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Chapter 1

Introduction

This Tutorial is intended to give an insight into mathematical programming, and Operations Re-
search in general, through the development of Linear Programming (LP) and Mixed-Integer Linear
Programming (MILP) models using the GNU MathProg (GMPL) modeling language.

Optimization means finding the most suitable solution in real life situations. This is often pos-
sible using common sense or some simple logic, but there are many cases where advanced approaches
are needed. Usually a mathematical model of the problem is considered, and solution methods are
designed utilizing the best of the available mathematical theoretical background, computer theory
and existing technology.

The problem is generally the vast number of possible solutions to a problem, which are impossible
to be all taken into account one by one, even with the fastest computers available. In many situations,
instead of a perfect solution, „rules of thumb”, also called heuristic methods are used. These simplify
the underlying model of the problem, trim the set of possible solutions to be investigated or both.
This sacrifices optimality but makes finding a fairly good solution of the problem computationally
possible. Nevertheless, even in these cases, finding such a solution usually requires some optimization
to be made, for example to find the best solution from a few candidates.

If an optimization problem is faced, a „conventional” method of solving is the design, implemen-
tation and application of a specific algorithm, which usually require some programming language.
The concept of algorithm has a very general meaning, and it also depends on what programming
language we choose to implement it, but usually the data structures used and the steps to be made
are described. This is what most common programming languages can do, for example C/C++,
Java, Python, etc. The common point in these languages is that not only the „What?” is answered
by implementing the algorithm, but the „How?” is also addressed by the programmer. That is, the
exact steps to be made with the data are described. For example, Dijkstra’s algorithm can find the
shortest path in a graph, Kruskal’s algorithm can find the cheapest spanning tree of a graph, or the
Ford-Fulkerson algorithm is capable of finding the optimal flow in a flow network.

Mathematical programming methods are an alternative. Instead of describing the steps to
be made, only the mathematical model of the real-world problem is formulated. The mathematical
model consists of statements like equations, inequalities, logical expressions and more, which corre-
spond to the rules governing the real-world problem and its solution. Then, the real-world problem
is solved by finding solutions to the system of these equations, inequalities or other statements.
However, only the formulation of the mathematical model is up to the programmer, not the algo-
rithm of how it is solved. The latter is actually done by some solver software, which is designed to
solve a particular class of mathematical programming models.

In this Tutorial, a subset of mathematical programming methods, namely Linear Program-
ming (LP) and Mixed-Integer Linear Programming (MILP) models are in scope, which can
be formulated by the GNU MathProg (GMPL) modeling language [1]. Tackling real-world opti-
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INTRODUCTION

mization problems by formulating a mathematical programming model and solving it with a solver
software is a valuable expertise that is substantially different from programming in the „conven-
tional” way. Nevertheless, an algorithm designed to solve a specific optimization problem may be
much faster than a mathematical programming model: many well-studied optimization problems
have state-of-the-art algorithmic solutions. However, for some problems, even for some where decent
algorithms exist, designing a mathematical programming model instead can be surprisingly fast and
easy. Mathematical programming models are also more flexible in case the real-world problem itself
is changed.

The algorithms that the solvers utilize to actually solve our formulated mathematical program-
ming model are on their own an interesting subject, but is not in focus. In short, the way these
models can be formulated are more important than how these mathematical models can be solved
to optimality.

The modeling language GNU MathProg is selected because, along with its solver glpsol in the
GNU Linear Programming Kit [2], these are tools relatively easy to be understood, and available
under the GNU General Public License. There are many other free, and commercial tools for both
formulating and solving not only MILP, but more general mathematical programming models. Many
of such tools are much faster than glpsol.

There are several other learning materials available in this subject. The basic installation of
GLPK also includes a bunch of example models, including complex ones. GLPK also has a Wik-
ibooks project where usage is covered in high detail [3]. We would like to recommend the Linear
Programming tutorial of Hegyháti [4]. Moreover, many useful books and lecture materials can be
found at the Hungarian Tankönyvtár homepage [5].

This Tutorial presents the basics of the language, and some key problems that can be easily
solved by mathematical programming tools, to give an insight into the strength of optimization with
mathematical, and particularly MILP models. Some algorithmic solution methods for particular
problems are also presented.

The rest of the Tutorial is organized as follows.

• Chapter 2 provides the introduction to the main goals, tools and concepts of optimization.

• Chapter 3 introduces to the basic usage of GNU MathProg and solver glpsol. A minimal,
„Hello, World!” model file is shown.

• In Chapter 4, linear equation systems are solved using GNU MathProg with gradually improv-
ing model implementations. This part aims at demonstrating features of the language that
are required to develop concise and general LP/MILP models, most importantly indexing and
the separation of model and data sections.

• Chapter 5 introduces the production problem, a simple optimization problem. Incremental
development of models is in focus, demonstrated through changes, extensions of the problem
definition. Some additional language features, and integer variables are used.

• Chapter 6 shows another simple optimization problem, the transportation problem. Modeling
techniques for some cost functions are presented, which can be part of more complex problems.

• Chapter 7 mentions some harder problems requiring MILP model formulations. Advanced
modeling and coding techniques, and possible graphical outputs are presented.

• Chapter 8 gives an insight into the LP/MILP solving algorithms, explaining briefly how soft-
ware tools may work in the background.

This Tutorial contains attachments. All GNU MathProg codes including model and data
files, and its outputs mentioned in the text can be found, grouped by chapters and sections. (A
more detailed description is available in the attachment itself.)
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INTRODUCTION

For learning purposes, it is recommended to manually see, and solve the models with their
corresponding data file(s) to investigate the results. Note that most of the codes and more important
output file segments are included in the text of the Tutorial itself, full or in part, using a specific
format.

GNU MathProg code of model files is formatted like this.

GNU MathProg code of data sections that may go to
separate data files are formatted like this.

Output generated by the solver is formatted like this.

Commands to be run are formatted like this.

If you have questions, or in case you find any errors in this Tutorial, please feel free to contact
us at eles@dcs.uni-pannon.hu. We hope you will find this material useful.
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Chapter 2

Optimization

2.1 Equations
Equations are one of the easiest and strongest mathematical modeling tools we have. Let’s see an
example problem that can be solved by an equation.

Problem 1.
Alice’s train departures 75 minutes from now. She lives 3 km away from the station and wants

to walk, but she and also needs 30 minutes to get ready. How fast shall she walk to the station to
catch the train?

We can see that what we actually seek is the minimal average speed Alice have to move with.
She can be faster at some points of her walk, or slower, but overall, the average speed counts,
determining when she will arrive. She can even go with constant speed to achieve the same result.
Also, we seek to find the minimal speed, with which she just catches the train. Of course, she can be
even faster, then she will have some waiting time at the station. These steps may be trivial, but are
also part of the modeling procedure: we simplified the problem into finding a single minimal speed
value and we may assume that Alice goes with that constant speed, and just catches the train.

The problem can be solved by expressing the time until she arrives to the station in two different
ways. Once, the time she arrives is 75 min, by the train schedule. On the other hand, the time she
arrives is 30 min for getting ready, plus the time she walks. The latter term is something which is
not known, it depends on Alice’s speed. Now, we introduce a variable x to express Alice’s speed,
which is in question. Variable x is some value that can be chosen, that Alice has freedom upon. She
can choose her speed in order to arrive to the station sooner or later.

With x, we can express the time she spends walking easily by 3 km
x . Now an equation can be

formulated based on the fact that Alice’s arriving time is expressed in two different ways.

30 min +
3 km

x
= 75min (1)

The task for Alice is to choose an appropriate x so that this equation holds. From this point, the
equation is formulated, we can forget the real-world problem and apply our mathematical knowledge
about solving equations. This is an easy one. We can, for example, subtract 45 minutes from both
sides, multiply by x (which, we can assume not to be zero), then dividing by 3 km, in that order.
We arrive to the following.

4
km

h
= x (2)
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2.2. FINDING THE „BEST” SOLUTION OPTIMIZATION

What we actually do by solving an equation is transforming it to easier forms so that the next
form is a direct consequence of the previous. The final form is x = 4 km

h , which literally means the
following: „If 30 min + 3 km

x = 75min, then its direct consequence is x = 4 km
h ”. So, if Alice just

catches the train, then her average speed is 4km
h And at this point we finally got the result and

interpreted it in the reality. This is the general way on how equations are used in problem solving.
First, we identify the freedom we have at the problem to be solved (x, the speed). Then, we use
equations, as modeling tools to express the rules of reality that must be obeyed (the first equation).
The model is now ready, we apply our solution techniques which can be quite general for any kinds
of equations and have nothing to do with the underlying real-world problems. In this case, the
equation is transformed in a chain of direct consequences until the variable is expressed directly as
a constant value. Finally, if the result is obtained for the mathematical model, we interpret it as
the solution of our initial real-world problem.

Of course, there are much more difficult examples of equation solving (for example, multiple
solutions for single equations, fake solutions, multiple variables, multiple equations at the same
time, etc.), which are not covered here. But the point is that the scheme is similar each time: we
formulate a mathematical model that describes the real-world situation, solve that model with some
well-known general techniques and then interpret the solution of the model as the solution of the
original problem.

2.2 Finding the „Best” solution
Note that the question about Alice catching the train in Problem 1 was how fast she can go to catch
the train. The answer was x = 4 km

h , but that is not totally correct. Actually, x = 5 km
h , x = 10 km

h

or even x = 15 km
h are solutions as well for her, if she can run that fast. However x = 3 km

h is not
a solution, as she will miss the train if she is that slow. Of course, for this particular problem, we
understand that there is a minimum speed of x = 4 km

h , for which Alice just catches the train in
time. However, the more precise formulation would be the following inequality instead.

30 min +
3 km

x
≤ 75 min (3)

Two quantities are here: the time Alice needs to reach the station if her speed is x, that is,
30 min+ 3 km

x , and the time the train departs, 75 min. These two quantities are related: Alice must
arrive before or exactly when the train is due (not later, in other words). This can be expressed as
an inequality rather than an equation, but the goal is the same. We must find a speed for Alice x
for which the inequality holds. Technically, this can be done exactly the same way as the equation
itself was solved, leading to x ≥ 4 km

h . That means that the solutions are actually all x speeds that
are at least 4 km

h . There are infinitely many solutions for the inequality, so infinitely many speeds
Alice can choose.

Now this is more precise, but Alice may be interested in the minimum speed she can choose, so
let x be as small as possible. The formulation is as follows.

minimize : x
subject to : 30 min + 3 km

x ≤ 75 min
(4)

At this point, the formulated problem is an optimization problem. The goal is not only finding
one suitable solution for a real-world problem, but finding the most suitable one in some aspect.
In the mathematical point of view, optimization is not only finding a solution for an equation,
inequality, or a set of such, but finding the best. Optimization is a sub-field of Operations Research,
as it is an inevitable way of supporting business decisions: given a complex real-world situation,
what shall be the best response?
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2.3. MAIN CONCEPTS OPTIMIZATION

2.3 Main concepts
Now that we have seen some optimization from Problem 1, it is time to establish some basic concepts
of optimization models.

When solving a real-world problem by defining some variables, equations, inequalities, etc. we
formulate a mathematical model for the problem. That model is then solved with mathematical
knowledge, that is usually independent of the original, real-world problem. If the solution procedure
is made by some software (usually the case), that software is called a solver.

There are variables in an optimization model. These represent our freedom of choice: the way
the variable can take different values represent our different actions. In Problem 1, there is a single
variable, x representing Alice’s average speed.

A solution of an optimization model is when all the variables take some value. If there are
multiple variables in the model, then a single solution consists of values for all of these variables.
Two solutions are considered different if any of the variables take a different value. In Problem 1,
there are infinitely many solutions, like x = 4 km

h , x = 10 km
h , and moreover, x = 1 km

h as well (see
below), although Alice misses the train.

Usually the variables cannot take arbitrary values. In Problem 1, Alice cannot choose a speed if
she would miss the train with it. Such restrictions that must apply, are called constraints. So in
the example problem, there is a single constraint, which is expressed by Inequality 3.

There are a wide range of constraints that may appear in an optimization problem, some cannot
even be expressed as inequalities. The concept of bounds shall be mentioned: these are constraints
that require a single variable to be not less than, or not more than a given constant limit. For
example, x ≥ 0 km

h is a bound that must also be ensured. The problem required Alice to move
with a positive speed, so it was implicitly enforced and neglected. In many optimization problems,
however, we must explicitly consider bounds, otherwise solutions might not reflect reality. Bounds
also have a great practical importance in model solution algorithms.

Constraints decide whether solutions are feasible or infeasible. A feasible solution is when all
variables take a value for which all the constraints hold. Otherwise, it is an infeasible solution. In
Problem 1, solutions x = 4 km

h and x = 10 km
h are feasible, while x = 1 km

h is infeasible. We could
also say that, literally, x = 4 km

h is a solution and x = 1 km
h is not a solution, but we rather use the

terminology of feasible and infeasible solutions.
The way we distinguish feasible solutions of a model so that whether they are more or less suit-

able, is expressed in the model as an objective function, which is to be minimized (or maximized).
An objective function - like constraints - evaluates an expression based on the model variables. The
goal of optimization is to find a feasible solution for which the objective function is minimal (or
maximal). A solution with this property is an optimal solution of the model. If a solution is
optimal, then we can be sure that any other solutions are either infeasible, have an equal or worse
objective value, or both. There can be multiple optimal solutions for the same model. In Problem
1, we have a very simple objective function c(x) = x, which is minimal at the solution of x = 4 km

h .
The optimal objective for the problem is therefore 4 km

h . Sometimes we refer to the objective value
as the solution of an optimization problem. Therefore, we can say that the optimal solution of
Problem 1 is 4 km

h .
It may happen that an optimization model does not have a feasible solution at all, hence there

are no optimal solutions either. In this case, we say the model is infeasible. For example, the
following modification of the problem (see Problem 2), the resulting System 5 would be infeasible:
Alice is too far away and cannot go fast enough, she will miss the train by 3 min at least.

Problem 2.
Alice’s train departures 75 minutes from now. She lives 8 km away from the station and wants

to walk, and also needs 30 minutes to get ready. Also, she cannot run faster than 10 km
h in average.

How fast shall she walk to the station to catch the train?

8



2.3. MAIN CONCEPTS OPTIMIZATION

minimize : x
subject to : 30 min + 8 km

x ≤ 75 min
x ≤ 10 km

h

(5)

In rare cases, it may appear that a model is unbounded. This means that there are feasible
solutions but none of them are optimal, because there are even better and better feasible solutions
as well. For example, if the goal for Alice was to go as fast as possible to catch a train, instead of
being as slow as possible, then neither 4 km

h , 10 km
h , 1000 km

h or the speed of light would be optimal
solutions, because there would always be a feasible solution with higher speed value. Of course, this
does not make sense. Usually, when our model turns out to be unbounded, then we either made a
mistake in solving it, or it does not describe reality well – maybe because it misses some real-world
constraint we did not thought about. The latter was the case in our example, because in practice,
Alice cannot go as fast as she wishes.

We can also call the set of feasible solutions of the model as the search space, emphasizing that
our actual goal in optimization is to maximize or minimize an objective function value over the set of
feasible solutions. Also, if all the variables together are treated as a mathematical vector, then each
solution can be considered a point in that vector space. The set of all feasible solutions is a set of
points in space that might have some special properties. For example, in LP problems, it is a convex
polytope. Constraints (and bounds) are used to define the search space. Each constraints might
exclude some feasible values from the search space that are no longer feasible anymore because of
that constraint.

It may appear that there is a constraint that does not exclude solutions from the search space
at all. We call those constraints redundant. Note that redundant constraints do not affect the
solutions of the model, and hence the optimal solution, but may affect the solution procedure itself,
either in a positive or a negative way. We may also refer to constraints as redundant if they do
actually exclude some solutions, but only those which are not interesting for us (for example, because
they cannot be optimal for some reason and therefore will not be reported by the solution algorithm
anyways).

Now see a bit more elaborate example for an optimization problem.

Problem 3.
A company wants to design a new kind of chocolate in the form of a rectangular brick of ho-

mogeneous material. They want the brick to contain as much mass as possible, however, there are
regulations on the faces of the brick, for transporting considerations. One of the faces must have an
area not greater than 6 cm2, another face cannot be greater than 8 cm2, and the largest face cannot
be greater than 12 cm2. What is the largest mass for a piece of chocolate?

This example can be part of a business decision problem. The company wants to maximize its
profit, but has to find a suitable solution for production. Operations Research helps in decision
making, for example, with optimization models.

Now it is not even straightforward to define the variables themselves. Though not even mentioned
in the problem text, the three edges of the brick, say x, y and z are adequate, for the following
reasons. From these we can easily express the other quantities the problem specification refers to:
xy, xz and yz are the faces, and xyz is for the total volume which is to be maximized. Note that if
the chocolate is homogeneous, then volume is proportional to mass, so we may consider maximizing
volume instead of mass, they are equivalent. Second, x, y and z are independent of each other: the
selection of x does not directly affect the selection of y, as all possible combinations can yield a
brick. If they were not independent, additional constraints must have been formalized.

The most important thing is that if x, y and z are given, then the solution to the real-world
problem is well-defined. That means, we can exactly tell whether the constraints are satisfied or
not, and what the objective value is. This is the most important requirement for a set of variables
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2.4. MATHEMATICAL PROGRAMMING OPTIMIZATION

to be adequate for a model. Now let us do this work: express the three constraints for the faces and
the objective of the volume to formulate the optimization model. Note that x, y and z should also
be positive, but these bounds will be implicitly enforced by an optimal solution of the model.

maximize : xyz
subject to : xy ≤ 6 cm2

xz ≤ 8 cm2

yz ≤ 12 cm2

x, y, z ≥ 0

(6)

There are many feasible solutions for this model, for example x = y = z = 2 cm is a feasible one,
but x = y = z = 2.5 cm is an infeasible one. There is a single optimal solution, which is x = 2 cm,
y = 3 cm and z = 4 cm, the total volume in this case is 24 cm3.

The way of finding this optimal solution and undoubtedly prove that it is indeed optimal, is
not trivial, and is out of scope of this Tutorial. There is a hint, if the reader liked to solve it:
(xyz)

2
= xy · xz · yz.

2.4 Mathematical programming
We have seen two very simple optimization problems so far, however, for the latter one we would
have been in trouble if we had to actually solve it and prove that our solution is indeed optimal.

However, the point of mathematical programming is that we are not the ones who actually
solve the models. We are the ones who translate the real-world problem to an optimization model,
then usually a software designed generally for solving models is doing the dirty job for us. Finally,
we only need to verify that the solution of the model is actually a suitable solution to the real-world
problem.

A mathematical programming model consists of the model variables that represent our freedom
of choosing solutions, the constraints that express the requirements for a solution to be feasible,
and correspondingly, suitable in the real-world problem, and finally the objective function, which
determines the criteria of finding the best among the feasible solutions.

Although the general idea is that we are only formulating a model, we still need to take care
about what class of model we choose. The main reason is that it greatly affects what kind of solution
methods we can use. Solving a model from a more special class in contrast with a more general
one can be drastically cheaper in terms of computational effort. We explicitly mention two model
classes that are of great importance in Operations Research.

In Linear Programming (LP) models, the variables can take arbitrary real values. The con-
straints are equations or non-strict inequalities of linear expressions of the variables. A linear
expression is the sum of some of the variables, each multiplied by a constant. Linear expressions
cannot contain multiplication, division of the variables with each other, or any other mathematical
functions or operations: only addition, subtraction, and multiplication by a constant is allowed.
The objective function itself must be a linear expression of the variables, the minimization or max-
imization of which is the optimization goal. The following is an example of an LP problem.

minimize : 3x+ 4y − z
subject to : 2x+ 5 = z + 2

x− y ≤ 0
x+ y + z ≤ 2 (x+ y)
x, y, z ≥ 0

(7)

One important thing about LP models is that only non-strict constraints are allowed (≤, ≥ or
=), but strict constraints (<, >) are not. Also note that Problem 1 about Alice is formulated as an
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2.4. MATHEMATICAL PROGRAMMING OPTIMIZATION

LP model, while Problem 3 about the chocolate bricks is not LP, because it contains a product of
variables, which is a nonlinear term.

An LP model is solvable in polynomial time in the number of constraints and variables. That
means, large models can be formulated and solved in acceptable time with a modern computer. LP
problems have several interesting properties that make them solvable with efficient algorithms, for
example, the Simplex Method (see Chapter 8). One of such properties is that the set of feasible
solutions in space is always a closed, convex set.

In Mixed-Integer Linear Programming models, we may additionally restrict some variables
to only take integer values in feasible solutions, contrary to LP problems. This difference makes
solving generally the wider class of MILP models an NP-complete problem in the number of integer
variables. That means, if there are many integer variables in an MILP model, then we generally
cannot expect a complete solution in acceptable computational time. However, the number of
applications the class of MILP models can cover is surprisingly more extended than for LP problems,
making MILP models a popular method for solving complex optimization problems. There are
effective software tools utilizing heuristic algorithms that usually solve not too complex MILP models
very fast.

In this manual, we focus on MILP and LP models. In both cases, there are only linear expressions
of the variables appearing in the formulations. There are other problem classes like Nonlinear
Programming (NLP), Mixed-Integer Nonlinear Programming (MINLP), with corresponding solvers,
but these are not covered here.
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Chapter 3

GNU MathProg

This chapter aims at briefly introducing GNU MathProg and how it can be used to implement and
solve mathematical programming models in the LP or MILP class. A short example problem is
presented with implementation, solution and results, with some of the most frequently used features
of the language shown.

3.1 Prerequisites for programming
GNU MathProg, also referred to as the GNU Mathematical Programming Language, or GMPL,
is a programming language for designing and solving LP and MILP. The GNU Linear Programming
Kit, GLPK provides free software to both parsing implemented models and solving them until the
optimal solution is reported. GLPK is available under the General Public License version 3.0 or
later [6].

There are other software tools for solving MILP models, some are available with a free license
like CBC, or lpsolve. These mentioned can be much faster than GLPK. Commercial software can
even be better, some of them are available through academic license. However, we selected GNU
MathProg and solver glpsol from GLPK because it is relatively easy to use and includes both
language and model solving tools.

Installing GLPK depends on the operating system. On Linux, we can head to the official website
of GLPK, where installation packages, source codes and even sample GNU MathProg problems can
be found. On some distributions, installation can be done with a single command as follows.

sudo apt-get install glpk-utils

If installation is complete, we shall have the program glpsol available in the command line.
Throughout this manual, we will use this tool to parse and solve models, in command line.

On Windows, there is a possibility to obtain the command line solver as well. However, a more
convenient option is a desktop application called GUSEK [9], which is a simple IDE with text
editor for the GNU MathProg programming language. The solver glpsol is available with all of
its functionalities there. With GUSEK, no command line is needed, although navigating between
multiple files requires some attention.

Reference manual for the GNU MathProg modeling language with usages of the glpsol software
is publicly available, see the references [1].
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3.2 „Hello World!” program
After successful installation, we can try the program with a very simple LP problem. This will be
our first GNU MathProg program, like a „Hello World!”.

var x >= 0;
var y >= 0;
var z >= 0;

s.t. Con1: x + y <= 3;
s.t. Con2: x + z <= 5;
s.t. Con3: y + z <= 7;

maximize Sum: x + y + z;

solve;

printf "Optimal (max) sum is: %g.\n", Sum;
printf "x = %g\n", x;
printf "y = %g\n", y;
printf "z = %g\n", z;

end;

GNU MathProg is designed to be easy to read, and the mathematical meaning to be easy to
understood. The language consists of commands ending with a semicolon (;), these are called
statements. There are six distinct statements in this file: var, s.t., maximize, solve, printf
and end. The meanings of most are self-explanatory, as we will see.

var x >= 0;
var y >= 0;
var z >= 0;

First of all, this is an LP problem, all three variables x, y and z can take real values. Also,
they have bounds defined: each of them must be nonnegative. Note that this is the most common
bound for variables.

s.t. Con1: x + y <= 3;
s.t. Con2: x + z <= 5;
s.t. Con3: y + z <= 7;

In the problem, there are three constraints, apart from the bounds, which are treated differently
in the language. The constraints are named Con1, Con2, Con3, respectively. The names are preceded
by „s.t.”, but it has several aliases, it can be „subject to”, or can be omitted at all. The constraints
state that the sum of any two of the three variables cannot be greater than given constants, which
are 3, 5 and 7, respectively.

maximize Sum: x + y + z;

The goal of the optimization is to maximize the objective entitled as „Sum”, which is, of course,
the sum of the three variables. There can be at most one maximize or minimize statement in a
model file.

