretical point of view, the solution always reaches the
desired concentration in finite time and after that it remains constant. In the practice, the
following modified versions described in the next section are more realistic.
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10.2 Models with time delay

(i) Time is needed to sense information and to react to it, so we assume the inflow rate at time
t depends on the result of the measurement at an earlier time t − τ, where τ is a positive
time delay.

So the governing equation is a delay differential equation

c′(t) = −pc(t) + ps(c(t− τ)), t ≥ 0, (10.1)

with the initial condition
c(t) = c0, −τ ≤ t ≤ 0.

(ii) In the above models, the measurement is continuous which can be technically compli-
cated and also expensive. It is more reasonable to assume that we measure the concentration in
the tank only at discrete time moments. For simplicity, we take the following discrete moments

0, h, 2h, ..., nh, ...

where h > 0 is the sampling period. The feedback control term in this case can be written as

ps

(

c

([

t

h

]

h− ℓh

))

, t ≥ 0,

where s(c) is a given function, ℓ is a fixed positive integer describing the delay and [·] denotes
the greatest integer part function. For instance, [1.5] = 1 and [−0.25] = −1.

So the governing equation is

c′(t) = −pc(t) + ps

(

c

([

t

h

]

h− ℓh

))

, t ≥ 0, (10.2)

with the initial condition
c(t) = c0, −ℓh ≤ t ≤ 0. (10.3)

Eq. (10.2) is called an equation with piecewise constant argument. This is an example of a
so-called hybrid delay differential equation, since it contains both continuous and discrete argu-
ments. Its solution leads to the solution of some related discrete difference equation. Namely,
multiplying both sides of Eq. (10.2) by ept gives

eptc′(t) + peptc(t) = pepts

(

c

([

t

h

]

h− ℓh

))

,

and integrating both sides of this equation from nh to t where t ∈ [nh, (n+ 1)h) we get

eptc(t)− epnhc(nh) =

∫ t

nh
epups

(

c
([u

h

]

h− ℓh
))

du,

hence

c(t) = e−p(t−nh)c(nh) + e−pt

∫ t

nh
epups

(

c
([u

h

]

h− ℓh
))

du, nh ≤ t < (n+ 1)h.

But for nh ≤ u < t ≤ (n+ 1)h, we know that the argument is constant:

[u

h

]

h− ℓh = (n− ℓ)h,
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hence easy calculation shows

c(t) = e−p(t−nh)c(nh) + e−pt(ept − epnh)s(c((n− ℓ)h)), nh ≤ t < (n+ 1)h. (10.4)

Taking the limit t → (n+ 1)h−, we arrive to the difference equation

c((n+ 1)h) = e−phc(nh) + (1− e−ph)s(c((n− ℓ)h)), n ≥ 0. (10.5)

Using the initial condition (10.3) it can be solved for c(nh), n ∈ N. In between the mesh points,
the solution can be determined using formula (10.4).

Example 10.1 Consider the hybrid delay model (10.2), where instead of (10.3), we define the
function s by

s = s(c) =

{

0 if c > k + ε,
k if k − ε ≤ c ≤ k + ε,
z if c < k − ε,

where ε > 0 is a small number. This modification of the definition of s is reasonable, since the
discrete sequence c(nh) may not take the value k.

We use the parameter values p = 0.3, k = 3, ℓ = 2, ε = 0.2 and h = 0.5. In Figure 10.3,
we generated the solution of (10.5) starting from the initial concentration c0 = 0.4, and in
Figure 10.4, the solution corresponding to c0 = 5. In both cases the solutions approach k = 3.

The above two particular examples show cases when the solution approaches the limit k.
But this is true only for particular parameter values. The analysis of this model is beyond the
scope of these lecture notes. We comment that, e.g., for larger delay ℓ = 3, the solution becomes
periodic as time increases, see Figure 10.5. ✷

0 5 10 15 20 25 30 35
0

1

2

3

4

t

c

Figure 10.3: c0 = 0.4, ℓ = 2
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Figure 10.4: c0 = 4, ℓ = 2
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Figure 10.5: c0 = 4, ℓ = 3
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