13
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At this point, the LP problem is well defined. This is a relatively easy linear problem, however,
its optimal solution might be not obvious for first sight.

It shall be noted that the objective function can be omitted at all from a GNU MathProg model
formulation. In this case, the only task is to find any feasible solution for the problem.

solve;

printf "Optimal (max) sum is: %g.\n", Sum;
printf "x = %g\n", x;
printf "y = %g\n", y;
printf "z = %g\n", z;

end;

There is a solve statement in the file. This denotes the point where the solver software should
finish reading all the data, then constructing and solving the model. After the solve statement,
there may still be other statements in the file, to report valuable information about our solution.
In this case, the objective value and our three variables are printed with their values obtained by
the optimization procedure. The printf statement works similarly to the printf() function from
the C programming language, but has less supported format specifiers. We prefer the %g format,
because it can print both integers and fractional values in a short form. In some cases, a fixed
precision number is more adequate, like %.3f.

An end statement denotes the end of the model description, although it is optional.
We can use any text editor we like, but some of them have syntax highlight options. GUSEK on

Windows has its own text editor which is specifically designed to modeling. On Linux, we can use
gedit. It does not have a syntax highlight for GNU MathProg by default, but one can be obtained
from the internet.

Let us name this exact file as helloworld.mod. On some systems, the file extension .mod can
be recognized as a video format by the file browser. This causes the „double-click” opening method
to try to open the file as a video instead of a text file. For this reason, it is recommended to set the
opening method of the file to the text editor we prefer, for example gedit. Alternatively, we can
simply use a different file extension, like .m, or simply .txt, it does not matter from the viewpoint
of glpsol, although it may matter if we use some IDE for programming like GUSEK.

File helloworld.mod is a model file, because it contains the business logic of the problem
we want to solve. It is alone enough for defining a problem. Later on, we will split our problem
formulations to a single model file and one or more data files. The model file encapsulates the logic
of the problem, while the data file(s) provide the actual data the problem shall be solved with. This
will be useful, because if the data of the real-world problem changes, we do not need to tamper with
the model itself. In other words, a user who wants to solve a model for a particular problem does
not need to know the model, only a data file must be implemented correctly, which is much easier
and less error-prone.

Use glpsol to solve the model file with the following command.

glpsol -m helloworld.mod

Something similar to the following output is obtained.

GLPSOL: GLPK LP/MIP Solver, v4.65
Parameter(s) specified in the command line:
-m helloworld.mod
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Reading model section from helloworld.mod...
20 lines were read
Generating Con1...
Generating Con2...
Generating Con3...
Generating Sum...
Model has been successfully generated
GLPK Simplex Optimizer, v4.65
4 rows, 3 columns, 9 non-zeros
Preprocessing...
3 rows, 3 columns, 6 non-zeros
Scaling...
A: min|aij| = 1.000e+00 max|aij| = 1.000e+00 ratio = 1.000e+00

Problem data seem to be well scaled
Constructing initial basis...
Size of triangular part is 3
* 0: obj = -0.000000000e+00 inf = 0.000e+00 (3)
* 3: obj = 7.500000000e+00 inf = 0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND
Time used: 0.0 secs
Memory used: 0.1 Mb (102283 bytes)
Optimal (max) sum is: 7.5.
x = 0.5
y = 2.5
z = 4.5
Model has been successfully processed

This is a small problem, therefore the result is almost instantaneous. Let us observe what
information can be read from the output.

GLPSOL: GLPK LP/MIP Solver, v4.65
Parameter(s) specified in the command line:
-m helloworld.mod

Reading model section from helloworld.mod...
18 lines were read
Generating Con1...
Generating Con2...
Generating Con3...
Generating Sum...
Model has been successfully generated

The first section of the output is printed during the model generation procedure. Note that if
the model has bad syntax, it is remarked here. Only the first error is displayed. It can also be
observed that the constraints and objective are the model elements that must be „generated”.

GLPK Simplex Optimizer, v4.65
4 rows, 3 columns, 9 non-zeros
Preprocessing...
3 rows, 3 columns, 6 non-zeros
Scaling...
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A: min|aij| = 1.000e+00 max|aij| = 1.000e+00 ratio = 1.000e+00
Problem data seem to be well scaled
Constructing initial basis...
Size of triangular part is 3
* 0: obj = -0.000000000e+00 inf = 0.000e+00 (3)
* 3: obj = 7.500000000e+00 inf = 0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND
Time used: 0.0 secs
Memory used: 0.1 Mb (102283 bytes)

The solution procedure of an LP problem from the constraints themselves to the final, optimal
solution is itself an interesting subject of Operations Research. However, we do not focus on the
underlying solution algorithms themselves. However, basic knowledge about it would help us de-
bugging in the future. First of all, all LP problems are represented in a matrix of coefficients, the
rows of which are corresponding to constraints (and the objective), the columns corresponding to
variables, and the entries of the matrix being the coefficients of a given variable in a given constraint.
On this matrix, some preprocessing steps are performed, and then the main algorithm is launched.

There are two rows in this output which show a „current” result. The first one shows an objective
of 0, the second shows the objective 7.5 which is actually the final optimal solution. The row
„OPTIMAL LP SOLUTION FOUND” denotes that the solver succeeded in solving the problem,
and is now aware of the optimal solution and the corresponding values of the variables. If there are
multiple optimal solutions, one of them is chosen.

With more complex problems, solution can take a considerable amount of time and current
best solutions are regularly displayed. The solution procedure may be ended before arriving to the
optimal solution, in which case the best feasible solution found so far is reported. This happens, for
example, when a time limit is set to glpsol and it is exceeded during the procedure.

Optimal (max) sum is: 7.5.
x = 0.5
y = 2.5
z = 4.5
Model has been successfully processed

Finally, we can see the result of the printf statements that we added at the end. We can
see that the optimal solution is x = 1

2 = 0.5, y = 5
2 = 2.5, z = 9

2 = 4.5, and then the objective
function is x + y + z = 15

2 = 7.5. This result means we cannot choose values for the variables
to obtain a larger sum, unless at least one of the constraints (or bounds) are violated. Note that
printf statements are also valid before the solve statement, that is, during the model construction
procedure. However, before the solve statement, variables and the objective are not available, as
they had not been calculated by that point. The final Model has been successfully processed
message hints us that the solver call was successful.

We shall also note that glpsol command line tool has many other options available. For example,
we can ourselves print an automated solution file with the -o option. We can also save the output
of the program with the --log option. Also, the constructed model can be exported to formats that
other MILP solvers can use. For example, with the --wlp option, we can export to CPLEX-LP matrix
format, which is supported by many other solver software. Perhaps we do want to use glpsol to
solve the model, we only need it to translate the model to some other format. Then, the --check
option ensures that the model is only parsed, but not solved. It is also possible to manipulate the
solution procedure in many ways.

Now that we have successfully formulated, solved and analyzed the output for our first LP
problem implemented in GNU MathProg, let us make a slight change in the model file. Add the
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integer restriction to all three of the variables, as follows. The modified file is now saved as
helloworld-int.mod.

var x >= 0, integer;
var y >= 0, integer;
var z >= 0, integer;

From now, this is no more an LP model, but an MILP model, because some (in particular, all)
of the variables must take integer values. Solving the model with glpsol is the same.

glpsol -m helloworld-int.mod

The solver identifies the model as MILP, and there are some changes in the generated output.

Solving LP relaxation...
GLPK Simplex Optimizer, v4.65
3 rows, 3 columns, 6 non-zeros
* 0: obj = -0.000000000e+00 inf = 0.000e+00 (3)
* 4: obj = 7.500000000e+00 inf = 0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND
Integer optimization begins...
Long-step dual simplex will be used
+ 4: mip = not found yet <= +inf (1; 0)
+ 6: >>>>> 7.000000000e+00 <= 7.000000000e+00 0.0% (2; 0)
+ 6: mip = 7.000000000e+00 <= tree is empty 0.0% (0; 3)
INTEGER OPTIMAL SOLUTION FOUND
Time used: 0.0 secs
Memory used: 0.1 Mb (124952 bytes)
Optimal (max) sum is: 7.
x = 1
y = 2
z = 4
Model has been successfully processed

We can observe that a so-called LP relaxation is solved first, the output for which seems the
be the same as the output for our initial LP problem. Actually, this is the nature of the solution
algorithm, it is first solved as if all the integer restrictions were removed, as an LP problem. Then,
the actual MILP model is solved, and we find that the optimal solution is only 7.0 instead of the
optimal solution of the LP, which was 7.5.

This is not surprising. The only difference between the two models is that the integer problem
is more restrictive about the variables. That means, any solution to the MILP is a solution to the
LP. But the opposite is not true, as the optimal solution of the LP, x = 0.5, y = 2.5, z = 4.5 was
eliminated by the integer restrictions. The LP relaxation is an important concept in solving MILP
models - for example, it can be used as a good initial solution, trying to make all the variables to
obtain integer variables. Also, if the integer variables all turn out to have integer values in the LP
relaxation, then it is guaranteed to be an optimal solution for the MILP as well, because the MILP
is the more restricted.

In this model, the solver needed a little extra work for the MILP, and found the solution of
x = 1, y = 2 and z = 4. Note that it is an optimal solution, but not the only one. x = 0, y = 3,
z = 4, and x = 0, y = 2, z = 5 are also feasible and optimal solutions with the same objective value
of 7.0.
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As we could suspect, the algorithmic procedure behind the MILP can be substantially more
complex than that of an LP. However, the difference in the formulation is only the integer restrictions
of the variables.

We should keep in mind that solvers can handle a large number of variables and constraints of
an LP model, but usually they can only handle a limited number of integer variables of an MILP
model. The exact limit for integer variables strongly depends on the model itself, it can range from
dozens to thousands.
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Chapter 4

Equation systems

In this chapter, basic capabilities of the GNU MathProg language are presented on an example
modeling problem, which is the general solution of linear equation systems. The aim is to navigate
from the initial point of a straightforward implementation to the usage of indexing and separated
model and data sections.

With this knowledge, maintenance of code, and solution of the model with different instances
(different data) become very easy, provided that first the model is correctly implemented. This is
the standard way we intend to implement models in the future.

Note that solving linear systems of equations is considered a routine task. There are plenty
of capable software tools, either standalone or embedded. A well-known algorithm is the Gaus-
sian elimination [10]. But we are now interested in not the solution algorithms, but modeling.
Particularly, GNU MathProg implementation techniques, in this chapter.

4.1 Example system
Let us start with the solution of a small system of equations, now in GNU MathProg.

Problem 4.
Solve the following system of equations in the real domain.

2 (x− y) = −5
y − z = w − 5

1 = y + z

x+ 2w = 7y − x

(8)

Although it is not explicitly mentioned in the problem description, there are four variables, x,
y, z, w, and the real domain means that all of these can take arbitrary real values, independently.
Our goal is to find values for these four variables so that all four equations are true.

If a complete analysis about the problem was in question, then the problem would be not only
to find a single solution, but to find all of them - and if there are infinitely many solutions, then
characterize this infinite set, moreover, also prove that there are no other solutions. However, for
the sake of simplicity, now we only want to find any single solution to the system of equations and
we do not want to decide whether there is another or not.

This is therefore a feasibility problem, it means that only a single feasible solution is to be
found. There is no need to objective function for which we want to optimize, because there are no
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better or worse solutions.
It can be observed that Problem 4 describes a linear system of equations. This is apparent after

we arrange the equations into the following format.

2x −2y = −5
y −z −w = −5
y +z = 1

2x −7y +2w = 0

(9)

The point is that this arrangement can be obtained from the original system by simplifying each
equation alone: removing the parentheses, adding and merging terms at both sides. In this way,
the arranged system is equivalent to the original. On the left-hand side (LHS) of the equation,
there is a linear expression of the variables (each multiplied by a constant, then added), and on the
right-hand side (RHS), there is a constant, in each equation. Therefore all equations are linear.
If we further add zero terms and emphasize coefficients at each column of the arranged format, we
get the following, equivalent form of the same system.

(+2) · x + (−2) · y + 0 · z + 0 · w = −5
0 · x + (+1) · y + (−1) · z + (−1) · w = −5
0 · x + (+1) · y + (+1) · z + 0 · w = 1

(+2) · x + (−7) · y + 0 · z + (+2) · w = 0

(10)

Although this representation is less readable, it represents more generally what a system of
linear equations actually mean. For each equation, there is a constant right-hand side, and a linear
expression at the left-hand side, for which we only want to know the coefficients for each variable.
So this whole problem can be represented in a matrix of coefficients, for which the rows correspond
to solutions, and columns correspond to variables – except the rightmost column, which corresponds
to the right-hand side.

This is very close to what we call the standard form of a Linear Programming problem.
The standard form also includes ≥ 0 bounds for all variables, consists of ≤ inequalities instead
of equations, and of course, has a linear objective function. This matrix-like form is important
because it inspires solution algorithms. However, we are now not going into the details of solution
algorithms, neither in case of system of equations nor in LP problems.

Instead, the representation shown in Equation system 10 will be useful to understand the general
scheme behind systems of linear equations, and to implement a separated GNU MathProg MILP
model, for which a data section describing an arbitrary system of linear equations can be provided
and solved.

Now let us see how the code looks like in GNU MathProg. First, the most straightforward
implementation is shown, without arrangement of the equations.

var x;
var y;
var z;
var w;

s.t. Eq1: 2 * (x - y) = -5;
s.t. Eq2: y - z = w - 5;
s.t. Eq3: 1 = y + z;
s.t. Eq4: x + 2 * w = 7 * y - x;

solve;
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printf "x = %g\n", x;
printf "y = %g\n", y;
printf "z = %g\n", z;
printf "w = %g\n", w;

end;

As we can see here, GNU MathProg allows usage of parentheses and basic operations, provided
that the constraints, now named Eq1, Eq2, Eq3 and Eq4, simplify into an equality (or non-strict
inequality) between two linear expressions.

If we solve the above model file, then the solution x = 0.5, y = 3, z = −2 and w = 10 is obtained.
This solution is unique, so all solution methods shall end up with this exact result. We can also
manually check that all four equations are satisfied with the resulting values of the variables. The
code itself helps us by printing the values of the four variables to the solver output.

Now, if the aligned version is to be implemented, we can get the following.

s.t. Eq1: 2 * x + (-2) * y + 0 * z + 0 * w = -5;
s.t. Eq2: 0 * x + 1 * y + (-1) * z + (-1) * w = -5;
s.t. Eq3: 0 * x + 1 * y + 1 * z + 0 * w = 1;
s.t. Eq4: 2 * x + (-7) * y + 0 * z + 2 * w = 0;

As we can see, white space characters can be freely used in GNU MathProg to help with readabil-
ity. Also, zero coefficient terms can be eliminated from the expressions and padded with whitespace
instead. The rest of the model file can remain unchanged. The result when solving this arranged
model file shall be the same.

4.2 Modifications in code
Now that we have a working model file solving a particular system of linear equations, let us try
to solve another one, which is obtained by slight modifications from the original one. The problem
description is the following.

Problem 5.
Take the equations defined by Equation system 4 as initial, within its aligned form described in

either Equation system 9 or 10. Then, obtain another system by applying the following modifications.

1. Change the coefficient of x everywhere from 2 to 4.

2. Add z in Eq1 with a coefficient of 3.

3. Delete y from Eq2 (zeroize its coefficient).

4. Change the RHS of Eq3 to 1.5.

5. Add a fifth variable v, with no bounds.

6. Add the equation x+ 3v + 0.5 = −2z as Eq5.

7. Introduce v in Eq4 with a coefficient of 5.

8. Print out the newly introduced variable v after the solve statement as the others.

These modifications can be done one-by-one in a straightforward way until the following model
is obtained.
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var x;
var y;
var z;
var w;
var v;

s.t. Eq1: 4 * x + (-2) * y + 3 * z + 0 * w + 0 * v = -5;
s.t. Eq2: 0 * x + 0 * y + (-1) * z + (-1) * w + 0 * v = -5;
s.t. Eq3: 0 * x + 1 * y + 1 * z + 0 * w + 0 * v = 1.5;
s.t. Eq4: 4 * x + (-7) * y + 0 * z + 2 * w + 5 * v = 0;
s.t. Eq5: 1 * x + 0 * y + 2 * z + 0 * w + 3 * v = -0.5;

solve;

printf "x = %g\n", x;
printf "y = %g\n", y;
printf "z = %g\n", z;
printf "w = %g\n", w;
printf "v = %g\n", v;

end;

The solution of the new system is x = 2, y = 3.5, z = −2, w = 7, v = 0.5. Although not proven
here, but this solution is unique.

Now observe which kind of modifications we have to implement in code to obtain the results.
The first four tasks were just replacing, introducing and erasing coefficients from the corresponding
equations. In these cases, one must find the corresponding constraints, the corresponding variable
in it and apply the changes.

However, the introduction of the new variable requires some more work besides declaring v as a
variable with no bounds. If we wanted to maintain the arrangement of the equations, then all must
be expanded with a single column for coefficients of v. These coefficients are initially zero, for not
being used. Then, in Eq4 and Eq5, we can insert a nonzero coefficient for v afterwards. We also
need to manually modify the printing code after the solve statement to involve v.

Insertion of the new equation Eq5 would also require some more work. Again, if we wanted
to keep the code easy to read and maintain the arrangement, the new code line for Eq5 must be
formatted accordingly.

Although this was still a small problem, we can feel that modification of a system of equations to
accommodate another problem might be a bit frustrating. It gets worse if the number of variables
and equations increase – note that several thousands of both are still considered a problem with
reasonable size.

One problem is that the model code includes some redundancy – we have to maintain arrange-
ment to preserve readability, although it is not possible for very large problems. However, the
greatest drawback is that we have to understand and tamper with model code – although we only
need to change the actual problem itself, which is still a system of linear equations.

It would be wise to somehow separate the modeling logic of systems of linear equations, and actual
data of the linear equations to be solved (that is, the number of variables, equations, coefficients
and right-hand side constants). This is exactly what we will do in the next sections. Afterwards,
what we only need is to alter the data, and the model can remain unchanged, which helps us in
reusing code in the future, and implementation of problems with large data.
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4.3 Parameters
The first thing we do to separate problem data from the model logic is the introduction of param-
eters. This case, the modified problem is to be implemented. We only change the code, not the
underlying problem.

Parameters can be introduced with the param statement. It is similar in syntax to the var
statement for introducing variables. However, the param statement defines constant values that can
be used in the model formulation. Parameters are by default numeric values, and are used here as
such, but note that they can also represent symbolic values (like strings).

The fundamental difference is that variables are the values to be found by the optimization
procedure, to satisfy all constraints and optimize a given objective function. For the implementation
point of view, the values of variables are only available after the solve statement. Parameters, on
the other hand, are constant values that are initially given, and are typically used to formulate the
model itself.

Note that parameters defined by the param statement, similarly to variables defined in the var
statement, must have a unique name, and they can only be used in the model file after definition.
Hence, in any expression, we can only refer to parameters which are defined earlier in the code. For
this reason, parameter definitions typically precede constraint and even variable definitions.

First, we only introduce parameters for the right-hand values of the equations, as follows.

var x;
var y;
var z;
var w;
var v;

param Rhs1 := -5;
param Rhs2 := -5;
param Rhs3 := 1.5;
param Rhs4 := 0;
param Rhs5 := -0.5;

s.t. Eq1: 4 * x + (-2) * y + 3 * z + 0 * w + 0 * v = Rhs1;
s.t. Eq2: 0 * x + 0 * y + (-1) * z + (-1) * w + 0 * v = Rhs2;
s.t. Eq3: 0 * x + 1 * y + 1 * z + 0 * w + 0 * v = Rhs3;
s.t. Eq4: 4 * x + (-7) * y + 0 * z + 2 * w + 5 * v = Rhs4;
s.t. Eq5: 1 * x + 0 * y + 2 * z + 0 * w + 3 * v = Rhs5;

solve;

printf "x = %g\n", x;
printf "y = %g\n", y;
printf "z = %g\n", z;
printf "w = %g\n", w;
printf "v = %g\n", v;

end;

From now on, if we need to modify the RHS of an equation, we do not need to modify the code
of the constraint describing that equation. Instead, we only need to replace the definition of the
given RHS parameter.

23



4.4. DATA BLOCKS EQUATION SYSTEMS

In the same manner, we can also introduce parameters for the coefficients of the equations. Be-
cause there are coefficients for all 5 equations and all 5 variables, a total of 25 additional parameters
are needed.

var x;
var y;
var z;
var w;
var v;

param Rhs1 := -5;
param Rhs2 := -5;
param Rhs3 := 1.5;
param Rhs4 := 0;
param Rhs5 := -0.5;

param c1x:=4; param c1y:=-2; param c1z:= 3; param c1w:= 0; param c1v:= 0;
param c2x:=0; param c2y:= 0; param c2z:=-1; param c2w:=-1; param c2v:= 0;
param c3x:=0; param c3y:= 1; param c3z:= 1; param c3w:= 0; param c3v:= 0;
param c4x:=4; param c4y:=-7; param c4z:= 0; param c4w:= 2; param c4v:= 5;
param c5x:=1; param c5y:= 0; param c5z:= 2; param c5w:= 0; param c5v:= 3;

s.t. Eq1: c1x * x + c1y * y + c1z * z + c1w * w + c1v * v = Rhs1;
s.t. Eq2: c2x * x + c2y * y + c2z * z + c2w * w + c2v * v = Rhs2;
s.t. Eq3: c3x * x + c3y * y + c3z * z + c3w * w + c3v * v = Rhs3;
s.t. Eq4: c4x * x + c4y * y + c4z * z + c4w * w + c4v * v = Rhs4;
s.t. Eq5: c5x * x + c5y * y + c5z * z + c5w * w + c5v * v = Rhs5;

solve;

printf "x = %g\n", x;
printf "y = %g\n", y;
printf "z = %g\n", z;
printf "w = %g\n", w;
printf "v = %g\n", v;

end;

Note that param statements can be put in a single line for the sake of readability, and to
preserve the arrangement of the equations. After the total of 30 parameters are introduced, the
implementation of the equations can be considered final. With the sole modification of the parameter
statements in the model file, we can solve arbitrary systems of linear equations with 5 variables and
5 equations.

Note that the solution of any of these two models are exactly the same as before, as the system
of equations itself did not change, only its implementation.

4.4 Data blocks
We had separated the coefficients and RHS values from the equations they are in, but still, we need
to modify the param statements in the model file to alter the problem. We used a single model file
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each time so far. Now we introduce the concept of the model section and the data section, with
which we can separate the model logic with the problem data entirely.

Parameter values in GNU MathProg can be determined in two ways.

• A parameter value is explicitly given where it is defined: as a constant value, or some expression
of other constant values, other parameters, and built-in functions and operators of the GNU
MathProg language.

• A parameter value in not given in the model section, but in a separate data section.

Now let us see how we can modify the model file to obtain a separate model section and data
section. In case where only the RHS parameters were introduced, the complete separation is the
following.

var x;
var y;
var z;
var w;
var v;

param Rhs1;
param Rhs2;
param Rhs3;
param Rhs4;
param Rhs5;

s.t. Eq1: 4 * x + (-2) * y + 3 * z + 0 * w + 0 * v = Rhs1;
s.t. Eq2: 0 * x + 0 * y + (-1) * z + (-1) * w + 0 * v = Rhs2;
s.t. Eq3: 0 * x + 1 * y + 1 * z + 0 * w + 0 * v = Rhs3;
s.t. Eq4: 4 * x + (-7) * y + 0 * z + 2 * w + 5 * v = Rhs4;
s.t. Eq5: 1 * x + 0 * y + 2 * z + 0 * w + 3 * v = Rhs5;

solve;

printf "x = %g\n", x;
printf "y = %g\n", y;
printf "z = %g\n", z;
printf "w = %g\n", w;
printf "v = %g\n", v;

data;

param Rhs1 := -5;
param Rhs2 := -5;
param Rhs3 := 1.5;
param Rhs4 := 0;
param Rhs5 := -0.5;

end;

We can observe that the parameters are only defined, without a value given in the model section.
Then, after the model construction, and the post-processing procedures (here, printing the variables
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out), there comes a data statement. There can be a single data statement at the end of a model
file, which denotes the end of the model section and the start of the data section. The data section
contains the actual values of parameters which were defined in the model without a value provided
there.

This can be done for the full parameterization example as well.

var x;
var y;
var z;
var w;
var v;

param Rhs1;
param Rhs2;
param Rhs3;
param Rhs4;
param Rhs5;

param c1x; param c1y; param c1z; param c1w; param c1v;
param c2x; param c2y; param c2z; param c2w; param c2v;
param c3x; param c3y; param c3z; param c3w; param c3v;
param c4x; param c4y; param c4z; param c4w; param c4v;
param c5x; param c5y; param c5z; param c5w; param c5v;

s.t. Eq1: c1x * x + c1y * y + c1z * z + c1w * w + c1v * v = Rhs1;
s.t. Eq2: c2x * x + c2y * y + c2z * z + c2w * w + c2v * v = Rhs2;
s.t. Eq3: c3x * x + c3y * y + c3z * z + c3w * w + c3v * v = Rhs3;
s.t. Eq4: c4x * x + c4y * y + c4z * z + c4w * w + c4v * v = Rhs4;
s.t. Eq5: c5x * x + c5y * y + c5z * z + c5w * w + c5v * v = Rhs5;

solve;

printf "x = %g\n", x;
printf "y = %g\n", y;
printf "z = %g\n", z;
printf "w = %g\n", w;
printf "v = %g\n", v;

data;

param Rhs1 := -5;
param Rhs2 := -5;
param Rhs3 := 1.5;
param Rhs4 := 0;
param Rhs5 := -0.5;

param c1x:=4; param c1y:=-2; param c1z:= 3; param c1w:= 0; param c1v:= 0;
param c2x:=0; param c2y:= 0; param c2z:=-1; param c2w:=-1; param c2v:= 0;
param c3x:=0; param c3y:= 1; param c3z:= 1; param c3w:= 0; param c3v:= 0;
param c4x:=4; param c4y:=-7; param c4z:= 0; param c4w:= 2; param c4v:= 5;
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param c5x:=1; param c5y:= 0; param c5z:= 2; param c5w:= 0; param c5v:= 3;

end;

The solution obtained by solving these model files is exactly the same in all the parameterization
examples, because the system of linear equations is still the same. But now, if one wants to solve
an arbitrary system of 5 linear equations on 5 variables, then only the data section of this model
file must be modified accordingly.

There are more complex data sections required for more complex models. However, the syntax
for data sections is generally more permissive than in the model section. That means, even if we only
want to implement a single model and only solve it with a single problem, it is still a good choice to
write its data to a separate data section rather than hard-coding parameter values into the model
section. The more permissive syntax also makes shorter and more readable data representation
possible.

One thing that makes data sections useful is that they can be implemented in a separate data
file. A data file is a data section written in a separate file. Its content shall be simply all the code
between the data and end statements. Note that both statements are optional in this case, but
increase readability.

The model file shall only contain the full model section and no data sections. Suppose that
we had a model file named equations.mod, and we write the data section of the actual system of
equations into the eq-example.dat file. Then, solution with the glpsol command line tool can be
done with the following command.

glpsol -m equations.mod -d eq-example.dat

Unlike in the model section where referring to model elements defined afterwards is illegal, the
statements in the data section can be in arbitrary order. Moreover, multiple data files are allowed
to be solved with a single model file, therefore we can further separate problem data. It does not
mean that we are solving different problems at the same time, but a single problem instance where
its different parameters are separated into different data files.

For example, if we have n different variations for the value of a given parameter, and k different
variables for the value of another parameter, then we can implement these as n + k data files. We
actually have nk different problem instances, all can be solved with the same single model file, by
providing glpsol the corresponding two variations for the two parameters.

One important property of parameters in GNU MathProg that should be kept in mind is that pa-
rameter values are only calculated if they are actually required, for example to define model elements
(like constraints, variable bounds, objectives), or printing them out, or, if they are required in the
calculation of other parameters which are themselves required. This might cause, for example that
an erroneously defined parameter value is only reported as a modeling error when the constraint it
first appears in is reached in the model file. Note that, basic syntax check is done by glpsol even
in this case, just the substitution of parameter values is „lazy”.

One particular example for this is when we do not give a value for a parameter, and use it
afterwards. It is legal in GNU MathProg to define a parameter without a value – for example, when
we want to give value to it in the data section after the whole model section, or even in a separate
file. If the parameter is not actually used at all in the model, then it is not an error. However, if
the parameter is used and there is no value at definition, or any data sections, an error is generated.
To demonstrate this, erase the param c3z := 1; statement from the data section of the model and
try to solve it with glpsol as before. The following error message is shown.
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Generating Eq1...
Generating Eq2...
Generating Eq3...
eqsystem-data-blocks-full.mod:21: no value for c3z
MathProg model processing error

We can see that the first two equations Eq1 and Eq2 were generated successfully. However,
Eq3 utilized the parameter c3z in its definition, but there was no value given for that particular
parameter: neither in the model section, nor in the data section (or any data sections). The model
could not be generated and solved.

Note that, it is also illegal to provide a parameter value twice (in the model and in a data section,
or in any two data sections). However, there is a way we can „optionally” provide parameters values
in data files, by providing default values at the model file. More on that later.

4.5 Indexing
At this point, we are able to completely separate the model logic and the problem data – at least for
the case of systems of linear equations. However, one might argue that it did not actually help much.
The model section including all the constraints are not needed to be touched, but the parameter
definition part of the model, and also their values in a data section, require even more code to be
written. It is still very complicated to modify the data of the problem.

Not to mention that the number of variables and the number of equations cannot be altered
solely by redefining parameters. A new variable or a new equation would require many additional
parameters also.

However, we can understand the logic behind systems of linear equations: we know the exact
way how a system with any number of variables and any number of equations, can be implemented.
The model formulation is redundant : model elements are defined very similarly, much of the code
can be copy-pasted – it seems like the model implementation does not exploit the underlying logic
of systems of linear equations.

First, let us try to express how the solution of a systems of linear equations generally work.

1. There are variables. The number of variables is not known. These each are reals with no
bounds.

2. There are equations. The number of equations is not known.

3. All equations have a single right-hand side value. This means there exists a parameter for all
equations that define these RHS constants.

4. All the equations have a left-hand side where we add all the variables up, each with a single
coefficient, which is a parameter. This means there exists a parameter for all equations, AND
all variables that define the coefficients. Note that here „AND” means for all pairs of equations
and variables. That implies, if there are n equations and k variables, there are a total of nk
parameters.

5. After the solve statement, we simply write a printf statement individually for all variables,
to print their values found by the solution algorithm.

We can see that the for all parts of the logic is where the redundancy is introduced into the
model file, and also the data section. The reason is that in these cases, code must be reused many
times. We need a uniform way to tell the solver that we actually want to do many similar things
at once. For example, to write var and printf statements for all variables in the system, s.t.
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statements, and param statements denoting RHS constants for all equations in the system. Also,
to define param statements for all equations and variables that describe the coefficients, and to
appropriately implement each of these constraints that involve summing up a particular coefficient
multiplied by the particular variable, for all variables.

In GNU MathProg, this can be achieved by indexing expressions, which also requires the
concept of sets.

Sets contain many different elements (possibly zero, in which case we have an empty set). There
are many ways in the language sets can be defined. Note that there are also literals that denote
sets. For example, 1..10 denote the set of integers from 1 to 10. However, in this example, we
define our own sets with the set statement.

There are two sets needed in our model. One is for the variables, and one is for the equations.

set UnknownValues;
set Equations;

The set UnknownValues correspond to the variables of the system of linear equations. In our
previous example, they were namely x, y, z, w, and v. The set Equations correspond to the
equations in the system, they were Eq1, Eq2, Eq3, Eq4 and Eq5.

We used the name UnknownValues to differentiate the variables of the system of linear equations
to be solved (these are the „unknown values”) from the variables defined in the GNU MathProg
model by a var statement. These are in a one-to-one correspondence in this particular model: for
each unknown value in the system of equations, there will be exactly one GNU MathProg model
variable defined. Just remember that these are different concepts.

At this point, the contents of the sets are not defined. The reason is exactly the same as when
parameters are only given values in the data section. The actual content of the sets are not part
of the model logic, as the set of unknown values and equations both may vary. The procedure for
giving values for sets is the same as parameters defined by the param statement. They can be given
a value at definition, or only afterwards in a data section. In this case, we choose the latter.

Now, let us define the parameters in our model by the following code.

param Rhs {e in Equations};
param Coef {e in Equations, u in UnknownValues};

This is the first time we use indexing expressions. They are denoted by the curly braces. In
the first example, Equations is the set providing the possible indices for the parameter Rhs. The
line literally means that we define a parameter named Rhs for all e, for which e is an element of
the Equations set. This means that whatever the number of equations is, there is an individual
parameter for each of these equations.

Note that we could also legally provide a value for the parameter Rhs, like we did for the
individual parameters before. We do not want that now, as constants at the RHS are not part of
the model logic, they are represented in the data section. Note that we have much more freedom
on indexing expressions, not mentioned for now, refer to the GNU MathProg language manual for
the possibilities.

The parameter Coef is defined similarly, but there are two indices separated by a comma. This
literally means that there is a parameter defined for all (e, u) ordered pairs, for which e is an equation
and u is an unknown value. In other words, we define a parameter for each element in the Cartesian
product of the two sets. There can be many indices in an indexing expression, the maximum is
currently 20. They always mean the same: the index set is obtained by all possible combinations of
the individual indices. We also call the number of indices as the number of dimensions of a set.
The parameter Rhs has a one-dimensional index, while Coef has a two-dimensional index.

Now we can define the variables in the model.

29



4.5. INDEXING EQUATION SYSTEMS

var value {u in UnknownValues};

There is only one variable in this model, introducing the „unknown values” to be found in the
system of linear equations. We define each model variable to be found, for each unknown value in
the system of equations. The name of the model variable will be value.

Note that index names like u for UnknownValues can be arbitrary each time we refer to the
same set, but it is strongly recommended that they are consistent throughout the model section for
readability purposes. Here we use e for equations and u for unknown values.

Also note that the variables luckily have consistently no bounds, they all can take arbitrary real
values.

Now that we have defined the required parameters and variables in the model we can express
the constraints.

s.t. Cts {e in Equations}:
sum {u in UnknownValues} Coef[e,u] * value[u] = Rhs[e];

Now let us see the parts of this implementation one-by-one. Whitespace characters, including
newlines are for better readability. Note that this is a single constraint in GNU MathProg, and it
is named Cts, but due to the indexing, it will generate a set of individual equations in the model.

First, there must be exactly one constraint written up for each equation in the system. This
is established by the first indexing expression before the colon, e in Equations. This does not
only causes the number of the equation constraints to be determined, but it also introduces e as a
constant that we can refer to in the definition part.

The RHS of the constraint is the simpler, as it is the Rhs parameter itself. But here we can
see how indexing works for parameters. When Rhs was defined, it was defined for all equations.
That means, for example if there are three equations in the system, named Eq1, Eq2 and Eq3,
then exactly one parameter is defined in the model for each of these. They can be referred to as
Rhs[’Eq1’], Rhs[’Eq2’] and Rhs[’Eq3’] respectively. Remember that these are three different
parameters. However, we do not write something like Rhs[’Eq1’] in the model section, because the
exact equation name is not part of the model logic, it is rather arbitrarily given in a data section.
Instead, we refer to Rhs[e]. Remember that e denotes the current element of the Equations set
we are writing a constraint for. The result is that in each constraint, the RHS is the Rhs parameter
for the corresponding equation.

The LHS of the constraint is more complicated, because it contains a summation of an unde-
termined number of terms. Note that the logic is that for each unknown value, we multiply the
variable with the corresponding coefficient of the system, and these terms are added up. The sum
operator does exactly this job for us. It involves an indexing expression, where we denote that we
want to sum up terms for all unknown values u, and the term to be summed is followed. The sum
operator in GNU MathProg is later in precedence than multiplication, so there is no need to use
parentheses, Coef[e,u] * value[u] is the term that is summed up for all u. Each of these terms
refers to the variable of the corresponding unknown value u, which is value[u]. The term also
refers to Coef[e,u], which is the coefficient parameter for the equation e and the unknown value u.
Note that inside the scope of the sum operator, the u index is also available, as e inside the whole
indexed constraint. However, u would not be available outside the sum, for example, in the RHS.
It would not even make sense, because u is introduced only to define the terms of the sum.

Now that we have a single s.t. constraint statement describing the model of systems of linear
equations, the solve statement may come, after which we can print the values of the variables.
Again, we do not know the exact set of variables, but indexing can be used to do something for all
variables.
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for {u in UnknownValues}
{

printf "%s = %g\n", u, value[u];
}

The for statement requires an indexing expression, and effectively repeats the statements written
inside the block following it, throughout the index set given. Note that the statements allowed in
a for block is limited, but it includes printf and another for, which are enough for very complex
tasks to be implemented simply. The for statement cannot be used to define model elements like
parameters, variables, constraints or the objective, but is useful for displaying information.

Now, for each u unknown value, we want to print out the given value in the solution of the
system of equations. Therefore the printf statement refers to u itself, the name of the variable of
the system of equations, and its value, which is value[u].

At this point, we are ready with the model section. That means, any systems of linear equations
can be translated into a data section, and if done with correct syntax, can be solved without altering
the model file. Now, let us translate the previous problem instance into a well-formed data section.

set UnknownValues := x y z w v;
set Equations := Eq1 Eq2 Eq3 Eq4 Eq5;

The sets are given values here. That means, names of the unknown values and equations are
given one-by-one. Note that in the data section, there is no need for apostrophes. If we wanted to
hard-code a set definition into the model section, we would need apostrophes or quotation marks to
denote string constraints.

One of the parameters that require values to be given is the RHS constants.

param Rhs :=
Eq1 -5
Eq2 -5
Eq3 1.5
Eq4 0
Eq5 -0.5
;

There are multiple ways parameter data can be provided, refer to the GNU MathProg language
manual for more details [1]. The simplest is shown here. The index and value pairs are simply
enumerated, delimited by whitespace. One row for each pair is just a recommendation for readability.
Note that here we must refer to the equation names we gave for the Equations set.

This similar format can also be applied if the index has more dimensions, as Coef.

param Coef :=
Eq1 x 4
Eq1 y -2
Eq1 z 3
Eq1 w 0
Eq1 v 0
Eq2 x 0
Eq2 y 0
Eq2 z -1
Eq2 w -1
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Eq2 v 0
Eq3 x 0
Eq3 y 1
Eq3 z 1
Eq3 w 0
Eq3 v 0
Eq4 x 4
Eq4 y -7
Eq4 z 0
Eq4 w 2
Eq4 v 5
Eq5 x 1
Eq5 y 0
Eq5 z 2
Eq5 w 0
Eq5 v 3
;

The scheme is the same. Pairs for indices and their corresponding values are enumerated.
However, each such pair now actually consists of three elements, because the first part of the index
is for the equation, and the second is for the unknown variable. Again, here we must refer to the
names we given in the set definitions in the data block.

And now we are ready. The model section attained its most general form. From now on, solution
of any system of linear equations can be done solely by writing a well-formed data section. This
data section may come after the model section in the model file itself, or more practically, it can be
put in separate file. Typically, each problem instance (in this case, each system of linear equations
to be solved) can be implemented in a single data file, containing the data section.

The complete model file and one possible data section are the following. The solution is again
exactly the same as before: x = 2, y = 3.5, z = −2, w = 7, v = 0.5.

set UnknownValues;
set Equations;
param Rhs {e in Equations};
param Coef {e in Equations, u in UnknownValues};

var value {u in UnknownValues};

s.t. ImplementingEquations {e in Equations}:
sum {u in UnknownValues} Coef[e,u] * value[u] = Rhs[e];

solve;

for {u in UnknownValues}
{

printf "%s = %g\n", u, value[u];
}

end;
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data;

set UnknownValues := x y z w v;
set Equations := Eq1 Eq2 Eq3 Eq4 Eq5;

param Rhs :=
Eq1 -5
Eq2 -5
Eq3 1.5
Eq4 0
Eq5 -0.5
;

param Coef :=
Eq1 x 4
Eq1 y -2
Eq1 z 3
Eq1 w 0
Eq1 v 0
Eq2 x 0
Eq2 y 0
Eq2 z -1
Eq2 w -1
Eq2 v 0
Eq3 x 0
Eq3 y 1
Eq3 z 1
Eq3 w 0
Eq3 v 0
Eq4 x 4
Eq4 y -7
Eq4 z 0
Eq4 w 2
Eq4 v 5
Eq5 x 1
Eq5 y 0
Eq5 z 2
Eq5 w 0
Eq5 v 3
;

end;

4.6 Other options for data
Although we now have a single model file suitable for all possible systems of linear equations re-
gardless of variable and equation count, there are other tricks in GNU MathProg that further help
us by allowing shorter and/or more readable implementation of data sections. Two of these options
are presented here: default values, and matrix data format. A common modeling error, the
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out of domain error is also demonstrated here.
We have already mentioned that parameters (and also, sets) that we use in the model need a

value to be provided. This value is either calculated on spot, or not given in the model at all, so that
it can be provided separately in a data section. If a parameter has a calculated value hard-coded in
the model, then providing data for it is forbidden, but if it is not hard-coded, there must be a value
in the data sections.

However, we see that many of the coefficients in the system of linear equations can be zero.
Actually it is something like a default behavior: an equality might only refer to a subset of the
variables. If an equality does not refer to a variable, then it still has a zero coefficient due to the
modeling logic. But we do not want to provide these zero parameters for all variables each time we
write a new equation. Instead, we want to only provide those parameter values that are different
than this default zero.

This can be achieved by indicating a default value for a given parameter in the model section.
In this case, the model parameter does not have a hard-coded calculated value, but a given default
value instead. If there is a value provided in a data section, that value is used. If there are no
values provided, then the default value is used. Note that default values can also be given for
sets. However, they cannot be given for variables, as variables are determined by the optimization
procedure, so it does not make sense to provide default values for them.

To add a default value to a parameter, we must do the following.

param Coef {e in Equations, u in UnknownValues}, default 0;

Note that the default value in this example is zero, but in general it could be any expression that
can be calculated on spot. For instance, it can depend on e and u, the indices of the parameter.

After the default value of zero is given for Coef, all entries in the data section that indicate a
value of zero can be omitted, trimming the size of the data section significantly.

param Coef :=
Eq1 x 4
Eq1 y -2
Eq1 z 3
Eq2 z -1
Eq2 w -1
Eq3 y 1
Eq3 z 1
Eq4 x 4
Eq4 y -7
Eq4 w 2
Eq4 v 5
Eq5 x 1
Eq5 z 2
Eq5 v 3
;

Note that, while maintaining the code of this data section, care must be taken when adding a
new index to a parameter data set, as it may already be there. Duplicate indices are forbidden in
the data section, as common sense dictates.

Another trick that may help in designing shorter and more readable data sections is the matrix
data format. It works in many situations where two-dimensional data must be provided – like in
this case. Values for parameter Coef can be implemented in matrix format in the following way.
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param Coef:
x y z w v :=

Eq1 4 -2 3 . .
Eq2 . . -1 -1 .
Eq3 . 1 1 . .
Eq4 4 -7 . 2 5
Eq5 1 . 2 . 3
;

Note that the colon and the := are denoting the matrix data format, whitespace indentation is
optional. It is recommended for readability that the data is indented similarly to the way shown.

The rows of the matrix correspond to the values of the first index, while the columns correspond
to the second index. Each entry in the matrix gives a value for the parameter identified by the row
and the column.

Note that in such a matrix, we do not have to mention all possible rows and columns. Those
parameter indices for which we do not give a value will be defaulted. Also, using the . character
instead of a value in the matrix makes that particular value to be defaulted.

If one wants to refer to the first indices by the columns and the second indices by the rows, it is
also possible: it is called the transposed matrix format, and it is simply obtained by inserting
(tr) before the colon.

There are more advanced data description formats in GNU MathProg, which are not mentioned
here. For example, it is possible to give multi-dimensional data by describing several different
matrices one after another.

An important issue about indexing is the out of domain error. For all parameters, variables
that are indexed, there is a well described index set. If at any time, a parameter or variable is
referred with an index that is not in its defined index set, then – not surprisingly – an error occurs.

Let us demonstrate it by changing the u and e indices in the constraint where the Coef parameter
is indexed. The following message is obtained, and the model cannot be processed.

Generating Cts...
eqsystem-indexing-matrix-ERROR-outofdomain.mod:10: Coef[x,Eq1] out of domain
MathProg model processing error

This is an error because the correct indexing would be Coef[Eq1,x], not Coef[x,Eq1]. The
latter is not a valid index for parameter Coef, because neither x is in the set Equations, nor Eq1
is in the set UnknownValues. The same error message may be reported if we do not use the indices
properly in the data section.

This example suggests an important source of error: indexing must be done properly. In this
case, the out of domain error is raised and the mistake could be corrected easily. However, the
situation can be much worse, for example, if a wrong indexing would actually mean a valid index
in the index set. In that case, the error remains unnoticed, and the wrong model is solved. This is
especially dangerous if the two indices are from the same set, as they can be switched by mistake.
For example, in a directed graph of vertices A, B and C, the arc AB is different from BA, but both
describe an arc, and are valid if implemented in GNU MathProg.

In our example, the two indices are from two different sets, so it is unlikely that a wrong indexing
is not reported. However, it may be the case if the two sets have common elements. For example, if
both the variables are labeled from 1 to 5, and all the equations are labeled also from 1 to 5, there
is nothing that forbids this. The correspondingly edited data section is the following.
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data;

set UnknownValues := 1 2 3 4 5;
set Equations := 1 2 3 4 5;

param Rhs :=
1 -5
2 -5
3 1.5
4 0
5 -0.5
;

param Coef:
1 2 3 4 5 :=

1 4 -2 3 . .
2 . . -1 -1 .
3 . 1 1 . .
4 4 -7 . 2 5
5 1 . 2 . 3
;

end;

Now, if this is the data section, and it is paired with the wrongly indexed model section we
presented before, then there are no out of domain errors, as all wrong indices are actually valid.
So a wrong model is solved now, which has a substantially different result than the original: 4.8,
−20.6, −67.5, −10.3 and 17. Remember that, the result was originally 2, 3.5, −2, 7, 0.5. Conclusion:
always pay special care for indexing, use meaningful and unique names even in the data sections,
and always validate the result of model solution.

A valid question arises: what was the problem that the wrongly indexed model had solved? We
leave it up to the reader, with a small hint: if the two indices are switched, then we effectively
transpose the data matrix.

4.7 General columns
We have seen some capabilities of the GNU MathProg language with which we can make compact
and more readable data sections. Now we will show how the already available techniques can be
utilized to further decrease the redundancy in a data section.

There is still a bit of redundancy in case of the rows of the equations. The RHS of the equations
are provided as a separate parameter where all the equation names must appear. The coefficient
matrix for the system of equations is described by another parameter, now in matrix format, but
the rows must start with the equation names again. It would be nice if these two kinds of data
could appear in a single data matrix.

We can easily solve it in GNU MathProg. Now, a common EqConstants parameter is introduced
which works as the following. Its indices are the columns of the problem in general. Each column
can correspond to a variable (unknown value) in the system of equations, or the RHS of the equation.
We can implement this by the following code.
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set UnknownValues;
set Equations;

set Columns := UnknownValues union {'RHS'};

param EqConstants {e in Equations, u in Columns}, default 0;

Note that the Columns is a set just like UnknownValues and Equations. However, this set is not
provided by a data section, but instead calculated on spot. The Columns is the set UnknownValues,
with the string RHS added to it.

var value {u in UnknownValues};

s.t. ImplementingEquations {e in Equations}:
sum {u in UnknownValues} EqConstants[e,u] * value[u]
= EqConstants[e,'RHS'];

The rest of the model is basically the same, but instead of the RHS parameter, we refer to the
EqConstants parameter with either the index of an unknown value u to access the coefficients, or
the RHS string to access the RHS constant in the given equation.

The data section is the following. The only parameter is EqConstants. Note that the solution
shall be exactly the same as before, the modifications only affected the format of the data section,
but the data content remained the same.

data;

set UnknownValues := x y z w v;
set Equations := Eq1 Eq2 Eq3 Eq4 Eq5;

param EqConstants:
x y z w v RHS :=

Eq1 4 -2 3 . . -5
Eq2 . . -1 -1 . -5
Eq3 . 1 1 . . 1.5
Eq4 4 -7 . 2 5 0
Eq5 1 . 2 . 3 -0.5
;

end;

Note that this implementation does not work in one extreme situation: where one of the unknown
values are named RHS, in which case it is interchangeable with the string RHS denoting the right-hand
side column instead of ordinary variables in the system. So, for this model, the usage of keyword
RHS is forbidden for unknown values in the data section. But this restriction is a fair trade for the
more compact data section we got instead.

We can make our model foolproof by establishing this rule with a check statement. It works
like an assertion: a logical expression is evaluated, and if the result is false, the model generation is
aborted.

In this example we state that UnknownValues shall not contain the string RHS. In other words,
no variables in the system of equations shall be named RHS. The statement is best positioned soon
after the definition of the UnknownValues set.
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check 'RHS' !in UnknownValues;

Note that the check statement can also be indexed, which is an effective way of testing multiple
logical statements at once.

The evaluation of a check statement is also reported in the output generated by glpsol as
follows.

Checking (line 4)...

Checking is used to rule out wrong data by reporting it. Identifying bugs caused by unreported
data errors can be substantially more difficult.

4.8 Minimizing error
After implementing a model for arbitrary systems of linear equations, let us consider a bit different
problem: solving a system of equations „as well as we can”.

Although we do not focus on mathematical proofs here, it is worth mentioning that a system of
linear equations may have 0, 1 or infinitely many different solutions. This is related to the number
of variables and equations in the system in the following way. Note these rules are not general as
there are important exceptions that can be precisely characterized, but are typical if the coefficients
and RHS values in the equations are random or unrelated.

• Infinitely many solutions is the typical case when there are fewer equations than variables.

• A unique solution is typically caused by having the same number of equations and variables.
Note that this was the case in all of the previous examples in this section.

• If there are more equations than variables, the system is overspecified and the resulting
problem is usually infeasible. This can be demonstrated as follows.

Problem 6.
Append a sixth equation x+ y+ z +w+ v = 0 to Problem 5 mentioned in previous sections and

solve it.

Now having the complete model, Problem 6 can be implemented in a single data section. A new
element Eq6 is added to the set Equations, and the corresponding RHS and coefficients are also
introduced. Note that the original model and data section format is used, where parameters Rhs
and Coef are not merged.

data;

set UnknownValues := x y z w v;
set Equations := Eq1 Eq2 Eq3 Eq4 Eq5 Eq6;

param Rhs :=
Eq1 -5
Eq2 -5
Eq3 1.5
Eq4 0
Eq5 -0.5
Eq6 0
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;

param Coef:
x y z w v :=

Eq1 4 -2 3 . .
Eq2 . . -1 -1 .
Eq3 . 1 1 . .
Eq4 4 -7 . 2 5
Eq5 1 . 2 . 3
Eq6 1 1 1 1 1
;

end;

We already know the original solution for Problem 5 with the system of just the first five
equations, it is x = 2, y = 3.5, z = −2, w = 7, v = 0.5. This literally means that the first five
equations imply that the values of the five variables are as mentioned. That means x+y+z+w+v =
11 is also implied which contradicts the sixth equation x+ y+ z+w+ v = 0 in Problem 6. In short,
if the first five equations hold, then the sixth cannot. Not surprisingly, the overspecified model turns
out to be infeasible.

GLPSOL: GLPK LP/MIP Solver, v4.65
Parameter(s) specified in the command line:
-m eqsystem-original.mod -d eqsystem-overspecified.dat --log

eqsystem-overspecified-original.log↪→

Reading model section from eqsystem-original.mod...
21 lines were read
Reading data section from eqsystem-overspecified.dat...
30 lines were read
Generating Cts...
Model has been successfully generated
GLPK Simplex Optimizer, v4.65
6 rows, 5 columns, 19 non-zeros
Preprocessing...
6 rows, 5 columns, 19 non-zeros
Scaling...
A: min|aij| = 1.000e+00 max|aij| = 7.000e+00 ratio = 7.000e+00

Problem data seem to be well scaled
Constructing initial basis...
Size of triangular part is 4

0: obj = 0.000000000e+00 inf = 8.500e+00 (2)
1: obj = 0.000000000e+00 inf = 3.667e+00 (1)

LP HAS NO PRIMAL FEASIBLE SOLUTION
glp_simplex: unable to recover undefined or non-optimal solution
Time used: 0.0 secs
Memory used: 0.1 Mb (118495 bytes)

However there is still an interesting question if we are faced an overspecified system of equations.
Instead of finding a perfect solution, find a solution for which the error at the equations is kept
minimal. More precisely, the maximum of errors.
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Problem 7.
Given a system of linear equations, find a solution for it for which the maximum of the errors

among all equations is minimal. The error for a given equation is defined by the absolute value of
the difference between the LHS and the RHS.

(The LHS of the equation is the sum of the variables multiplied by coefficients, and the RHS is
a constant. Use the same data description method as before.)

Now, this is not a feasibility problem anymore. Being precise, now all possible values of the
variables give a feasible solution: it is just the value of the objective (maximal error) what can be
smaller or larger for some solutions. This is therefore an optimization problem.

Solving it efficiently requires a modeling trick: minimizing the maximum objective. It can
be regarded as a „design pattern” in mathematical programming.

The first part of the idea is that we introduce the objective, the maximal error itself into the
model as an individual variable as follows.

var maxError;

minimize maxOfAllErrors: maxError;

At this point, the objective is just an independent variable that can be freely set. Our problems
is to find a way that enforce this maxError variable to actually represent the maximum error of the
equations.

Suppose that L and R are the left-hand side and right-hand side values of an equation for some
values of the variables. Ideally, L = R and the error is zero. Otherwise, the error is |L−R|, which is
not a linear function of the variables. Even if it was, it would be still problematic to find a maximum
of these, because the „maximum” function is itself not linear.

Here comes our second idea. The errors themselves are not represented in the model, rather, an
upper bound for the error is used. Suppose that E is a valid upper bound for the error between L
and R, meaning |L−R| ≤ E. Now, this can be expressed as linear constraints as follows.

L−R ≤ E
L−R ≥ −E (11)

Note that E must be nonnegative, as the errors themselves are nonnegative. Alternatively, we
could say R− E ≤ L ≤ R+ E. Anyways, these are two linear inequalities.

Now, what can possibly be a good candidate to be an upper bound for the error in any equations?
Well, the maximum of the errors, of course, which is denoted by maxError. Therefore we define two
constraints so that the two sides of the equations may differ at most by the amount of maxError.

s.t. Cts_Error_Up {e in Equations}:
sum {u in UnknownValues} Coef[e,u] * value[u]
<= Rhs[e] + maxError;

s.t. Cts_Error_Down {e in Equations}:
sum {u in UnknownValues} Coef[e,u] * value[u]
>= Rhs[e] - maxError;

This can be achieved by duplicating the original constraint, and involve maxError. The con-
straints must have unique names, here Cts_Error_Up and Cts_Error_Down were chosen.

Surprisingly, our model is ready. Now let us try to understand what happens when it is solved.
By the constraints, maxError is forced to work as a valid upper bound for the errors for all equations
at the same time. Meanwhile, maxError is an objective that is to be minimized. So these together
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will effectively find the least possible maxError value, for which all the equations can be satisfied
with a maximum error of maxError.

Here is the full model section, with some printf statements added to provide us a meaningful
output.

set UnknownValues;
set Equations;

param Rhs {e in Equations};

param Coef {e in Equations, u in UnknownValues}, default 0;

var value {u in UnknownValues};

var maxError;

s.t. Cts_Error_Up {e in Equations}:
sum {u in UnknownValues} Coef[e,u] * value[u]
<= Rhs[e] + maxError;

s.t. Cts_Error_Down {e in Equations}:
sum {u in UnknownValues} Coef[e,u] * value[u]
>= Rhs[e] - maxError;

minimize maxOfAllErrors: maxError;

solve;

printf "Optimal error: %g\n", maxError;
printf "Variables:\n";
for {u in UnknownValues}
{

printf "%s = %g\n", u, value[u];
}
printf "Equations:\n";
for {e in Equations}
{

printf "%5s: RHS=%10f, actual=%10f, error=%10f\n",
e, Rhs[e],
sum {u in UnknownValues} Coef[e,u] * value[u],
abs(sum {u in UnknownValues} Coef[e,u] * value[u] - Rhs[e]);

}

end;

If we solve it we get the following results.

Optimal error: 0.478261
Variables:
x = -3.42029
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y = -1.21884
z = 2.24058
w = 3.23768
v = -0.36087
Equations:

Eq1: RHS= -5.000000, LHS= -4.521739, error= 0.478261
Eq2: RHS= -5.000000, LHS= -5.478261, error= 0.478261
Eq3: RHS= 1.500000, LHS= 1.021739, error= 0.478261
Eq4: RHS= 0.000000, LHS= -0.478261, error= 0.478261
Eq5: RHS= -0.500000, LHS= -0.021739, error= 0.478261
Eq6: RHS= 0.000000, LHS= 0.478261, error= 0.478261

If we manually investigate the results, we can verify that all the variables are multiples of 1
690 ,

they are not trivial values.
What can be interesting is that the error is the same for all six equations. Maybe it is a general

rule if the number of equations is one more than the number of variables? This leads to another
mathematical problem.

4.9 Equation systems – Summary
We have learnt through the basic skills in GNU MathProg with which we can implement linear
mathematical models: using parameters, separating the model and the data section, and most
importantly, indexing expressions. We also solved a simple but nontrivial optimization problem
about minimizing the errors in equations.

Note that the coding effort was minimal in GNU MathProg, or mathematical programming in
general, compared to solution algorithms we had to otherwise implement ourselves.

From now on, it is recommended for each subsequent optimization problem to implement a single
general model file containing the model section, but no problem data. Each problem instance the
model needs to be solved for, can be implemented in a single separate data file containing the whole
data section. Therefore, there should be as many data files as problem instances.
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Chapter 5

Production problem

In this chapter, a fundamental LP problem is explored, in terms of model implementation. This
is the production problem: determining which products we shall fabricate to obtain the most
profit, if our resources are limited. It is also called product mix problem, or production planning
problem. The production problem is one of the oldest problems in Operations Research, plenty of
alternative tutorials use it as introduction to mathematical programming (see for example [11, 12]).

The diet problem is also presented, where the least expensive food mix shall be found to support
all nutrient needs. The two problems can have a common generalization which is also shown. A
lookout into integer programming is also presented in the final section, where „packages” of raw
materials and products can be bought and sold at once.

The chapter focuses on how a single model can be extended to incorporate various circumstances
one-by-one. We start from a common exercise that can even be done by hand, and finally arrive at
a very general and complex optimization model.

5.1 Basic production problem
The simplest case of the production problem can be described as follows, in general.

Problem 8.
Given a set of products, and a set of raw materials needed for them. Production is linear and

can be done in any amount, with consumption rates of raw materials given: we know how much of
each raw material is consumed to produce 1 unit of each product. We have a fixed amount of each
raw material available, and a fixed unit revenue for each product.

Determine the optimal amounts of all products to be made, so that we do not consume more of
each raw material than available, and the total revenue from all products is maximized.

This above definition can be a bit difficult to understand. This actually correspond only to the
model logic, and will be implemented in a model file. However, let us see a particular example for
the production problem, with the data supported.

Problem 9.
We have a manufacturing plant, which is capable of producing three different products, named

P1, P2 and P3. There are four raw materials that are required for production, named A, B, C and D.
We have exact data for the following.

• Amount of each raw material required for producing 1 unit of each product.

• Available amount of each raw material that can be used for production.
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• Revenue for 1 unit of each product.

These can be viewed in a single table, as shown below.

P1 P2 P3 Available
A (electricity) 200 kWh 50 kWh 0 kWh 23000 kWh
B (working time) 25 h 180 h 75 h 31000 h
C (materials) 3200 kg 1000 kg 4500 kg 450000 kg
D (production quota) 1 1 1 200
Revenue (per unit) 252 $ 89 $ 139 $

Note that any amounts of each product can be produced, the raw material requirements are exactly
proportional. There is no other limitation than total availability of each raw material. Amounts can
also be fractional.

Determine the optimal amount of P1, P2 and P3 to be produced, so that raw material availability
is respected, and the total revenue after products is maximized.

(Note that problem data are entirely fictional.)

Note that compared to „pure mathematical” models as the system of linear equations we have
seen before, there are units in the problem data. However, GNU MathProg does not have a built-
in feature to remember the quantities, currencies of model elements (variables, parameters, con-
straints). We have to work with scalars only. The general approach of handling units is that data
corresponding to the same quantity are converted to the same unit, and treated consistently in the
whole model. This must always be kept in mind during model formulation.

However, understanding the units in the problem is recommended, because it helps us evading
mistakes, by remembering that only scalars of the same unit shall be added together at any time.
For example, amounts of kWh and kg cannot be added. Then, either adding them is wrong at all,
or we are missing one or more factors that will bring these quantities to the same dimension and
same unit.

Now let us start formulating the model. The first step is the selection of the decision variables.
The goal of optimization is to determine the values of these decision variables. Each solution obtained
describes a decision of how the plan will be operated. Of course, generally not all solutions are be
feasible, and the revenues are also generally different. Therefore we look for the feasible solution
with the highest revenue.

The decision variables can be directly read from the problem text. The amounts of each product
to be determined are the decision variables, these must definitely be determined by the optimization.
The question arises, whether there shall be more variables or not? If we only know the amounts
produced, we can calculate everything in the plant which is relevant now: the exact amounts
consumed of each raw material, and the total revenue. So, at this point, we do not need any
more variables in our optimization model.

The objective function can be easily determined. The amounts of production each must be
multiplied by the unit revenue for that product, and the total revenue is the sum of such products.

What remains are the constraints, and variable bounds. In general, what we only need is
that a production can be zero, or a positive number. But, it definitely cannot be negative. So each
variable shall be nonnegative, this is a lower bound. There is no upper bound, as any production
amount is considered feasible as long as there is sufficient raw material for it. And here we arrived
to the only constraint, which is about raw material availability. Based on the amounts produced
(these are denoted by the variables), we can easily calculate how much of each raw material is used
per product, and in total. These must not be greater than the availability of each particular raw
material.
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We defined the variables, the objective, constraints and bounds, so we are ready to implement our
model in GNU MathProg. First, we do not apply indexing, and work with the most straightforward
way.

The variables denote production amounts. For convention, these are all in $ currency.

var P1, >=0;
var P2, >=0;
var P3, >=0;

Constraints are formulated next. For each production amount, it must be multiplied by the
coefficient that describes raw material consumption per product unit. These shall be added for all
three products to obtain the total consumption for a given raw material.

Note how the tabular data of the problem correspond to the implementation of constraints.

s.t. Raw_material_A: 200 * P1 + 50 * P2 + 0 * P3 <= 23000;
s.t. Raw_material_B: 25 * P1 + 180 * P2 + 50 * P3 <= 31000;
s.t. Raw_material_C: 3200 * P1 + 1000 * P2 + 4500 * P3 <= 450000;
s.t. Raw_material_D: 1 * P1 + 1 * P2 + 1 * P3 <= 200;

Finally, the objective can be defined based on production amounts as well. Note that each
constraint is within its own unit for the raw material, and the objective is in $ unit. From now on,
we use units consistently and do not refer to them.

maximize Raw_material: 252 * P1 + 89 * P2 + 139 * P3;

A solve statement can be inserted in the model, after which some additional post-processing
work can be done to print out the solution. The full code is the following. We print the total
revenue (the objective), the production of each products (the variables), and the usage of each raw
material. In the usage part, we print both the total amount consumed for production, and the
amount remained available.

var P1, >=0;
var P2, >=0;
var P3, >=0;

s.t. Raw_material_A: 200 * P1 + 50 * P2 + 0 * P3 <= 23000;
s.t. Raw_material_B: 25 * P1 + 180 * P2 + 50 * P3 <= 31000;
s.t. Raw_material_C: 3200 * P1 + 1000 * P2 + 4500 * P3 <= 450000;
s.t. Raw_material_D: 1 * P1 + 1 * P2 + 1 * P3 <= 200;

maximize Raw_material: 252 * P1 + 89 * P2 + 139 * P3;

solve;

printf "Total Revenue: %g\n", ( 252 * P1 + 89 * P2 + 139 * P3);

printf "Production of P1: %g\n", P1;
printf "Production of P2: %g\n", P2;
printf "Production of P3: %g\n", P3;

printf "Usage of A: %g, remaining: %g\n",
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( 200 * P1 + 50 * P2 + 0 * P3),
23000 - ( 200 * P1 + 50 * P2 + 0 * P3);

printf "Usage of B: %g, remaining: %g\n",
( 25 * P1 + 180 * P2 + 75 * P3),

31000 - ( 25 * P1 + 180 * P2 + 75 * P3);
printf "Usage of C: %g, remaining: %g\n",

(3200 * P1 + 1000 * P2 + 4500 * P3),
450000 - (3200 * P1 + 1000 * P2 + 4500 * P3);

printf "Usage of D: %g, remaining: %g\n",
( 1 * P1 + 1 * P2 + 1 * P3),

200 - ( 1 * P1 + 1 * P2 + 1 * P3);

end;

In this model file, there is no data section at all, data is hard-coded into the model. Therefore we
can solve it with glpsol without providing any additional data files, and by doing so the following
result is obtained. Only our own printf results are shown here.

Total Revenue: 33389
Production of P1: 91.3386
Production of P2: 94.6457
Production of P3: 14.0157
Usage of A: 23000, remaining: -3.63798e-12
Usage of B: 20370.9, remaining: 10629.1
Usage of C: 450000, remaining: -5.82077e-11
Usage of D: 200, remaining: 0

We interpret the solutions as follows. It turns out that 33389 is the maximal revenue that can be
obtained. The method of obtaining this revenue is that 91.34, 94.65 and 14.02 units of P1, P2 and P3
must be produced. Note that, in this case it is allowed to produce fractional amounts of a product –
this can be the case in practice for example if the products and raw materials are chemicals, fluids,
heat, electricity or other quantity that can be divided.

Production consumes all of A, C and D, but there is a surplus of B which is not used up. Some
remaining amounts are reported to be extremely small positive numbers. These are actually small
numerical errors from the actual value of zero in the optimal solution, because glpsol uses floating-
point arithmetic and it is not perfect. If this output is inconvenient, we may use the format specifier
%f instead of %g, or alternatively, round down the numbers to be printed explicitly in the model
with the built-in floor() function.

Another option is to add --xcheck as command line argument to glpsol. This forces the final
solution to be recalculated with exact arithmetic, eliminating rounding errors.

glpsol -m model.mod -d data.dat --xcheck

One interesting thing about the solution is that three of the remaining amounts are zero. If
we varied the problem data and solve the model again and again, it would turn out that from
the seven values printed (three production amounts and four remaining amounts), there are almost
always three zeroes. In general, the number of zeroes is the number of products, and the number
of nonzeroes is the number of raw materials. (Exceptions arise in some special cases.) This is a
beautiful property of production problems that is better understood if we know how the solution
algorithms (particularly the simplex method) work, generally for LP problems. However, we do not
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focus on the algorithms here, only the model implementations. Nevertheless, understanding of how
a good solution looks like is a very valuable skill.

We now have a working implementation for the particular production problem described. How-
ever, we know that this solution is not very general. If another production problem is in question,
we must understand and tamper with the code describing the model logic. Also note that the exact
expressions describing the total consumption of each raw material is appearing three times: once
in the constraints, and twice in the post-processing work. This level of redundancy is usually bad
code design, regardless of programming language.

Our next task is a more general, indexed model, which requires only a properly formatted data
section to solve any production problems.

In the production problem, there are two sets that are in question, these are the set of products
and the set of raw materials.

set Products;
set Raw_Materials;

We can also identify three important parameters. One for the ratios of production, this is defined
for each pairs of raw materials and products, we will call it Consumption_Rate. One parameter is
for availability. This is defined for each raw material, we name it Storage. The name „storage”
captures the logic of how raw materials work in the modeling point of view: they are present in a
given amount beforehand, like physically stored material, then no more than this amount can be
used up for production. Another parameter is the Revenue, which is defined for each product.

param Storage {r in Raw_Materials}, >=0;
param Consumption_Rate {r in Raw_Materials, p in Products}, >=0, default 0;
param Revenue {p in Products}, >=0, default 0;

Notice how indexing is used so that each param statement refer to not only a single scalar, but
a collection of values instead. For the Consumption_Rate and Revenue, we also provide a default
value of zero. That means if we do not provide data, then we assume no raw material need or
revenue for that particular case.

Also, in GNUMathProg, we are able to define bounds and other value restrictions for parameters.
In this case, all three parameters are forced to be nonnegative, by the >=0 restriction. This is
generally a good practice if we do not except specific values for a given parameter. If a restriction
is violated by a value given for the parameter (for example, in the data section, or calculated on
spot), then model processing terminates with an error describing the exact situation. It is much
easier to notice and correct errors in this case, than allowing a wrong parameter value in the model,
which can be solvable to an invalid solution. It is generally difficult to debug a model once it can
be processed, so it is recommended to explicitly check data as much as possible.

The variables can be defined now. They denote production amounts, and each are nonnegative.

var production {p in Products}, >=0;

Finally, all the constraints can be described by one general s.t. statement. The logic is the
following. There is a single inequality for each raw material: its total consumption cannot exceed
its availability. The availability is simply described as a parameter, but the total consumption is
obtained by a summation. We must sum, for each product, its amount multiplied by the consumption
rate of that particular raw material.
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s.t. Material_Balance {r in Raw_Materials}:
sum {p in Products} Consumption_Rate[r,p] * production[p]
<= Storage[r];

The objective is obtained as a sum for all products, the amounts must be multiplied by the unit
revenues.

maximize Total_Revenue:
sum {p in Products} Revenue[p] * production[p];

Finally, we can implement a general post-processing work to print the total revenue, production
amounts and raw material usages. The full model file is the following.

set Products;
set Raw_Materials;

param Storage {r in Raw_Materials}, >=0;
param Consumption_Rate {r in Raw_Materials, p in Products}, >=0, default 0;
param Revenue {p in Products}, >=0, default 0;

var production {p in Products}, >=0;

s.t. Material_Balance {r in Raw_Materials}:
sum {p in Products} Consumption_Rate[r,p] * production[p]
<= Storage[r];

maximize Total_Revenue: sum {p in Products} Revenue[p] * production[p];

solve;

printf "Total Revenue: %g\n", sum {p in Products} Revenue[p] * production[p];

for {p in Products}
{

printf "Production of %s: %g\n", p, production[p];
}

for {r in Raw_Materials}
{

printf "Usage of %s: %g, remaining: %g\n",
r, sum {p in Products} Consumption_Rate[r,p] * production[p],
Storage[r] - sum {p in Products} Consumption_Rate[r,p] * production[p];

}

end;

If the corresponding data file is implemented as follows, we should get the same result as for the
straightforward implementation.
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data;

set Products := P1 P2 P3;
set Raw_Materials := A B C D;

param Storage :=
A 23000
B 31000
C 450000
D 200
;

param Consumption_Rate:
P1 P2 P3 :=

A 200 50 0
B 25 180 75
C 3200 1000 4500
D 1 1 1
;

param Revenue :=
P1 252
P2 89
P3 139
;

end;

Although the model is very general and compact, it still contains some redundancy. The total
consumed amount of each raw material is still represented three times in the code. At least, we do
not have to rewrite that code ever again if another problem data is given, we only have to modify
the data section. However, we still want to eliminate this redundancy.

Remember that we can introduce parameters in the model section and calculate values on spot.
If we are after the solve statement, then even variable values can be referred to, as their values are
already determined by the solver. We introduce Material_Consumed and Material_Remained to
denote the total amount consumed, and remained, for each material.

param Material_Consumed {r in Raw_Materials} :=
sum {p in Products} Consumption_Rate[r,p] * production[p];

param Material_Remained {r in Raw_Materials} :=
Storage[r] - Material_Consumed[r];

for {p in Products}
{

printf "Production of %s: %g\n", p, production[p];
}

for {r in Raw_Materials}
{

printf "Usage of %s: %g, remaining: %g\n",
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r, Material_Consumed[r], Material_Remained[r];
}

The solution shall be exactly the same as before again, for the same data file. But now, some
of the redundancy is eliminated from the model section. Unfortunately, the parameter for the total
amounts consumed cannot be used in the constraints where it appears first. More on that later.

5.2 Introducing limits
Now that we have a working implementation for arbitrary production problems, let us change the
problem description itself.

Problem 10.
Solve the production problem, provided that for each raw material and each product, a minimal

and maximal total usage is also given that must be respected by the solution.
The usage of a raw material is the total amount consumed, and the usage of a product is the

total amount produced.

These are additional restrictions on the production mix in question. Let us see how it affects
the model formulation. The problem remained almost the same, just additional solutions must be
excluded from the feasible set. Namely, those for which any newly introduced restriction is violated.

The change only added new restrictions, so the variables, the objective and even the already
mentioned constraints and bounds may remain the same. The new limits shall be implemented by
new constraints and/or bounds. We also need to provide new options in the data sections where
these limits can be given as parameter values.

There are four limits altogether.

• Upper limit on production amount. The production amount for any product p appears as the
production[p] variable in the model. A constant upper limit for this value can easily be
implemented as a linear constraint, but an even easier way is to implement it as an upper
bound of variable production.

• Lower limit on production amount. The same as for the upper limit. Just note that there is
already a nonnegativity bound defined for the variables, and defining two lower or two upper
bounds on the same variable is forbidden in GNU MathProg.

• Upper limit on raw material consumption. The total consumption of each raw material is
already represented in the model as an expression. Actually, the only constraint in the pro-
duction problem so far defines an upper limit for this expression as Storage[r] for any raw
material r. Therefore there is no need to further define upper bounds. If one wants to give
an extra upper limitation for the total consumption of a raw material, then it can be done
without modifying the model section, just by decreasing the appropriate Storage parameter
value in the data section.

• Lower limit on raw material consumption. As we noticed before, the expression already ap-
pears in a constraint. We need to implement another constraint with exactly the same expres-
sion, but expressing a minimum limit instead of the maximum.

First, we have to add the extra parameters to describe the limits.
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param Storage {r in Raw_Materials}, >=0, default 1e100;
param Consumption_Rate {r in Raw_Materials, p in Products}, >=0, default 0;
param Revenue {p in Products}, >=0, default 0;
param Min_Usage {r in Raw_Materials}, >=0, <=Storage[r], default 0;
param Min_Production {p in Products}, >=0, default 0;
param Max_Production {p in Products}, >=Min_Production[p], default 1e100;

The new Min_Usage is for the minimal total consumption for each raw material, while parame-
ters Min_Production and Max_Production are for the lower and upper limit of production of each
product. The fourth limit parameter is the original Storage, for upper limit of raw material con-
sumption. All these limit parameters now have sensible bounds and default values. Lower limits are
defaulted to 0, while upper limits are defaulted to 10100, which is a number of a large magnitude
that we except not to appear in problem data. Also, the lower limits must be not larger than
the upper limits. Meanwhile, all limits must be nonnegative. Remember that these restrictions on
parameter values are valuable to prevent mistakes in the data sections but we do not expect them
to contribute to generating and solving the model if once satisfied. This is in contrast to variable
bounds, which are part of the model formulation and may affect solutions.

The variables and the objective remains the same. However, we must add three additional
constraints to tighten the search space of the model. Each of the four constraints actually corre-
spond to the four limits mentioned, while the Material_Balance being for the upper limit of total
consumption of raw materials, this one was originally there and was left unchanged.

var production {p in Products}, >=0;

s.t. Material_Balance {r in Raw_Materials}:
sum {p in Products} Consumption_Rate[r,p] * production[p]
<= Storage[r];

s.t. Cons_Min_Usage {r in Raw_Materials}:
sum {p in Products} Consumption_Rate[r,p] * production[p]
>= Min_Usage[r];

s.t. Cons_Min_Production {p in Products}:
production[p] >= Min_Production[p];

s.t. Cons_Max_Production {p in Products}:
production[p] <= Max_Production[p];

maximize Total_Revenue: sum {p in Products} Revenue[p] * production[p];

The post-processing work to print out solution data may remain the same as for the original
model. Now, our model section is ready.

To demonstrate how it works, consider the following production problem with limits.

Problem 11.
Solve the production problem described in Problem 9, but with the following restrictions added.

• Use at least 20000 h of working time (raw material B).

• Fill the production quota: produce at least 200 units (raw material D), which is actually also
the maximum for that raw material.

• Produce at most 10 units of P3.
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As the problem is just an „extension” of the original one, its implementation can be done by just
extending the data section with the aforementioned limits. Note that each parameter is indexed
with the set of all raw materials and all products. Those that do not appear in the data section will
be simply be defaulted to 0 for lower and 10100 for upper limits, effectively causing the limits to be
redundant. In that case, they do not modify the search space of the model, because those limits
are true anyways for any otherwise feasible solution.

param Min_Usage :=
B 21000
D 200
;

param Min_Production :=
P2 100
;

param Max_Production :=
P3 10
;

The solution of the problem is now slightly different with the newly defined bounds.

Total Revenue: 32970
Production of P1: 90
Production of P2: 100
Production of P3: 10
Usage of A: 23000, remaining: -7.27596e-12
Usage of B: 21000, remaining: 10000
Usage of C: 433000, remaining: 17000
Usage of D: 200, remaining: 0

This means that 90 units of P1, 100 units of P2 and 10 units of P3 are produced. We may check
that all the limitations are met. It is interesting to note about this solution that all the variables
are integers, although they are not forced to be. This means that if the problem would change to
only consider integer solutions (for example if the product is an object, of which an integer number
shall be produced), then this solution would also be valid. Moreover, it would also be the optimal
solution, too, because restricting variables to only attain integer values just makes the search space
of the model even tighter. So if a solution is optimal even in the original model, meaning that there
are no better solutions, then there should not be better solutions in the more restrictive integer
counterpart either.

Now, our implementation for limits are done. But we can still improve the model implementation
by making it a bit more readable and less redundant. First, there is one nice feature in GNU
MathProg: if there is a linear expression that can be bounded by both an upper and a lower value
and both of these limits are constants, then these can be done in a single constraint instead of
two containing the same expression twice. With this feature, we can reduce the number of s.t.
statements from four to two in our model section as follows. All other parts of the model, the data,
and the solution remain the same.

s.t. Material_Balance {r in Raw_Materials}: Min_Usage[r] <=
sum {p in Products} Consumption_Rate[r,p] * production[p]
<= Storage[r];
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s.t. Production_Limits {p in Products}:
Min_Production[p] <= production[p] <= Max_Production[p];

There is another thing we can improve, which is actually a modeling technique rather than a
language feature: we can introduce auxiliary variables for linear expressions. The variables,
constraints and the objective will look like the following.

var production {p in Products}, >=Min_Production[p], <=Max_Production[p];
var usage {r in Raw_Materials}, >=Min_Usage[r], <=Storage[r];
var total_revenue;

s.t. Usage_Calc {r in Raw_Materials}:
sum {p in Products} Consumption_Rate[r,p] * production[p] = usage[r];

s.t. Total_Revenue_Calc: total_revenue =
sum {p in Products} Revenue[p] * production[p];

maximize Total_Revenue: total_revenue;

Observe the newly introduced usage. We intend to denote the total consumption of a raw
material by this variable. Therefore, we add the Usage_Calc constraint that ensures this. We now
have that variable throughout the model to denote this value. We also do this for the total revenue,
which is denoted by variable total_revenue, calculated in the Total_Revenue_Calc constraint, and
then we use it in the objective function. Actually the objective function is itself the total_revenue
variable.

Now observe that all the expressions we have to limit are actually variables, and all the limits
are constants. This means that the constraints for the limits can be converted to bounds of these
variables, namely production and usage. This way, we effectively got rid of all the previously
defined constraints and converted them into bounds, but we needed two more constraints to calculate
the values of usage and total_revenue.

We might think that the key importance of introducing the new variable lies on the possibility
of using bounds instead of s.t. statements which makes our implementation shorter. This is only
an example for being useful. The key point is that if some expression is used more than once in our
model, we can simply introduce a new variable for it, define a new constraint so that the variable
equals that expression, and then use the variable instead of that expression everywhere.

Think about a bit: does this operation of adding auxiliary variables change the search space?
Well, formally, yes. The search space is of different dimension. There are more variables, so in
a solution to the new problem, we have to decide more values. However, also note that feasible
solutions of the new model will be in a one-to-one correspondence with the original ones. For a
solution feasible to the original problem, we can introduce the variable with the corresponding value
of the expression and get a feasible solution for the extended problem, and vice versa, each feasible
solution with the extended problem must have its auxiliary variable equal to the expression it is
defined for, and hence it can be substituted in the model and we get back to a feasible solution to
the original model.

In short, the search space formally changes, but the (feasible) solutions for the problem logically
remain the same.

An important question arises: how does the introduction of auxiliary variables change the course
of the algorithms, and solver performance? The general answer is that we do not know. There are
more variables, so computational performance might be slightly worse, but this is often negligible,
because the main difficulty of solving a model in practice comes from the complexity of the search
space, which is logically unchanged. Of course, if there are magnitudes more auxiliary variables than
ordinary variables and constraints themselves, it might cause technical problems. Also note that,
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in theory, the solver has the right to substitute into auxiliary variables, effectively reverting back to
the original problem formulation, but we generally cannot be sure that it does so. The solver does
not see which of our variables are intended to be „auxiliary”. If there is an equation constraint in
the model, the solver might use that equation to express one of the variables appearing in it, and
do a substitution into that variable, despite we had not even thought of it as auxiliary at all.

In short, the course of the solution algorithm may be different, the computational performance
of the solver might change, but this is usually negligible.

Note also that we have already done some introduction of new values in the post-processing
work, so that we did not have to write the total consumption expression twice. That was with the
introduction of a new parameter, not a variable, and only worked after the solve statement, because
it involved variable values that are only available when the model is already solved. However, now
with an auxiliary variable introduced for the total consumption, we can use it both before and
after the solve statement. Therefore we write this expression down in code only once, and that
redundancy finally totally diminished.

The ultimate model code for the limits is the following. Note that the data section, and the
solution remained the same as before. Also note that we did not have to introduce new parameters
after the solve statement as the auxiliary variables do the work.

set Products;
set Raw_Materials;

param Storage {r in Raw_Materials}, >=0, default 1e100;
param Consumption_Rate {r in Raw_Materials, p in Products}, >=0, default 0;
param Revenue {p in Products}, >=0, default 0;
param Min_Usage {r in Raw_Materials}, >=0, <=Storage[r], default 0;
param Min_Production {p in Products}, >=0, default 0;
param Max_Production {p in Products}, >=Min_Production[p], default 1e100;

var production {p in Products}, >=Min_Production[p], <=Max_Production[p];
var usage {r in Raw_Materials}, >=Min_Usage[r], <=Storage[r];
var total_revenue;

s.t. Usage_Calc {r in Raw_Materials}:
sum {p in Products} Consumption_Rate[r,p] * production[p] = usage[r];

s.t. Total_Revenue_Calc: total_revenue =
sum {p in Products} Revenue[p] * production[p];

maximize Total_Revenue: total_revenue;

solve;

printf "Total Revenue: %g\n", total_revenue;

for {p in Products}
{

printf "Production of %s: %g\n", p, production[p];
}

for {r in Raw_Materials}
{
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printf "Usage of %s: %g, remaining: %g\n",
r, usage[r], Storage[r] - usage[r];

}

end;

5.3 Maximizing minimum production
In the previous parts, we have seen a complete implementation for the production problem where
total raw material consumption and production can be limited by constants for all raw materials
and products. Now modify the goal of the optimization, to maximize the minimum production.
The exact definition is the following.

Problem 12.
The minimum production in a production problem refers to the product from which the least

amount is produced. Maximize the minimum production while problem data are the same.

Regardless of what model we take as a starting point, the simple one or the one with the
limitations added, this problem only wants us to modify the objective function. That means, the
feasible solutions remain exactly the same as before, and the search space does not change.

This also makes the revenue parameter in the problem irrelevant, because we are no longer
interested in how much the products worth in total, only the amounts produced (moreover, only
the minimum of those amounts).

We have already done a similar problem in case of the system of linear equations (see Problem
7 from Section 4.8). Then the maximum of the errors of all equations was the objective to be
minimized. Now, the minimum of the productions is to be maximized. The modeling technique
required is indeed similar.

The idea is that we introduce a variable for the minimum of the production amounts. Precisely,
the variable will denote a lower bound for all the production amounts. That works as a lower bound
for the minimum of those amounts as well. If this variable is maximized, then by the optimization,
it will eventually go as large as possible, until it reaches the minimum of the production amounts.
With this modeling trick, we can ensure that the final optimal solution found will be the maximal
possible value of the minimum of the production amounts. Of course, this is a more general method
that works on any number of linear expressions, a minimum of which is to be maximized, or a
maximum of which is to be minimized.

In implementation, parameters and post-processing work remains the same, as well as the
already-existing variables, bounds and constraints.

var production {p in Products}, >=Min_Production[p], <=Max_Production[p];
var usage {r in Raw_Materials}, >=Min_Usage[r], <=Storage[r];
var total_revenue;

s.t. Usage_Calc {r in Raw_Materials}:
sum {p in Products} Consumption_Rate[r,p] * production[p] = usage[r];

s.t. Total_Revenue_Calc: total_revenue =
sum {p in Products} Revenue[p] * production[p];

The change is that instead of the original objective of the total revenue, we set the minimum
production as objective. This requires a newly introduced min_production variable to denote a
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lower bound for all the production amounts, and a constraint which ensures that the variable is
itself a lower bound. Then, the variable is to be maximized, and that is the objective function.

var min_production;

s.t. Minimum_Production_Calc {p in Products}:
min_production <= production[p];

maximize Minimum_Production: min_production;

Post-processing code can be the same as before, so we print the same data as we did for the
total revenue objective. We only added a printf statement to emphasize the minimum production
amount, which is our current objective.

printf "Minimum Production: %g\n", min_production;

Note that in our code, min_production is the name of the variable, and Min_production is
the name of the objective function. In GNU MathProg, we could use both as values. However,
be cautious when referring to the objective by its name, because constant terms in the objective
are omitted. The reason behind this is that the selection of the optimal solution is not affected
by constant terms, just the value of the objective. Therefore, it is recommended to refer to the
objective function value by the variable min_production instead.

We can now run our model to solve two problems. In the first one, all the limits are ignored,
except the Storage. Note that, in the data section, we can start rows by a hash mark (#). This
makes the row a comment, effectively excluding it from processing. The data section looks like the
following.

data;

set Products := P1 P2 P3;
set Raw_Materials := A B C D;

param Storage :=
A 23000
B 31000
C 450000
D 200
;

param Consumption_Rate:
P1 P2 P3 :=

A 200 50 0
B 25 180 75
C 3200 1000 4500
D 1 1 1
;

param Revenue :=
P1 252
P2 89
P3 139
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;

param Min_Usage :=
# B 21000
# D 200

;

param Min_Production :=
# P2 100

;

param Max_Production :=
# P3 10

;

end;

Note that revenue data are not needed at all in this model, but it is not a mistake to give them
values as well, as long as the parameter is represented in the model section.

The solution to the problem is a production amount of 51.72.

Total Revenue: 24827.6
Minimum Production: 51.7241
Production of P1: 51.7241
Production of P2: 51.7241
Production of P3: 51.7241
Usage of A: 12931, remaining: 10069
Usage of B: 14482.8, remaining: 16517.2
Usage of C: 450000, remaining: 0
Usage of D: 155.172, remaining: 44.8276

It turns out that production is balanced to the edge to achieve this solution. All the resources
are evenly distributed, and all three products are produced in an equal amount. If we think about it,
that is not surprising. Why would we produce any amount of products above the minimum, if it is
not an advantage regarding the objective function, but a disadvantage regarding the raw materials
consumed?

It looks like raw material C is the bottleneck in this problem. We call a factor a bottleneck if
that factor has a visible impact on the final solution if changed, while other factors remained the
same. For example, the most scarce resource, as in this case. If there were slightly less or more
of raw materials A, B and D, the solution were the same, because all of C are completely used up,
and distributed evenly among the products. This kind of knowledge can be fundamental in real-
world optimization problems, because it tells decision makers that some factors are unnecessary to
improve. On the other hand, slightly more or less C would probably result in slightly more or less
production (probably, because there can be other limitations in the model that we do not see). For
this reason raw material C is the bottleneck in this particular production problem.

In the second example, the Problem 11 is used without the constraint on P3. That means, all
the limitations are included now in the model, except that P3 is not maximized in 10 units. Note
that if this constraint were enabled, then there is no question that the optimal solution would be
10 units, as the former solution we already know just produces 10 units of P3, and there cannot be
more.
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In short, we only get a meaningful new problem if we omit this constraint about P3 maximized
at 10 units.

Total Revenue: 27142.1
Minimum Production: 43.8596
Production of P1: 43.8596
Production of P2: 112.281
Production of P3: 43.8596
Usage of A: 14386, remaining: 8614.04
Usage of B: 24596.5, remaining: 6403.51
Usage of C: 450000, remaining: 0
Usage of D: 200, remaining: 0

The solution is slightly different in this case. Now only P1 and P3 is produced in even amounts,
both in the minimum production amount of 43.86. Also, not only C, but D is also used up totally.
Note that there is a need of P2 much more because all 200 units of D must be used up in this
problem. And this answers a former question: why is it an advantage to produce products above
the minimum limit? Because it might help satisfying the minimum production and/or minimum
consumption constraints.

Note that the objective in this case is slightly worse than that of the first example problem, where
the objective was 51.72. This is a natural consequence of differences in the data. In the second
example, the data were the same, except that there were additional constraints on consumption and
production. If a problem is more constrained, we can only get an optimal solution with the same,
or a worse objective value.

Generally, if only the objective is changed in a model, then the set of feasible solutions re-
mains the same, because the objective only guides in selecting the most suitable solution, but not
in which solutions are feasible. In this case, the new objective function involved a new variable
min_production, which served as a lower bound and was maximized.

Note that, in theory, the variable min_production does not need any lower bound, and can be
allowed to even be zero or negative. The solution would still be feasible. However, such solutions are
not reported because they are not optimal. Therefore only those feasible solutions are interesting
for which min_production is not only a valid lower bound on production amounts, but is actually
strict, that is, equals the minimum production amount.

And among these solutions we are interested in, min_production works just like an auxiliary
variable. Each optimal solution where min_production is a strict bound corresponds to a feasible
solution of the original problem where revenues were maximized, and vice versa.

5.4 Raw material costs and profit
We have seen an example where only the objective was changed. Now let us see another example,
which is more like a natural extension to the problem. From now on, raw materials are not considered
„free” anymore: they must be produced, purchased, stored, etc. in general, they have costs. As there
is a revenue for each product per unit produced, there is now a cost for each raw material per unit
consumed.

Problem 13.
Solve the production problem, but now instead of optimizing for revenue, optimize for profit.
The profit is the difference between total revenue from products, and total costs of raw materials

consumed for production. The cost for each raw material is proportional to the material consumed,
and is independent of which product it is used for. A single unit cost for each raw material is given.
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This is the general description for the problem. Again, we use an example for demonstration,
which includes costs for raw materials as well. Other data of the example problem remains the same
as before.

Problem 14.
Solve the production problem with the objective of maximized profit, where problem data are the

following, with unit costs of raw materials added.

P1 P2 P3 Available Cost
A 200 kWh 50 kWh 0 kWh 23000 kWh 1 $
B 25 h 180 h 75 h 31000 h 0.07 $
C 3200 kg 1000 kg 4500 kg 450000 kg 0.0013 $
D 1 1 1 200 8 $

Revenue 252 $ 89 $ 139 $

Also, there are three limitations, as before.

• Use at least 20000 h of working time (raw material B).

• Fill the production quota: produce at least 200 units (raw material D), which is actually also
the maximum for that raw material.

• Produce at most 10 units of P3.

Again, we want to write a general model, and a separate, corresponding data section for the
particular example problem. The starting point is the model and data sections we obtained by
solving Problem 11, where the limits were introduced, as both the model and data sections are
almost ready, we only need to implement some modifications.

First, we definitely need a new parameter that describes the costs. Let us call this parameter
Material_Cost. We can simply add it to the model section. No other data is needed.

Before going on, let us observe what happens when material costs are zero. This means that our
problem is the same as the original, where raw materials were free. This means that the current
problem with raw material costs is a generalization of the original problem. Or, in other words,
the original problem is a special case of the current problem with raw material costs all being zero.

For this reason, it is sensible to give a zero default value to material costs. This makes data files
implemented for the original problem compatible with our new model as well.

param Material_Cost {r in Raw_Materials}, >=0, default 0;

We also know the corresponding data, which can be implemented in the data section. Each raw
material has a nonzero cost.

param Material_Cost :=
A 1
B 0.07
C 0.013
D 8
;
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Beyond the data, the only difference in the model is the objective value. We could just change
the line and our model would be complete. However, for more readability, we introduce an auxiliary
variable for the profit and use it instead. The modified part of the model section is the following.
Only three lines of code changed: the profit variable was introduced, the objective changed, and
the Profit_Calc constraint was added to ensure that the profit variable obtain the corresponding
value. We also print it after the solve statement.

var production {p in Products}, >=Min_Production[p], <=Max_Production[p];
var usage {r in Raw_Materials}, >=Min_Usage[r], <=Storage[r];
var total_revenue;
var profit;

s.t. Usage_Calc {r in Raw_Materials}:
sum {p in Products} Consumption_Rate[r,p] * production[p] = usage[r];

s.t. Total_Revenue_Calc: total_revenue =
sum {p in Products} Revenue[p] * production[p];

s.t. Profit_Calc: profit = total_revenue -
sum {r in Raw_Materials} Material_Cost[r] * usage[r];

maximize Profit: profit;

solve;

printf "Total Revenue: %g\n", total_revenue;
printf "Profit: %g\n", profit;

Now both the model and the data sections are ready. If we optimize for profit now, we get the
following result.

Total Revenue: 22453.9
Profit: 1577.45
Production of P1: 25.4839
Production of P2: 164.516
Production of P3: 10
Usage of A: 13322.6, remaining: 9677.42
Usage of B: 31000, remaining: 0
Usage of C: 291065, remaining: 158935
Usage of D: 200, remaining: 0

Now let us investigate this solution a bit. Now, it is true that the search space of the problem
did not change in logic: exactly the same solutions are feasible in both the original problem where
revenue is maximized, and the current problem where profit is maximized. This explains the total
revenues. In the original problem, the optimal (maximal) total revenue was 32970, it was obtained
by producing 90 units of P1, 100 units of P2 and 10 units of P3. However, if we optimize for profit
instead, we get a total revenue of 22453.87, which is worse. The profit in this case is much smaller,
1577.45, so most of the revenue is diminished by raw material costs. The production is also slightly
different, now 25.48 units of P1, 164.52 units of P2 and 10 units of P3 are produced.

Although the revenue is significantly higher for the original solution than for the current, we can
now be sure that the profit is no more than 1577.45 in that case either.

60



5.5. DIET PROBLEM PRODUCTION PROBLEM

5.5 Diet problem
We have seen several versions for the production problem. Now a seemingly unrelated problem is
considered, which is called the diet problem [13, 14], or the nutrition problem.

Problem 15.
Given a set of food types, and a set of nutrients. Each food consists of a given, fixed ratio of the

nutrients.
We aim to arrange a diet, which is any combination of the set of food types, in any amounts.

However, for each nutrient, there is a minimum requirement that the diet must satisfy in order to
be healthy. Also, each food has its own proportional cost.

Find the healthy diet with the lowest total cost of food involved.

After the general problem definition, let us see a particular example.

Problem 16.
Solve the diet problem with the following data. There are five food types, named F1 to F5, and

there are four nutrients under focus, named N1 to N4. The contents of unit amount of each food, the
unit cost of each food, and the minimum requirement of each nutrient are shown in the following
table.

N1 N2 N3 N4 Cost
F1 30 5.2 0.2 0.0001 450
F2 20 0 0.7 0.0001 220
F3 25 2 0.1 0.0001 675
F4 13 3.6 0 0.0002 120
F5 19 0.1 0 0.0009 500

Required 2000 180 30 0.04

The diet problem is regarded as one of the first problems that raised the field of Operations
Research.

Note that dimensions are slightly different at the diet problem and the production problem. Here
we omitted fictional physical dimensions, but the scales of each nutrient suggests which are the data
that are of one dimension. In this data table, each column corresponds for a single nutrient, and
therefore it has its own unit of measure. The last column shows unit costs.

Usually, when we want to implement a model, the first thing we must decide is how our freedom
of choice would be implemented as decision variables, then how the search space can be described
by constraints, and how the objective can be calculated. These steps are essential if we first want to
decide about a real-world problem whether a mathematical programming approach is suitable for
it at all.

However, we now instead start by defining all the data that are available in the problem, and
then we will go on with the procedure above. This makes defining the variables, constraints and
objectives easier afterwards. So the first part of modeling in GNU MathProg is now defining the
sets and parameters. These are either calculated on spot, or provided afterwards in a data section
at the end of the model file or separate data file(s).

Two sets appear in the problem. One is for food types, and one is for nutrients. These sets will
be used in indexing expressions.
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set FoodTypes;
set Nutrients;

There are three parameters available. One is for denoting food costs, obviously defined for each
food type. One parameter is for denoting minimum required amount of nutrients, defined for each
nutrient. Finally, one parameter is for the contents of food, which can be given by a unit amount
for each pair of food type and nutrient. In the particular problem, for example, each unit of F2
contains 20 units of N1, 0.7 units of N3 and 0.0001 units of N4. The default values are all set to
zero, and all these parameters are nonnegative by nature.

param Food_Cost {f in FoodTypes}, >=0, default 0;
param Content {f in FoodTypes, n in Nutrients}, >=0, default 0;
param Requirement {n in Nutrients}, >=0, default 0;

Now that all the data are defined as sets and variables, we must identify our freedom of choice.
The amounts of each food used is clearly under decision. On the other hand, if we know these
amounts, then we can easily calculate the total cost, and nutrient contents as well, so we can decide
whether the diet is healthy, and if so, how much it costs. This means that we should define a variable
denoting food consumption, for each food type separately, and no more variables are needed in the
model.

We introduce a variable named eaten to denote the amount of each food included in the diet.
This variable is obviously nonnegative, and is indexed over the set of food types. We also introduce
the auxiliary variable for the total costs so that it can be printed out easier. We could define bounds
for the auxiliary variable, but it is unnecessary as its value will be exactly calculated by a constraint.

var eaten {f in FoodTypes}, >=0;
var total_costs;

There is one significant factor in our model, which restricts which diets are acceptable, and this
is total nutritional content. This is a constraint for each nutrient. The total amount contained in
the selected diet must be added up, and this must not be less than the minimal requirement for
that particular nutrient.

Also, there is another constraint for calculating the auxiliary variable denoting the total food
costs.

s.t. Nutrient_Requirements {n in Nutrients}:
sum {f in FoodTypes} Content[f,n] * eaten[f] >= Requirement[n];

s.t. Total_Costs_Calc: total_costs =
sum {f in FoodTypes} Food_Cost[f] * eaten[f];

With the auxiliary total_costs variable, defining the objective is straightforward.

minimize Total_Costs: total_costs;

After the solve statement, again we can write our own printing code that will show the solution
found by the solver. This time, the amount for each food in the diet are shown, as well as the total
consumption per nutrient, together with the lower limit. Our model section is now ready.
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set FoodTypes;
set Nutrients;

param Food_Cost {f in FoodTypes}, >=0, default 0;
param Content {f in FoodTypes, n in Nutrients}, >=0, default 0;
param Requirement {n in Nutrients}, >=0, default 0;

var eaten {f in FoodTypes}, >=0;
var total_costs;

s.t. Nutrient_Requirements {n in Nutrients}:
sum {f in FoodTypes} Content[f,n] * eaten[f] >= Requirement[n];

s.t. Total_Costs_Calc: total_costs =
sum {f in FoodTypes} Food_Cost[f] * eaten[f];

minimize Total_Costs: total_costs;

solve;

printf "Total Costs: %g\n", total_costs;

param Nutrient_Intake {n in Nutrients} :=
sum {f in FoodTypes} Content[f,n] * eaten[f];

for {f in FoodTypes}
{

printf "Eaten of %s: %g\n", f, eaten[f];
}

for {n in Nutrients}
{

printf "Requirement %g of nutrient %s done with %g\n",
Requirement[n], n, Nutrient_Intake[n];

}

end;

Now we also implement the particular problem mentioned. It is described in a single data section
as follows.

data;

set FoodTypes := F1 F2 F3 F4 F5;
set Nutrients := N1 N2 N3 N4;

param Food_Cost :=
F1 450
F2 220
F3 675
F4 120
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F5 500
;

param Content:
N1 N2 N3 N4 :=

F1 30 5.2 0.2 0.0001
F2 20 . 0.7 0.0001
F3 25 2 0.1 0.0001
F4 13 3.6 . 0.0002
F5 19 0.1 . 0.0009
;

param Requirement :=
N1 2000
N2 180
N3 30
N4 0.04
;

end;

Now we can solve the problem and the result is the following.

Total Costs: 29707.2
Eaten of F1: 0
Eaten of F2: 42.8571
Eaten of F3: 0
Eaten of F4: 49.2014
Eaten of F5: 28.7489
Requirement 2000 of nutrient N1 done with 2042.99
Requirement 180 of nutrient N2 done with 180
Requirement 30 of nutrient N3 done with 30
Requirement 0.04 of nutrient N4 done with 0.04

The optimal objective is 29707.2. This result literally means that any diet containing at least
2000 units of N1, 180 units of N2, 30 units of N3 and 0.04 units of N4, and consisting of F1 to F5,
would costs at least 29707.2, and there exists a solution to obtain exactly this number.

The optimal solution only uses F2, F4 and F5. This means that if F1 and F3 were omitted from
the problem data at all, then the optimal solution would be exactly the same. This is because
introducing a new food type only increases the freedom in the model, leaving any previously feasible
solutions as feasible afterwards, and possibly introducing new feasible solutions which utilize the
newly introduced food type. We can also observe that N1 is the only nutrient for which the con-
sumption in the optimal diet is more than the minimal amount required, with 2042.99 units rather
than 2000. Of the other three nutrients, there is exactly enough. This suggests that the solution
shows a diet which is balanced to the edge to meet the minimum requirements while optimizing
costs.

5.6 Arbitrary recipes
The implementation of the diet problem and the production problem are surprisingly similar. This
is true for the number of sets, parameters, variables, constraints, the contents of the constraints,
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and the objective. In this part, we will show how the diet problem can be regarded as a production
problem. Finally, we will show a production problem with arbitrary recipes that generalizes both
problems at the same time.

There are two ways a diet problem can be represented as a production problem.
The first way is when products represent the food types, and raw materials represent the nutrients.

This can be logical in reality as well. The food can be treated as if it were „produced” from its
nutrients, in given ratios. In the diet, we eat the products and decompose it to its nutrients, so
the process is just reversed in time. The products have costs, as foods, and the amounts exactly
define the solution. The only difference is that instead of „storage” amounts for raw materials, which
serve as an upper bound for usage, we have a lower bound because each nutrient must be used in
a minimal total amount in order to obtain a good diet. But this feature is already implemented
in the limits extension, in Problem 10. Another issue is that in this case, food „production” shall
be minimized instead of maximized, but that can be easily achieved if food costs are represented
by negative revenues in the model. So technically we would have no difficulty in rewriting our diet
problem into a production problem with limits and negative unit revenues. This works if we consider
the food type as the products and the nutrients as the raw materials.

However, there is another representation which suggests a more general model behind both the
production problem and the diet problem. The second way is when products represent the nutrients,
and raw materials represent the food types. This matches the process in time: the foods are the
„inputs” which are available first, and then the products are the nutrients which we want to obtain by
the whole process. There are more differences in this representation for which it may seem unnatural.
There are no upper or lower limits for foods, but there is a lower limit for nutrients, which means
there would be a minimum production amount for each product in the production problem. There
are no costs for the nutrients, but for the foods, which means that in the production problem there
would be only costs for the raw materials, but zero revenues for all products.

But the most important difference, which actually prevents us in this second representation to
utilize the production problem model directly: the logic of production is reversed. That means, in
the production problem there are many raw materials producing a single product, in given ratios.
However, in the case of the diet problem there would be a single raw material (food) producing many
products, in given ratios.

So at this point we could say that the second representation is erroneous, and we therefore
use only the first one. Technically nothing prevents us from doing that. However, the second
representation suggests a valuable generalization for the production problem itself: what if we relax
the rule that there is only a single product in each production step? This leads to the production
problem with arbitrary recipes.

A recipe describes a process that consumes several inputs at once, and produces several outputs
at once, in given amounts. Each recipe can be utilized in an arbitrary volume, and both inputs
and outputs are proportionally sized according to this volume.

We can see that this concept of recipes may describe the production problem as well as the diet
problem.

• In the production problem, there is one recipe for each product. That recipe only produces
that particular product as output, but can consume any given combination of raw materials
as inputs.

• In the diet problem, there is one recipe for each food type. That recipe consumes only that
particular food type as input, but can produce any given combination of products as outputs.

• Moreover, there may be other problems where there are many inputs and many outputs at
the same time in a single recipe. These are covered neither by the production nor the diet
problem.
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Now we can define the production problem with arbitrary recipes as follows.

Problem 17.
Given a set of raw materials and a set of products. There is also a set of recipes defined.

Each recipe describes the ratio in which it consumes raw materials, and produces products, these are
arbitrary nonnegative numbers. Each recipe may be utilized in an arbitrary amount, which is named
its volume.

There is a unit cost defined for each raw material, and a unit revenue for each product.
There can be minimal and maximal total consumption amounts defined for each raw material,

and minimal and maximal total production amounts defined for each product.
For practical purposes, the amounts of consumed raw materials are limited: their total costs

cannot exceed a given value, which is the initial funds available for raw material purchase.
Find the optimal production, where recipes are utilized in arbitrary volumes so that all the limits

on consumption and production are satisfied, and the total profit is maximal. The total profit is
the difference of the total revenue from products and the total costs of raw materials consumed.

Now let us try to implement this problem first without a particular example problem. We will
find it is very similar in implementation to the original production problem. The first thing to do
is to „read” all the available data for further use. For this reason, there are three sets in the model:
the set of raw materials, the set of products, and the set of recipes.

set Raws;
set Products;
set Recipes;

Note that the problem definition does not exclude the case where the same material is both a
raw material and a product at the same time in the recipes. It is actually natural in real-world
situations: some material is produced by a recipe, and consumed by another. However, questions
would arise if we wanted to take this case into account. For example, how to consider timing? If a
material is consumed as a raw material in a second recipe, then it must first be produced by another
in the first recipe. So production according to the first recipe must happen before the execution
of the second. Or, it is possible that the production describes an equilibrium where amounts must
be maintained, therefore timing is not important at all. There are many possibilities, problem
definitions and implementation would be complex, so we do not go into the details. For the sake of
simplicity, we assume that raw materials and products are distinct.

To ensure that raw materials are indeed distinct from products a check statement is introduced.
Literally, we express that the intersection of the set of raw materials and the set of products shall
contain exactly zero elements. If this does not hold, then model construction fails immediately, as
it should.

check card(Raws inter Products) == 0;

For each recipe, there are ratios, for both the raw materials and the products. Because these
are two different sets, it would require two different parameters: one for ratios of raw materials in
each recipe, and one for ratios of products in each recipe. This holds for other parameters as well.
Instead, we introduce the concept of materials in our model. We simply call raw materials and
products together as materials. In GNU MathProg, it is legal to introduce a set which is calculated
on spot based on other sets.

set Materials := Products union Raws;
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Note that since we assumed that there is no material that is both a product and a raw material,
we can further assume that each raw material is represented in the union once, as well as each
product, and these are all distinct. Now, with the new set, we can define the necessary parameters
in a compact way.

param Min_Usage {m in Materials}, >=0, default 0;
param Max_Usage {m in Materials}, >=Min_Usage[m], default 1e100;
param Value {m in Materials}, >=0, default 0;
param Recipe_Ratio {c in Recipes, m in Materials}, >=0, default 0;
param Initial_Funds, >=0, default 1e100;

Parameters Min_Usage and Max_Usage denote the lower and upper bound for each material in
the model. These two parameters are indexed over the Materials set. For raw materials, the
Min_Usage and Max_Usage mean limits for total consumption. For products, these parameters
mean limits for total production. Because each raw material and each product is represented in
the Materials set exactly once, this definition unambiguously describes all the limits for both raw
materials and products. Note that the default limits are 0 for lower and a very large number, 10100
for upper limits. So technically there is no limit by default.

The Value parameter works similarly, it represents raw material costs in case of raw materials,
and revenues in case of products. Both are nonnegative and defaulted to zero.

The Recipe_Ratio parameter is for describing recipes. The only needed data for the recipes
are the exact amount of inputs consumed and outputs produced. With the common Materials
set, this can be done with a single parameter. Recipe_Ratio is defined for all recipes and all
materials. If the material is a raw material, it describes consumption amount, if it is a product, it
describes production amount. We call this parameter „ratio” because it corresponds to the amounts
consumed and produced when utilizing the recipe with a volume of 1. In general, because both
inputs and outputs are proportional, the ratio must be multiplied by the volume to obtain the
amounts consumed or produced.

Finally, there is a single numeric parameter Initial_Funds. This serves as an upper limit for
raw material consumption. In practice, it is generally not possible to invest into any amounts of
raw materials, there is usually a cap on this. Note that without such a restriction and any upper
limits for consumption or production, it may be possible to gain unlimited profit by consuming
an unlimited amount of raw materials to produce at least one product in unlimited amounts. By
default, Initial_Funds is set to the extreme value and 10100 again so that it does not change the
model.

Now all the parameters and sets are defined, let us see what the freedom in our model is. What
we have to decide is the volume for each recipe utilized. This is slightly different than before, because
decisions do not correspond to one particular product or raw material, but for a given recipe. If
recipe amounts are defined, then the solution is exactly determined and all other information can
be calculated, including raw material usages, production amounts, costs, revenues, the profit, and
corresponding limitations.

var volume {c in Recipes}, >=0;
var usage {m in Materials}, >=Min_Usage[m], <=Max_Usage[m];
var total_costs, <=Initial_Funds;
var total_revenue;
var profit;

In our implementation volume is the variable which denotes for each recipe, which volume it
shall be utilized in. This is a nonnegative value but can be zero and even fractional, as usual. As
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we mentioned, this only variable would be sufficient for model formulation, but we want to write a
compact and readable model instead, so we introduce a few auxiliary variables as well.

The variable usage is the total „usage” of each material. It is indexed over the Materials set,
and works similarly to the parameters, it has a slightly different meaning for raw materials and
products, but for sake of simplicity it can be denoted by the same single variable. For raw materials
r, usage[r] is the total consumption, while for products p, usage[p] is the total production
amount. Note that we can give Min_Usage[m] and Max_Usage[m] as bounds for this variable, which
implements the limitations in our problem.

There is also a variable named total_costs which denotes the total costs of consumed raw
materials, a variable total_revenue for the total revenue from products, and finally, a variable
profit for the difference, which is actually our objective function. We set Initial_Funds as an
upper bound for total_costs, which implements the maximum usage limitation.

Constraints are implemented next.

s.t. Material_Balance {m in Materials}: usage[m] =
sum {c in Recipes} Recipe_Ratio[c,m] * volume[c];

s.t. Total_Costs_Calc: total_costs = sum {r in Raws} Value[r] * usage[r];
s.t. Total_Revenue_Calc: total_revenue =

sum {p in Products} Value[p] * usage[p];
s.t. Profit_Calc: profit = total_revenue - total_costs;

Although this model is intended to be a generalization for both the production problem and the
diet problem, with supporting most of the features mentioned so far, there is only one key constraint:
the material balance established by recipe utilization. The constraint says that the usage of each
material, regardless of being a raw material or a product, is calculated by adding for each recipe its
volume, multiplied by the ratio the material is represented in the recipe. This is exactly the same
for both the original production problem and the diet problem.

We also define three additional constraints to calculate the values of the auxiliary variables
total_costs, total_revenue and profit. Note that even though parameters and variables (here
Value and usage) are indexed over the Materials set, it is valid in GNU MathProg to index those
parameters and variables over a smaller set. Using the original Raws and Products sets, we can sum
up only for raw materials and only for products. Be careful, we can only index over the original
domain, or its subset, otherwise we get an out of domain error (and the model is also guaranteed
to be logically wrong).

The objective is straightforward, the profit itself.

maximize Profit: profit;

After solving the problem, we can print out the auxiliary variables, as well as the utilization
volumes for each recipe and total consumption and production amounts for each material. The full
model section is ready as follows.

set Raws;
set Products;
set Recipes;

check card(Raws inter Products) == 0;
set Materials := Products union Raws;

param Min_Usage {m in Materials}, >=0, default 0;
param Max_Usage {m in Materials}, >=Min_Usage[m], default 1e100;
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param Value {m in Materials}, >=0, default 0;
param Recipe_Ratio {c in Recipes, m in Materials}, >=0, default 0;
param Initial_Funds, >=0, default 1e100;

var volume {c in Recipes}, >=0;
var usage {m in Materials}, >=Min_Usage[m], <=Max_Usage[m];
var total_costs, <=Initial_Funds;
var total_revenue;
var profit;

s.t. Material_Balance {m in Materials}: usage[m] =
sum {c in Recipes} Recipe_Ratio[c,m] * volume[c];

s.t. Total_Costs_Calc: total_costs = sum {r in Raws} Value[r] * usage[r];
s.t. Total_Revenue_Calc: total_revenue =

sum {p in Products} Value[p] * usage[p];
s.t. Profit_Calc: profit = total_revenue - total_costs;

maximize Profit: profit;

solve;

printf "Total Costs: %g\n", total_costs;
printf "Total Revenue: %g\n", total_revenue;
printf "Profit: %g\n", profit;

for {c in Recipes}
{

printf "Volume of recipe %s: %g\n", c, volume[c];
}
for {r in Raws}
{

printf "Consumption of raw %s: %g\n", r, usage[r];
}
for {p in Products}
{

printf "Production of product %s: %g\n", p, usage[p];
}

end;

Although the model for arbitrary recipes is similar in nature to the former models, we still
implemented it at once. The question arises: how can a large, complex model be implemented in
GNU MathProg from scratch? Or, generally, in any mathematical programming language?

There is no general guide for modeling, but there are good rules of thumb to follow. The
recommendation is the following, specifically for GNU MathProg.

1. First, we must decide whether the problem under consideration can be effectively solved by
LP (or MILP) models. There are many problems that are simply cannot, or only with very
complicated workarounds, or there is a much more suitable algorithm or other method for
solving it. This is the hardest part, we basically have to think what the decision variables will
be, and how the appropriate search space can be defined by the addition of constraints and
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other variables. If we are sure we can implement an LP (or MILP) model for the problem,
then we can go on with the implementation of the model file.

2. Collect all data that are available and needed. Define sets and parameters which will be
provided by the data sections. Data files can be implemented at this point if there are example
problem instances available. If some data is missing or must be calculated afterwards, we will
always have the opportunity to introduce other sets and parameters, and calculate other data
in the model file.

3. Define the decision variables. Keep in mind that the values of all the variables should exactly
determine what is happening in the real-world. In particular, we must be able to calculate the
objective and decide for each restriction whether it is violated or not, based on the variables.

4. Implement all possible rules as constraints or bounds. Keep in mind that there are two
mistakes we can make: a problem may be under-constrained or over-constrained, or both.
In under-constrained problems, there are solutions left in the search space that are infeasible
in the problem but feasible in the model. These additional solutions may be found by the
solver and reported as fake optimal solutions. Then, additional constraints must be defined
to exclude those solutions, or already existing constraints redefined to be more restrictive.
In over-constrained problems, interesting solutions are excluded from the search space, and
therefore not found by the solver. Then, some constraints or bounds are too restrictive, we
have to reformulate or remove them. Remember that we can always introduce new auxiliary
variables in the model.

5. Define the objective.

6. After the solve statement, report the relevant details of the solution found, in the desired
format.

Complex models may have several dozens of constraints, so how can we be sure we have not
forgotten any rules? One idea for that is to focus on parameters or variables. In many cases,
parameters are used only once in the model. Even if not, we can enlist all the roles the parameter
or variable must appear in the model: as a bound, a constraint, or objective term, etc. Then it is
easy to spot one which is forgotten.

Now that we have our model for arbitrary recipes ready, we will demonstrate how this works for
all the problems mentioned so far in this chapter (with the exception of the maximum of minimum
production amounts case).

First, Problem 14, which introduced raw material costs, is solved. Since this is a pure production
problem in the original way, a recipe is introduced to produce each of the products. All the limits
are implemented by the Min_Usage parameter, while raw material costs and product revenues are
implemented by the Value parameter. The data section is the following.

data;

set Raws := A B C D;
set Products := P1 P2 P3;
set Recipes := MakeP1 MakeP2 MakeP3;

param Min_Usage :=
B 21000
D 200
P2 100
;
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param Max_Usage :=
A 23000
B 31000
C 450000
D 200
P3 10
;

param Value :=
A 1
B 0.07
C 0.013
D 8
P1 252
P2 89
P3 139
;

param Recipe_Ratio:
A B C D P1 P2 P3 :=

MakeP1 200 25 3200 1 1 0 0
MakeP2 50 180 1000 1 0 1 0
MakeP3 0 75 4500 1 0 0 1
;

end;

If we solve it, then we get exactly the same result as for the original model with raw costs. The
optimal profit is 1577.45, with production of 25.48 units of P1, 164.52 units of P2 and 10 units of
P3. The output is the following.

Total Costs: 20876.4
Total Revenue: 22453.9
Profit: 1577.45
Volume of recipe MakeP1: 25.4839
Volume of recipe MakeP2: 164.516
Volume of recipe MakeP3: 10
Consumption of raw A: 13322.6
Consumption of raw B: 31000
Consumption of raw C: 291065
Consumption of raw D: 200
Production of product P1: 25.4839
Production of product P2: 164.516
Production of product P3: 10

The second application is the diet problem. We solve exactly the same problem instance as in
Problem 16. In this example, the food types are the raw materials and the nutrients are the products
we want to obtain. Contrary to the original production problem, where there were several inputs
and one output per recipe, here there is only one input, a food type per recipe, which produces
several nutrients with given ratios.
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data;

set Raws := F1 F2 F3 F4 F5;
set Products := N1 N2 N3 N4;
set Recipes := EatF1 EatF2 EatF3 EatF4 EatF5;

param Min_Usage :=
N1 2000
N2 180
N3 30
N4 0.04
;

param Value :=
F1 450
F2 220
F3 675
F4 120
F5 500
;

param Recipe_Ratio:
F1 F2 F3 F4 F5 N1 N2 N3 N4 :=

EatF1 1 0 0 0 0 30 5.2 0.2 0.0001
EatF2 0 1 0 0 0 20 . 0.7 0.0001
EatF3 0 0 1 0 0 25 2 0.1 0.0001
EatF4 0 0 0 1 0 13 3.6 . 0.0002
EatF5 0 0 0 0 1 19 0.1 . 0.0009
;

end;

The solution is again exactly the same as for the original diet problem, which is an optimal cost
of 29707.2, with food consumption amounts of 24.86 of F2, 49.20 of F4, and 28.75 of F5. Note that
in this case, the objective reported by the solver is −29707.2, because the profit is determined solely
by the food costs.

Total Costs: 29707.2
Total Revenue: 0
Profit: -29707.2
Volume of recipe EatF1: 0
Volume of recipe EatF2: 42.8571
Volume of recipe EatF3: 0
Volume of recipe EatF4: 49.2014
Volume of recipe EatF5: 28.7489
Consumption of raw F1: 0
Consumption of raw F2: 42.8571
Consumption of raw F3: 0
Consumption of raw F4: 49.2014
Consumption of raw F5: 28.7489
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Production of product N1: 2042.99
Production of product N2: 180
Production of product N3: 30
Production of product N4: 0.04

Recall that we mentioned two ways a diet problem can be represented as a production problem.
Now the second of them was implemented, which is the case when food types are the raw materials,
and nutrients are the products. But how could we implement the representation of the first case,
when food types are the products and nutrients are the raw materials?

Surprisingly, this arbitrary recipe model is able to do that as well, just the role of the products and
raw materials must be exchanged. If we understand that, we can see that there is a very high degree
of symmetry in the production problem of arbitrary recipes. There are minimum and maximum
usages, for both the raw materials and the products. The cost of a raw material is the counterpart
of the revenue of a product. If we look at the recipes, we can see that there is no „source-target”
relation between raw materials and products. These two roles are interchangeable. The only slight
difference between raw materials and products that breaks the symmetry is the Initial_Funds
feature which gives an upper limit for the total of raw material costs. The symmetry would be
perfect if Initial_Funds was set to infinity, or if another feature like maximal revenue was also
introduced.

Finally, let us see a new example problem to further demonstrate the capabilities of the arbitrary
recipe model. The starting point for the problem instance is Problem 14 where raw material costs
were introduced, but we do a few modifications.

Problem 18.
Solve Problem 14, the original production problem, where data are exactly the same, but there

are two other options for production.

• P1 and P2 can be produced jointly, with slightly different consumption amounts than separately.
Producing one unit of both products requires 240 units of raw material A (instead of 250 when
done separately), 200 units of raw material B (instead of 205 when done separately), 4400 units
of raw material C (slightly more than 4200 when done separately), and 2 units of raw material
D (exactly as if done separately).

• Similarly, P2 and P3 can also be produced jointly. The costs are 51 units of raw material A
(slightly more than 50 when done separately), 250 units of raw material B (instead of 255 when
done separately), and 5400 units of raw material C (instead of 5500 when done separately),
and 2 units of raw material D (exactly as if done separately).

This problem can be solved by the manipulation of the data section of the original problem.
We have to add two additional recipes to the Recipes set, then two rows to the Recipe_Ratios
parameter to describe these two new recipes. The data section and the results are the following.

data;

set Raws := A B C D;
set Products := P1 P2 P3;
set Recipes := MakeP1 MakeP2 MakeP3 Comp1 Comp2;

param Min_Usage :=
B 21000
D 200
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P2 100
;

param Max_Usage :=
A 23000
B 31000
C 450000
D 200
P3 10
;

param Value :=
A 1
B 0.07
C 0.013
D 8
P1 252
P2 89
P3 139
;

param Recipe_Ratio:
A B C D P1 P2 P3 :=

MakeP1 200 25 3200 1 1 0 0
MakeP2 50 180 1000 1 0 1 0
MakeP3 0 75 4500 1 0 0 1
Comp1 240 200 4400 2 1 1 0
Comp2 51 250 5400 2 0 1 1
;

end;

Total Costs: 30495
Total Revenue: 32460.6
Profit: 1965.62
Volume of recipe MakeP1: 0
Volume of recipe MakeP2: 6.25
Volume of recipe MakeP3: 0
Volume of recipe Comp1: 86.875
Volume of recipe Comp2: 10
Consumption of raw A: 21672.5
Consumption of raw B: 21000
Consumption of raw C: 442500
Consumption of raw D: 200
Production of product P1: 86.875
Production of product P2: 103.125
Production of product P3: 10

Now it turns out that the optimal solution is 1965.62, which is a bit better than the original
1577.45. This is due to the fact that the modification was only the addition of new opportunities
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to the production, so the search space was widened. We can also see that Comp1 and Comp2, which
are the recipes for the joint production methods, are used as an alternative instead of the original
options. There is still a little 6.25 units P2 produced alone, though. The total production is also
slightly different in this solution, with 86.88 units of P1, 103.13 units of P2 and 10 units of P3.

5.7 Order fulfillment
Now, we have a complete model for the production problem of arbitrary recipes, with which we can
easily implement and solve a wide range of problems, including the diet problem. We further extend
the model with a new feature, which has practical importance: orders. These allow to buy and sell
materials in a bulk, which is possibly a more lucrative option but can only be acquired entirely or
ignored at all.

So far in the production problem topic, we only had real-valued variables, therefore the models
were all LP models. Now, we will have integer variables, making the model an MILP model. We must
note that MILP models can be easily implemented, but the solution procedure can be unacceptably
long if there are too many binary variables. The limit on what is considered too many depends on
the model: in some problems we can only have several dozens of integer variables, while sometimes
several hundreds or even thousands will be working. Anyways, this limit is definitely lower than for
the number of ordinary real-valued variables in LP models. Unfortunately in many situations, the
limitations can only slightly be pushed up by choosing stronger equipment, better solver or modeling
techniques, because integer programming is an NP-Complete problem. Nevertheless, using integer
variables is a very powerful modeling tool, which allows a significantly wider range of problems to
be possibly modeled by MILP than those by LP.

We will see an example how a GNU MathProg model can be extended by new features while
maintaining compatibility with old data files. We will see how we can filter in an indexing
expression in GNU MathProg.

An order is a fixed amount of several raw materials that are purchased and/or products which
are sold when ready by the producing party. An order can also either cost money, or gain income
as money, and payment may happen either before or after all the production takes place. The same
order may be served multiple times.

The general problem definition for arbitrary recipes and order fulfillment is the following.

Problem 19.
Solve Problem 17, the production problem with arbitrary recipes, where production goes as usual,

but there are orders we may acquire. Orders are optional but can only be acquired (and subse-
quently fulfilled) completely, not partially. Each order consists of the following.

• A fixed amounts of raw materials and products. If a raw material is in an order, it means that
by acquiring the order, we obtain that raw material in the given amount before production. If
a product is in an order, it means that we deliver it after produced, in the given amount.

• Price of the order. It can either be a gain or a payment. Payment happens either before or
after the production takes place.

• Maximum count. An order can be acquired multiple times, with an upper limit.

Raw materials must either be purchased from the market, as usual, or purchased via acquiring
an order. Leftover raw materials after production took place are lost without compensation.

Products must either be sold on the market, or delivered via an order. The only way of obtaining
products is by producing it. Fulfilling orders is mandatory once acquired.

Minimum and maximum usage limitations still apply as before. Limitations correspond to the
total amounts that are in possession at the same time.
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The total costs include incomes and expenses of those orders for which the payment is due
before production, plus the total costs of raw materials that are purchased from the market in the
ordinary way. The total costs are limited: there is a fixed amount of initial funds which we cannot
exceed.

The total revenue includes incomes and expenses of those orders for which the payment is due
after production, plus the total revenue from selling products at the market in the ordinary way.

Optimize for profit, which is the difference of the total revenue and total costs.

The first observation shall be the point that although there is much description in this prob-
lem definition, if we suppose that there are no orders in the problem, then we get exactly to the
production problem with arbitrary recipes. Let us see why this is true. If there were no orders,
then the only way of getting raw materials is by purchasing from the market, and the only way
to gain revenue is by selling products at the market. Of course, we purchase exactly as many raw
materials as needed, and sell all the products we produced. There is no potential loss of materials,
or alternatives.

For this reason, we expect the new model to be working with data files of the „old” model of
arbitrary recipes. In short, compatibility shall be maintained.

First, let us see how the extra data can be implemented in the model as sets and parameters.

set Orders, default {};

param Order_Material_Flow {o in Orders, m in Materials}, >=0, default 0;
param Order_Cash_Flow {o in Orders}, default 0;
param Order_Count {o in Orders}, >=0, integer, default 1;
param Order_Pay_Before {o in Orders}, binary, default 1;

There is one additional set, Orders. Note that in this case, a default value of {} is used. This
is an empty one-dimensional set in GNU MathProg. By this default value we can ensure that the
original data files will work as they are already written, even if we do not mention the Orders set.

There are four parameters that describe orders.
The first one is Order_Material_Flow. The meaning of this parameter is similar to the meaning

of Recipe_Ratio in the arbitrary recipes implementation. If m is a raw material, then the order
denotes a purchase in the given amount. If m is a product, then the order denotes a delivery. By
default, a material does not appear in an order, which is indicated by zero material flow.

The Order_Cash_Flow parameter denotes the cash flow associated with the order. Note that
this is the only parameter which can be negative. A positive value means a cost that must be paid
for acquiring the order. A negative value means a revenue from the order in cash, if acquired, and
of course, if the production goals are met.

Note that a zero Order_Cash_Flow still has a practical relevance. The other party may only
want to exchange raw materials with products.

On the other hand, there is no point in orders where Order_Material_Flow values are zero for
all materials, because cash flow only occurs once, either before or after production. Nevertheless, it
would be easy to implement cash flows both before and after production, and in this case, orders
with no material flows may represent investments : expenses at present, which give more income in
the future.

Remember that orders can be acquired multiple times, multiplying all the material flows, but
also the prices and revenues. The parameter Order_Count is for denoting how many times and
order can be acquired. We also set this parameter to only take nonnegative integer values by the
>=0 bound and integer keyword. This prevents fractional values to be provided in data sections. If
the value of the Order_Count parameter is 4, for example, then we can completely ignore the order,
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or acquire it 1, 2, 3 or 4 times, multiplying all its effects on cash and material flow. The default
value is 1, which means that the order is either acquired once or not at all.

Finally, the Order_Pay_Before parameter denotes whether cash flow occurs before or after the
production takes place. It is important because the total funds are limited before the production,
but profit is calculated afterwards. We used the binary keyword to denote that this parameter may
only take the values 0 or 1. As a convention, a value of 1 means a true, that is, payment is due
before production, and a 0 means that it occurs after production was done. The default is 1, so
cash flow occurs before production.

Note that both the binary and integer keywords indicate the same value restriction for pa-
rameters and variables.

After defining all our necessary data definitions in our model section, we define decision variables
which express our freedom of choice in the optimization model.

var volume {c in Recipes}, >=0;
var total_costs, <=Initial_Funds;
var total_revenue;
var profit;
var ordcnt {o in Orders}, integer, >=0, <=Order_Count[o];

The volume main variable for recipes, and auxiliary variables total_costs, total_revenue and
profit are left unchanged.

A new ordcnt variable is introduced to denote how many times a given order is acquired. This
is limited by the Order_Count parameter value of each order, but always nonnegative, and most
importantly, it is an integer variable. It must be an integer, because we either fulfill an order (1),
or ignore it (0), but we cannot fulfill an order partly. Therefore ordcnt can take 0 or 1 (and larger
integers), but cannot take fractional values in between.

The ordcnt is the only variable that makes the model an MILP model instead of LP. The
complexity of the model depends on how many orders are there and how many times they may be
acquired.

The usage of the raw materials and products remains to be defined. In the implementation of
the arbitrary recipes, it was easy, one single usage variable was sufficient for all raw materials and
products. But now, the case is a bit more complicated because materials can come from and go to
different sources. Let us collect the possibilities.

A raw material appears in the model in the following roles.

• It can be obtained as an input from the market, as usual.

• It can be obtained as an input by acquiring orders.

• It can be used up by production, as usual.

• There can be leftover amounts of raw materials which are obtained but not used up. These
are wasted.

We might question why it is possible to have leftover raw materials. In the original problem
without the orders, it was impossible. Or, precisely, it was possible in reality, but the model did
not allow it as usage was directly calculated based on production requirements. The reason is that
there was no point in purchasing more raw materials from the market in the beginning than the
amount actually used by production, therefore the amount purchased and consumed was assumed
to be equal.

But in this case, there are orders. It may happen that an order contains a large amount of
raw materials that cannot be used up by production, meanwhile the order is still needed for other
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purposes. The fact that orders can only be acquired in a whole makes it possible to have leftover
materials.

A product appears in the model in the following ways.

• It can only be obtained by production, as usual.

• It can be turned into revenue by selling it at the market, as usual.

• It can be turned into revenue also by delivery, by fulfilling orders.

In contrast with the raw materials, there is no practical relevance of leftovers in case of products.
The reason is that the only way a product can be obtained is by production, which can be freely
scaled and does not have an integer nature as raw materials obtained from orders. Or, for a second
and more obvious reason, there is no point in keeping a product as leftover instead of selling it at
the market.

If we are unsure about the possibilities, it is a good method of modeling to introduce a variable
for every quantity appearing, and then specify their relations through constraints. For both raw
materials and products, there is activity by orders and market, and also by production. However,
only raw materials may have leftovers.

As the problem definition mentioned, usages refer to the total amounts present at the same time.
So it is a good idea to introduce a total usage variable as well, for which the appropriate bounds
can be specified. The remaining usage variables are the following.

var usage_orders {m in Materials}, >=0;
var usage_market {m in Materials}, >=0;
var usage_production {m in Materials}, >=0;
var usage_leftover {r in Raws}, >=0;
var usage_total {m in Materials}, >=Min_Usage[m], <=Max_Usage[m];

The model can surely be implemented with less variable definitions, but it is generally easier to
introduce more variables than needed, implement a correct model, and if we are not satisfied, then
we may think about how the model can be simplified.

Note that all variables are set as nonnegative. This is important, every quantity of materials
must be nonnegative. Otherwise, practically infeasible solutions may be reported.

Now materials balance can be established as constraints. The total amounts of raw materials
used up at production and products produced both can be calculated the same way. For all recipes,
the volume in which it is utilized must be multiplied by the material appearing. Similarly, the
amounts of raw materials obtained and products delivered can also be calculated in a common
way. We have to add the material flow per order, multiplied by the number of times the order is
acquired. These two constraints together means that usage_production and usage_orders are
exactly calculated.

s.t. Material_Balance_Production {m in Materials}: usage_production[m] =
sum {c in Recipes} Recipe_Ratio[c,m] * volume[c];

s.t. Material_Balance_Orders {m in Materials}: usage_orders[m] =
sum {o in Orders} Order_Material_Flow[o,m] * ordcnt[o];

There are a few other usage constraints that must be established. The calculation of the total
usage can be done two ways for both raw materials and products. The total usage of raw materials
equals the total obtained, which comes from orders and from the market. On the other hand, the
total usage of a raw material also equals the amount consumed plus the leftover. Similarly, the
total usage of a product can be determined two different ways that lead to equations. First, all the
products are obtained by production, so these two variables are equal. On the other hand, all the
products are either delivered as an order or sold at the market.
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s.t. Material_Balance_Total_Raws_1 {r in Raws}:
usage_total[r] = usage_orders[r] + usage_market[r];

s.t. Material_Balance_Total_Raws_2 {r in Raws}:
usage_total[r] = usage_production[r] + usage_leftover[r];

s.t. Material_Balance_Total_Products_1 {p in Products}:
usage_total[p] = usage_production[p];

s.t. Material_Balance_Total_Products_2 {p in Products}:
usage_total[p] = usage_orders[p] + usage_market[p];

We can analyze whether the constraints are correct.
As mentioned, usage_production and usage_orders are calculated based on other variables

of the model (recipes and orders). The total usage calculation is different for raw materials and
products.

The equation Material_Balance_Total_Raws_1 expresses that the total amount must be at
least the amount obtained by orders. This is true because usage_market is a nonnegative variable.
Therefore the total amount is first coming from orders, and then we may additionally purchase from
the market. Note that usage_orders is a calculated auxiliary variable, but usage_market is „free”.

The equation Material_Balance_Total_Raws_2 describes that whichever total amount we ob-
tained by orders and market, it must be used up by production or it is a leftover. The amount for
production is calculated, but the leftover amount „can be selected freely” to match the total amount
obtained. Again, it is very important that all these variables are nonnegative, for which reason
neither the amount used at production nor the amount of leftovers can exceed the total.

The two equations for the products are a bit easier.
Constraint Material_Balance_Total_Products_1 expresses that the total available amount is

the production. This effectively makes usage_total itself a calculated auxiliary variable. Then,
Material_Balance_Total_Products_2 ensures that this total must be at least the amount that is
delivered, and anything that remains can be sent to the market. Again, ensured by the nonnegativity
bounds. Note that usage_leftover is a value that we do not care about. It still plays an important
role in the model solely because it must be nonnegative. Also, if the problem definition would
change, for example to limit, penalize or give a refund for leftover raw materials, it would be easy
to implement such a modification because the leftover amount is already represented in a variable.

Remember that it is possible to implement this model with fewer variables and material balance
constraints, even at first, but would require some expertise.

There is another set of constraints left, which is the calculation of the total costs, revenue and
profit, as for the original model. However, in this case, it is a bit more complicated because orders
contribute to costs and revenue.

s.t. Total_Costs_Calc: total_costs =
sum {r in Raws} Value[r] * usage_market[r] +
sum {o in Orders: Order_Pay_Before[o]} Order_Cash_Flow[o] * ordcnt[o];

s.t. Total_Revenue_Calc: total_revenue =
sum {p in Products} Value[p] * usage_market[p] -
sum {o in Orders: !Order_Pay_Before[o]} Order_Cash_Flow[o] * ordcnt[o];

s.t. Profit_Calc: profit = total_revenue - total_costs;

The total value marketed is a cost for raw materials, and a revenue for products. However, we
must add cash flow from orders. For good reason, we did not model orders with cash gain and
payment as different, but simply the sign of the Order_Cash_Flow shows us whether it has a cost,
or it pays. But there is one thing which cannot be modeled by signs: the timing of cash flow.

• If payment occurs before production (denoted by the Order_Pay_Before parameter being 1),
then the cash flow amount must be added to the total costs.
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• If payment occurs after production (denoted by the Order_Pay_Before parameter being 0),
then the cash flow amount must be added to the total revenue. Note that raw material costs
paid after the production are treated as negative revenues instead of costs.

It does not matter whether we gain or pay with an order. If an order is an expense before
production, we simply add the positive value of Order_Cash_Flow to the total costs. If we have
an income before production, then this amount must be subtracted from the total costs, because
this increases our initial funds that can be spent for other purposes before production. For this
reason, the meaning of the variable total_costs slightly changes. It does not represent the actual
total costs anymore, but the total balance of incomes and expenses before production. But because
Order_Cash_Flow is negative for incomes and positive for expenses, we simply add its value to the
total, in both cases.

Similarly, cash flow by an order after production can either be an income or an expense. If it
is an income, it must be added, if it is an expense, it must be subtracted from the total revenue.
Because of the sign of Order_Cash_Flow, we have to subtract this value in both cases.

Finally, let us see how the selective addition is solved in GNU MathProg. The problem is
that not all orders must be added to either the costs or the revenue, but only their subset (where
Order_Pay_Before) has the appropriate value). Therefore, a condition is included into the indexing
expression of the sum. This is called filtering. It means that instead of iterating over the full index
set, only those of them are taken into account for which a given logical expression evaluates true.

sum {o in Orders: Order_Pay_Before[o]} Order_Cash_Flow[o] * ordcnt[o];

Here the original index set is the set of o orders from the Orders set. The logical expression
must appear after all the indices. Now this expression is Order_Pay_Before[o] which evaluates to
a number, either 0 or 1, and 1 is the true value. The opposite is done for the revenues where those
orders are taken into account where !Order_Pay_Before[o] is true, therefore it must be 0.

sum {o in Orders: !Order_Pay_Before[o]} Order_Cash_Flow[o] * ordcnt[o]

In an indexing expression, even though there can be multiple indices, only one filtering logical
expression is allowed, after all indices are listed, following a colon. We can have more or complex
filters by logical operator like &&, || or !, these also have more readable aliases and, or and not.
There are other operators as well. The criteria is that the expression must evaluate to a constant
numeric value. For instance, the filtering expression can only refer to variables after the solve
statement where variables are determined.

Filtering, as could be guessed, can be used on all indexing expressions. Examples other than the
sum just so far included param, set, var, s.t., for and check (there are more statements that can
be indexed). The meaning is always the same, the index set is restricted according to the logical
expression.

Note that it is valid in GNU MathProg for an indexing expression to be evaluated over an empty
set, for example if the logical condition excludes all the indices. In this case, the expression which is
indexed is treated similarly as if it was not present in its context at all. For example, a sum over an
empty set evaluates to zero, or a s.t. statement over an empty set does not define any constraint.

Finally, the objective of the model is the profit, and we are ready. In the post-processing work,
we can print out some of the values to overview the result. The ultimate model section, for the
production problem with arbitrary recipes and orders, is the following.

set Raws;
set Products;
set Recipes;
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set Orders, default {};

check card(Raws inter Products) == 0;
set Materials := Products union Raws;

param Min_Usage {m in Materials}, >=0, default 0;
param Max_Usage {m in Materials}, >=Min_Usage[m], default 1e100;
param Value {m in Materials}, >=0, default 0;
param Recipe_Ratio {c in Recipes, m in Materials}, >=0, default 0;
param Initial_Funds, >=0, default 1e100;
param Order_Material_Flow {o in Orders, m in Materials}, >=0, default 0;
param Order_Cash_Flow {o in Orders}, default 0;
param Order_Count {o in Orders}, >=0, integer, default 1;
param Order_Pay_Before {o in Orders}, binary, default 1;

var volume {c in Recipes}, >=0;
var total_costs, <=Initial_Funds;
var total_revenue;
var profit;
var ordcnt {o in Orders}, integer, >=0, <=Order_Count[o];
var usage_orders {m in Materials}, >=0;
var usage_market {m in Materials}, >=0;
var usage_production {m in Materials}, >=0;
var usage_leftover {r in Raws}, >=0;
var usage_total {m in Materials}, >=Min_Usage[m], <=Max_Usage[m];

s.t. Material_Balance_Production {m in Materials}: usage_production[m] =
sum {c in Recipes} Recipe_Ratio[c,m] * volume[c];

s.t. Material_Balance_Orders {m in Materials}: usage_orders[m] =
sum {o in Orders} Order_Material_Flow[o,m] * ordcnt[o];

s.t. Material_Balance_Total_Raws_1 {r in Raws}:
usage_total[r] = usage_orders[r] + usage_market[r];

s.t. Material_Balance_Total_Raws_2 {r in Raws}:
usage_total[r] = usage_production[r] + usage_leftover[r];

s.t. Material_Balance_Total_Products_1 {p in Products}:
usage_total[p] = usage_production[p];

s.t. Material_Balance_Total_Products_2 {p in Products}:
usage_total[p] = usage_orders[p] + usage_market[p];

s.t. Total_Costs_Calc: total_costs =
sum {r in Raws} Value[r] * usage_market[r] +
sum {o in Orders: Order_Pay_Before[o]} Order_Cash_Flow[o] * ordcnt[o];

s.t. Total_Revenue_Calc: total_revenue =
sum {p in Products} Value[p] * usage_market[p] -
sum {o in Orders: !Order_Pay_Before[o]} Order_Cash_Flow[o] * ordcnt[o];

s.t. Profit_Calc: profit = total_revenue - total_costs;

maximize Profit: profit;

solve;
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printf "Total Costs: %g\n", total_costs;
printf "Total Revenue: %g\n", total_revenue;
printf "Profit: %g\n", profit;

for {o in Orders}
{

printf "Acquiring order %s: %dx\n", o, ordcnt[o];
}
for {c in Recipes}
{

printf "Volume of recipe %s: %g\n", c, volume[c];
}
printf "Raw materials (orders + market -> production + leftover):\n";
for {r in Raws}
{

printf "Consumption of raw %s: %g + %g -> %g + %g (total: %g)\n",
r, usage_orders[r], usage_market[r], usage_production[r],
usage_leftover[r], usage_total[r];

}
printf "Products (production -> orders + market):\n";
for {p in Products}
{

printf "Production of product %s: %g -> %g + %g (total: %g)\n",
p, usage_production[p], usage_orders[p],
usage_market[p], usage_total[p];

}

end;

Remember that the order of constraints which is presented here is only important for us to
understand what the model does. The order of constraints and variables does not affect the model
itself and its solutions (although it might possibly affect the solution algorithm, but definitely not
the final answer). On the other hand, it is useful to establish some logical order of the variables
and/or constraints, to understand the model we implement. For example, a logical order can be the
following which explains the model code.

1. We decide how many times each order is acquired (variable ordcnt).

2. Then, we calculate the amount obtained or delivered as part of orders (variable usage_order),
based on our former decisions on ordcnt.

3. We decide how much production we want to perform (variable volume).

4. Then, we calculate the amount of raw materials and products present in the production process
(variable usage_production), based on our former decisions on volume.

5. We adjust the amounts of raw materials purchased and products sold at the market (variable
usage_market) and then calculate the total amounts (variable usage_total) so that there is
enough raw material, and all products are sold, based on our former decisions on production,
orders, and market activity.

6. Then, we calculate the leftover amount of raw materials (variable usage_leftover) based on
decisions of other usages.
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7. Finally, we calculate the total costs, the total revenue, and the objective function, which is
the profit. Their values are based on former decisions.

Meanwhile, if one of the appearing quantities are limited (like usage, or order count), then a
corresponding constraint or bound must be formulated.

The optimization procedure is making these decisions to maximize the profit obtained at the
final step. But for the technical, solution algorithmic point of view, the above logical order does
not matter, statements in GNU MathProg can be defined in any order, provided that each time we
refer to a model object, then its definition is before that reference.

Now try the model with some valid data. The first example is the problem instance introduced
to demonstrate raw material costs, Problem 14. This was solved before.

data;

set Raws := A B C D;
set Products := P1 P2 P3;
set Recipes := MakeP1 MakeP2 MakeP3;

param Min_Usage :=
B 21000
D 200
P2 100
;

param Max_Usage :=
A 23000
B 31000
C 450000
D 200
P3 10
;

param Value :=
A 1
B 0.07
C 0.013
D 8
P1 252
P2 89
P3 139
;

param Recipe_Ratio:
A B C D P1 P2 P3 :=

MakeP1 200 25 3200 1 1 0 0
MakeP2 50 180 1000 1 0 1 0
MakeP3 0 75 4500 1 0 0 1
;

end;

The optimal solution is the same as for the original model for arbitrary recipes, 25.48 units of
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P1, 164.52 units of P2 and 10 units of P3, yielding a profit of 1577.45. What is important here is
that the data section is exactly the same as for the original model. The extension with orders also
works if no orders are defined. However, the output is different because the post-processing work
changed.

Total Costs: 20876.4
Total Revenue: 22453.9
Profit: 1577.45
Volume of recipe MakeP1: 25.4839
Volume of recipe MakeP2: 164.516
Volume of recipe MakeP3: 10
Raw materials (orders + market -> production + leftover):
Consumption of raw A: 0 + 13322.6 -> 13322.6 + 0 (total: 13322.6)
Consumption of raw B: 0 + 31000 -> 31000 + 0 (total: 31000)
Consumption of raw C: 0 + 291065 -> 291065 + 0 (total: 291065)
Consumption of raw D: 0 + 200 -> 200 + 0 (total: 200)
Products (production -> orders + market):
Production of product P1: 25.4839 -> 0 + 25.4839 (total: 25.4839)
Production of product P2: 164.516 -> 0 + 164.516 (total: 164.516)
Production of product P3: 10 -> 0 + 10 (total: 10)

A second example, still without orders, is Problem 18, where arbitrary recipes were introduced.
In this data section we also included the newly introduced parameters and sets, with empty values.
This is valid, as the Orders set is explicitly set to empty. So that all the other parameters have an
empty index set. They need not be present in the data section, but it is not a mistake to make it
so. At least it reminds us that the data file may provide additional parameters.

data;

set Raws := A B C D;
set Products := P1 P2 P3;
set Recipes := MakeP1 MakeP2 MakeP3 Comp1 Comp2;

param Min_Usage :=
B 21000
D 200
P2 100
;

param Max_Usage :=
A 23000
B 31000
C 450000
D 200
P3 10
;

param Value :=
A 1
B 0.07
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C 0.013
D 8
P1 252
P2 89
P3 139
;

param Recipe_Ratio:
A B C D P1 P2 P3 :=

MakeP1 200 25 3200 1 1 0 0
MakeP2 50 180 1000 1 0 1 0
MakeP3 0 75 4500 1 0 0 1
Comp1 240 200 4400 2 1 1 0
Comp2 51 250 5400 2 0 1 1
;

param Initial_Funds :=;

set Orders :=;
param Order_Material_Flow :=;
param Order_Cash_Flow :=;
param Order_Count :=;
param Order_Pay_Before :=;

end;

The solution is again the same as before, an optimal profit of 1965.62, with 86.88 units of P1,
103.13 units of P2 and 10 units of P3 produced, using the joint production options Comp1 and Comp2.

Total Costs: 30495
Total Revenue: 32460.6
Profit: 1965.63
Volume of recipe MakeP1: 0
Volume of recipe MakeP2: 6.25
Volume of recipe MakeP3: 0
Volume of recipe Comp1: 86.875
Volume of recipe Comp2: 10
Raw materials (orders + market -> production + leftover):
Consumption of raw A: 0 + 21672.5 -> 21672.5 + 0 (total: 21672.5)
Consumption of raw B: 0 + 21000 -> 21000 + 0 (total: 21000)
Consumption of raw C: 0 + 442500 -> 442500 + 0 (total: 442500)
Consumption of raw D: 0 + 200 -> 200 + 0 (total: 200)
Products (production -> orders + market):
Production of product P1: 86.875 -> 0 + 86.875 (total: 86.875)
Production of product P2: 103.125 -> 0 + 103.125 (total: 103.125)
Production of product P3: 10 -> 0 + 10 (total: 10)

And finally let us see a new problem, with orders introduced. The starting point is the previous
problem.

Problem 20.
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Solve Problem 18, a production problem example with arbitrary recipes, with the following mod-
ifications.

• Maximum usages for raw materials are reset. Instead of 23000 units of A, 31000 units of B and
450000 units of C and 200 units of D, the new max usage limits are 50000 units of A, 120000
units of B, 1000000 units of C and 1500 units of D.

• Initial funds are capped at 35000.

• There are three available orders with the following properties.

Ord1 Ord2 Ord3
payment before no no yes

expense 10000 10000 −
income − − 500

maximum count 10 10 30
obtain A 20000 15000 190
obtain B 10000 10000 20
obtain C 300000 400000 3000
obtain D 500 500 −

deliver P1 40 45 1
deliver P2 80 70 −
deliver P3 − 6 −

The data section implementation and the solution output are the following.

data;

set Raws := A B C D;
set Products := P1 P2 P3;
set Recipes := MakeP1 MakeP2 MakeP3 Comp1 Comp2;

param Min_Usage :=
B 21000
D 200
P2 100
;

param Max_Usage :=
A 50000
B 120000
C 1000000
D 1500
P3 10
;

param Value :=
A 1
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B 0.07
C 0.013
D 8
P1 252
P2 89
P3 139
;

param Recipe_Ratio:
A B C D P1 P2 P3 :=

MakeP1 200 25 3200 1 1 0 0
MakeP2 50 180 1000 1 0 1 0
MakeP3 0 75 4500 1 0 0 1
Comp1 240 200 4400 2 1 1 0
Comp2 51 250 5400 2 0 1 1
;

param Initial_Funds := 35000;

set Orders := Ord1 Ord2 Ord3;
param Order_Material_Flow:

A B C D P1 P2 P3 :=
Ord1 20000 10000 300000 500 40 80 0
Ord2 15000 10000 400000 500 45 70 6
Ord3 190 20 3000 0 1 0 0
;

param Order_Cash_Flow := # negative means income
Ord1 10000
Ord2 10000
Ord3 -500
;

param Order_Count :=
Ord1 10
Ord2 10
Ord3 30
;

param Order_Pay_Before :=
Ord1 0
Ord2 0
Ord3 1
;

end;

Total Costs: 26497.3
Total Revenue: 47202.7
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Profit: 20705.4
Acquiring order Ord1: 1x
Acquiring order Ord2: 0x
Acquiring order Ord3: 30x
Volume of recipe MakeP1: 0
Volume of recipe MakeP2: 553.716
Volume of recipe MakeP3: 0
Volume of recipe Comp1: 89.1554
Volume of recipe Comp2: 10
Raw materials (orders + market -> production + leftover):
Consumption of raw A: 25700 + 23893.1 -> 49593.1 + 0 (total: 49593.1)
Consumption of raw B: 10600 + 109400 -> 120000 + 0 (total: 120000)
Consumption of raw C: 390000 + 610000 -> 1e+06 + 0 (total: 1e+06)
Consumption of raw D: 500 + 252.027 -> 752.027 + 0 (total: 752.027)
Products (production -> orders + market):
Production of product P1: 89.1554 -> 70 + 19.1554 (total: 89.1554)
Production of product P2: 652.872 -> 80 + 572.872 (total: 652.872)
Production of product P3: 10 -> 0 + 10 (total: 10)

As there are much larger maximum usages for raw materials, and production is generally prof-
itable, the extra capacities mean a significant increase in the objective. Also, there are orders used.
We can see that the optimal profit is 20705.4, with 89.16 units of P1, 553.72 units of P2, and 10
units of P3 produced altogether. We acquire Ord1 once, and Ord3 30 times, which is the maximum
available. Actually Ord3 is a lucrative way to produce and deliver product P1. There are significant
amounts obtained by orders for each raw material, and there are also purchased from the market.
For this reason, there are no leftovers after production. Some of the products are delivered, but in
all three products there are also amounts sold on the market.

Let us make an experiment with the integer nature of this model. As mentioned before, this
is an MILP model because of the order acquiring decisions, which can only be modeled by integer
variables. However, there is a built-in --nomip option for glpsol to relax all integer variables.
By relaxing we mean variables are not forced to be integers, just to be between their defined lower
and upper bounds, if any. By relaxing all integer variables of an MILP model, we obtain its LP
relaxation.

glpsol -m model.mod -d data.dat --nomip

If this option is used, the model is now treated as an LP. This can be solved much faster, but
integer variables are allowed to attain fractional values. If this happens, the solution is infeasible in
reality. Using the option in the aforementioned problem instance, the following result is reported.

Total Costs: 12163
Total Revenue: 33560
Profit: 21397
Acquiring order Ord1: 1x
Acquiring order Ord2: 0x
Acquiring order Ord3: 30x
Volume of recipe MakeP1: 0
Volume of recipe MakeP2: 550
Volume of recipe MakeP3: 0
Volume of recipe Comp1: 90
Volume of recipe Comp2: 10
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Raw materials (orders + market -> production + leftover):
Consumption of raw A: 35700 + 13910 -> 49610 + 0 (total: 49610)
Consumption of raw B: 15600 + 103900 -> 119500 + 0 (total: 119500)
Consumption of raw C: 540000 + 460000 -> 1e+06 + 0 (total: 1e+06)
Consumption of raw D: 750 + 0 -> 750 + 0 (total: 750)
Products (production -> orders + market):
Production of product P1: 90 -> 90 + 0 (total: 90)
Production of product P2: 650 -> 120 + 530 (total: 650)
Production of product P3: 10 -> 0 + 10 (total: 10)

What we can see is that the optimal solution of the LP relaxation is 21397, which is better
than for the MILP, 20705.4. This is natural, because the LP relaxation has a wider search space,
including all the solutions of the MILP and possibly others where integer variables take fractional
values. The LP relaxation has a practical importance not in the modeling, but the algorithmic
solution point of view. It is usually fast to solve the LP relaxation of an MILP, and if done, its
optimal solution is guaranteed to be a bound for the optimal solution of the MILP itself. This is
useful information as the MILP itself was hard to impossible to be solved to global optimality. But
any times, the actual optimal solution lies between the currently found best solution and a bound.
The LP relaxation is a suitable bound.

If we closely investigate the solution for the LP relaxation, it surprisingly seems „more integer”
than that of the MILP. However, because the objectives are different, we can be certain that some
integer variable has a fractional value. Actually, there are partially acquired orders, Ord1 is acquired
1.5 times. We can deduce this fact by looking at the material amounts related to orders. The reason
it was not reported is simply that order count was printed by the %d format specifier, which rounds
the fractional value before printing it out as an integer. Therefore the post-processing work is not
precise if the integer variables are relaxed. Alternatively %f or %g could be used.

5.8 Production problem – Summary
We started from the simplest case of production problems: where only available amounts of raw
materials are given, and we have to decide production composition to achieve the highest revenue.
We demonstrated how this problem may include upper and lower limits on production and con-
sumption, how to optimize by a different objective if needed, and how we can take raw material
costs into consideration.

The diet problem is where optimal amount of certain food types shall be determined to satisfy
nutrition requirements. This, seemingly quite different problem resulted in a very similar implemen-
tation as the production problem. The two can actually be interpreted as special cases of a more
general production problem where recipes may consist of multiple raw materials and products at
the same time.

Finally, the concept of orders was introduced in the ultimate model of the chapter, which gives
it an integer nature, as we can acquire and fulfill orders only fully or not at all, but not partially.
This extension gives the raw material supply and final product demand side new possibilities, and
our problem is still linear. Additional data files are easily implemented if needed, from the basic to
the more complex problems at the same time, and can be solved with the same single model file.
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Chapter 6

Transportation problem

Another common optimization problem, the so-called transportation problem is presented.
Given some supply points with known resource availability, and demand points with known resource
requirement, the goal is to arrange transportation of the resource between supplies and demands.

Note that this problem also has very fast algorithmic solution techniques [15]. Again, we are
interested in the modeling techniques instead. As we will see, an LP/MILP formulation can easily
be adapted if the problem definition changes. This can be substantially more difficult for solution
algorithms.

Some additional capabilities of GNU MathProg are presented here. The aim of this chapter is to
show how different cost functions can be handled while remaining in the class of LP and sometimes
MILP models. Finally, an additional level of transportation is added to the problem definition to
show an example of how separately modeled parts of a system can be incorporated into a single
model.

6.1 Basic transportation problem
The basic transportation problem, in general, can be described as follows.

Problem 21.
Given a single material, a set of supply points, and a set of demand points. Each supply

point has a nonnegative availability, and each demand point has a nonnegative requirement for the
material. The material can be transported from supply point to any demand point, in any amounts.
The unit cost for transportation is known for each such pair. Find the transportation amounts so
that the following holds:

• Available amounts at supply points are not exceeded.

• Required amounts at demand nodes are satisfied.

• The total transportation cost is minimal.

For the sake of simplicity, supply points and demand points are simply called supplies and
demands. Note that the term material can be replaced by any other resource as well (e.g. electricity,
water, funds, manpower).

The network of supplies and demands can be described by a directed graph (see Figure 1),
where nodes represent the supplies and demands, and arcs represent connections in between. The
direction of an arc represents the direction of material flow, which is always from supply to demand.
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Figure 1: Graph representing the original transportation problem.

As in case of the production problem, we provide an example for the transportation problem.
The following problem data will be used throughout this chapter.

Problem 22.
There are four supplies named S1 to S4 and six demands named D1 to D6. The amount of

available materials at each supply, required materials at each demand, and unit transportation costs
between each pair of a supply and a demand, are all summarized in the following table.

D1 D2 D3 D4 D5 D6 Available
S1 5 10 3 9 5 12 100
S2 1 2 6 1 2 6 250
S3 6 5 1 6 4 8 190
S4 9 10 6 8 9 7 210

Required 120 140 170 90 110 120

(Numbers in the last row and column refer to material amounts, elsewhere numbers refer to costs
per amount of material transported.)

Transport materials from the supplies to the demands to satisfy requirements at minimal cost.

As discussed in Section 5.6, the first task when considering mathematical programming is to find
suitable decision variables. However, in GNU MathProg, we can start with the implementation of
parameters and sets for problem data.

In this problem, there are two sets of arbitrary size each: the set of supplies and the set of
demands. There are three kinds of numeric parameters determining the transportation problem,
namely the following.
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• The availability, provided for each supply.

• The requirement, provided for each demand.

• The unit transportation cost, provided for each pair of a supply and a demand.

Therefore the implementation can be the following. Note that all parameters are indicated as
nonnegative to prevent wrong data to be provided. The names of the sets and parameters are
self-explanatory.

set Supplies;
set Demands;
param Available {s in Supplies}, >=0;
param Required {d in Demands}, >=0;
param Cost {s in Supplies, D in Demands}, >=0;

The decisions to be made in a transportation problem are the exact transportation amounts. This
amount shall be decided for each pair of a supply and a demand, and these decisions are independent.
For example, the problem mentioned has 4 supplies and 6 demands, therefore 24 individual decisions
shall be made about transported amounts between supplies and demands. Each of these decisions
corresponds to a single variable in the model. With indexing, this can be expressed in a single var
statement. The name of the variable is tran.

var tran {s in Supplies, D in Demands}, >=0;

Transportation amounts are nonnegative. A negative transportation amount could model a
transportation in backwards direction (i.e. from a demand to a supply). This may be justified in
some practical applications, but definitely prohibited here.

We can see that the transportation amounts describe the situation fully. Based on them, we
can easily calculate total activity at each supply and demand node, whether available and required
amounts are not violated, and also calculate the costs. Therefore no more decision variables are
needed.

Now the constraints in the model are formulated. Of course, not all possible nonnegative real
values of the transportation amounts result in a feasible solution in reality, because there are two
kinds of restrictions that must be taken into account. First, the total amount transported from a
supply cannot exceed the availability at that supply. This is a constraint for each supply. Note that
the summation goes through all demands, as there can be transportation to all demands from a
particular supply.

s.t. Availability_at_Supply_Points {s in Supplies}:
sum {d in Demands} tran[s,d] <= Available[s];

Similarly, the total amount transported to a demand cannot be less than the requirement at that
demand. This constraint is for each demand, and the summation now goes through all supplies, as
there can be transportation from all supplies to a particular demand.

s.t. Requirement_at_Demand_Points {d in Demands}:
sum {s in Supplies} tran[s,d] >= Required[d];

The objective is the total cost. Each transportation amount must be multiplied by the unit cost
on that particular connection, then summed over all connections between supplies and demands.

92



6.1. BASIC TRANSPORTATION PROBLEM TRANSPORTATION PROBLEM

minimize Total_Costs:
sum {s in Supplies, d in Demands} tran[s,d] * Cost[s,d];

At this point, let us think a bit about whether the problem has a solution at all. Two quantities
are of special interest: the total amount of available supply, denote it by S, and the total amount
of required demand, denote it by D. There are three cases.

• If S < D, then the problem is infeasible, as there is simply not enough supply anywhere to fit
all demands.

• If S = D, then the problem is feasible, but all supply must be used up, and each demand shall
get exactly the required amount, no more.

• If S > D, then there can (and will) be leftover material at supplies, or exceeding deliveries at
demands, or both.

Without solving the model, we can check problem data whether the problem is feasible. This
check statement is ideally positioned after the parameters but before variable and constraint def-
initions. This check is useful, because we get a dedicated error message referring to this check
statement if a problem is infeasible.

check sum {s in Supplies} Available[s] >= sum {d in Demands} Required[d];

Note that in our model formulation, we allow both leftover materials at supplies, or exceeding
deliveries at demands. If these were not allowed, the corresponding two constraints should be equa-
tions instead. Note that if transporting costs are positive, then there is no benefit in transporting
over the demand, so that case is eliminated by optimization anyways.

In some formulations of the transportation problem, S = D is assumed. Note that in a problem
with S > D we can introduce a dummy demand with requirement S −D, and zero transporta-
tion costs from all supplies. The meaning of the dummy demand is that leftover amounts are all
transported here. Therefore this new problem is equivalent to the original one, but has equal total
supplies and demands. In conclusion, the case S > D is essentially not more general than S = D.

The model description for Problem 21, the transportation problem, is ready. The model section
can be appended with printf statements to show the result once found. Note that we only show
transportation amounts that are nonzero. The full model section is the following.

set Supplies;
set Demands;
param Available {s in Supplies}, >=0;
param Required {d in Demands}, >=0;
param Cost {s in Supplies, D in Demands}, >=0;

check sum {s in Supplies} Available[s] >= sum {d in Demands} Required[d];

var tran {s in Supplies, D in Demands}, >=0;

s.t. Availability_at_Supply_Points {s in Supplies}:
sum {d in Demands} tran[s,d] <= Available[s];

s.t. Requirement_at_Demand_Points {d in Demands}:
sum {s in Supplies} tran[s,d] >= Required[d];

minimize Total_Costs:

93



6.1. BASIC TRANSPORTATION PROBLEM TRANSPORTATION PROBLEM

sum {s in Supplies, d in Demands} tran[s,d] * Cost[s,d];

solve;

printf "Optimal cost: %g.\n", Total_Costs;
for {s in Supplies, d in Demands: tran[s,d] > 0}
{

printf "From %s to %s, transport %g amount for %g (unit cost: %g).\n",
s, d, tran[s,d], tran[s,d] * Cost[s,d], Cost[s,d];

}

end;

For sake of completeness, we also show the data section corresponding to Problem 22.

data;

set Supplies := S1 S2 S3 S4;
set Demands := D1 D2 D3 D4 D5 D6;

param Available :=
S1 100
S2 250
S3 190
S4 210
;

param Required :=
D1 120
D2 140
D3 170
D4 90
D5 110
D6 120
;

param Cost:
D1 D2 D3 D4 D5 D6 :=

S1 5 10 3 9 5 12
S2 1 2 6 1 2 6
S3 6 5 1 6 4 8
S4 9 10 6 8 9 7
;

end;

Solving the problem with glpsol gives the following result.

Optimal cost: 2700.
From S1 to D1, transport 10 amount for 50 (unit cost: 5).
From S1 to D5, transport 90 amount for 450 (unit cost: 5).
From S2 to D1, transport 110 amount for 110 (unit cost: 1).
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From S2 to D2, transport 140 amount for 280 (unit cost: 2).
From S3 to D3, transport 170 amount for 170 (unit cost: 1).
From S3 to D5, transport 20 amount for 80 (unit cost: 4).
From S4 to D4, transport 90 amount for 720 (unit cost: 8).
From S4 to D6, transport 120 amount for 840 (unit cost: 7).

The result of the transportation problem can be fit into the original data table, by substituting
the unit costs with the decided transportation amounts. Zero amounts can be omitted at all.

D1 D2 D3 D4 D5 D6 Available
S1 10 90 100
S2 110 140 250
S3 170 20 190
S4 90 120 210

Required 120 140 170 90 110 120

This representation better explains the elements of the model. Decisions are represented by inner
cells, while constraints are represented by the rightmost column and bottom row. Each constraint
for a supply expresses that the sum in that row must be at most the number on the right. Each
constraint for a demand expresses that the sum in that column is at least the number at the
bottom. Since total supplies and demands are equal, these can only be true if all constraints hold
as an equation. This is exactly the case throughout the table.

Investigating the results, we can see that the optimal solution tries to use the cheapest unit costs
wherever possible, but not always. For example, S4 to D4 is chosen, despite not being the cheapest
method, neither from supply S4, nor to demand D4, but proven to be a good choice because the rest
of the transportation can be done cheaper. Note that with this single run of the model, we cannot
be sure that this is the only optimal solution.

There are plenty of other examples for the transportation problem publicly available, see for
example [16].

6.2 Connections as index set
Based on the complete solution presented in Section 6.1, we now enhance the implementation a
bit. As mentioned before, in GNU MathProg we can introduce additional parameters and sets in
order to simplify model formulation. These can either be defined on spot, read from a separate data
section outside the model, or allowing both as a default value.

Observe that the indexing expression s in Supplies, d in Demands appears in four different
contexts:

• In the Cost parameter, as it is defined for all such pairs.

• In the tran variable, as it is defined for all such pairs.

• In the objective, as it is a sum over all such pairs.

• In the post-processing work, because transport amounts are printed for all such pairs. Note
that in this case, there is a filter that only allows nonzero amounts to be reported.

It would be fatal to make a mistake in this indexing, for example, if we exchanged the order of
Supplies and Demands, resulting in a modeling error. To avoid such errors and decrease redundancy
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in the model formulation a bit, we can introduce a two-dimensional set of these pairs to be used
later. Each supply and each demand are said to be in a connection. Therefore, the transportation
problem involves the decision of transportation amounts for each connection. The set Connections
can be introduced in the following way.

set Connections := setof {s in Supplies, d in Demands} (s,d);

A new GNU MathProg operator setof is used here. This is a general way of defining sets based
on data previously defined in the model section. The setof operator is followed by an indexing
expression, then by a simple expression. The resulting set is formed by the expression at the back
evaluated for all possible indices in the indexing expression. It is similar to sum, but rather to adding
elements up, a set of them is formed. Note that the indexing expression in setof can be filtered,
which gives us a fine control over the set to be defined. As the result is a set, duplicates are removed,
and the result can also be empty if everything is filtered out, but these are not the cases here.

In fact, this usage of setof is rather simple, just all possible pairs formed by two sets are
collected. The set Connections is a Cartesian product of sets Supplies and Demands. There is
another built-in operator called cross for Cartesian product of two sets, which allows a simpler
definition of the set Connections as follows. Either definition can be used, they are equivalent.

set Connections := Supplies cross Demands;

The dimension of sets Supplies and Demands is 1 because they contain simple elements,
whereas the dimension of Connections is 2, because it contains pairs. There can be as many
as 20 dimensions in a set in GNU MathProg. If the set contains n-tuples, then its dimension is n.
Sets with different dimensions cannot be mixed together with set operations like union, inter or
diff. Even a one-dimensional empty set is considered different from a two-dimensional empty set.

The dimension of a set determines how it can be used in indexing expressions. One-dimensional
sets are indexed by a single introduced symbol, like s in Supplies or d in Demands. However,
two- (and more) dimensional sets are indexed by a tuple element, like (s,d) in Connections. In
general, an indexing expression may contain many sets with different dimensions, each of which
introducing one or more new index symbol that can be referred to.

In short, everywhere instead of s in Supplies, d in Demands in an indexing expression, we
can write (s,d) in Connections as follows.

set Supplies;
set Demands;
param Available {s in Supplies}, >=0;
param Required {d in Demands}, >=0;
set Connections := Supplies cross Demands;
param Cost {(s,d) in Connections}, >=0;

check sum {s in Supplies} Available[s] >= sum {d in Demands} Required[d];

var tran {(s,d) in Connections}, >=0;

s.t. Availability_at_Supply_Points {s in Supplies}:
sum {d in Demands} tran[s,d] <= Available[s];

s.t. Requirement_at_Demand_Points {d in Demands}:
sum {s in Supplies} tran[s,d] >= Required[d];
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minimize Total_Costs:
sum {(s,d) in Connections} tran[s,d] * Cost[s,d];

solve;

printf "Optimal cost: %g.\n", Total_Costs;
for {(s,d) in Connections: tran[s,d] > 0}
{

printf "From %s to %s, transport %g amount for %g (unit cost: %g).\n",
s, d, tran[s,d], tran[s,d] * Cost[s,d], Cost[s,d];

}

end;

The resulting new model file is equivalent to the original one, therefore solving the same data
file describing Problem 22 shall yield the same result.

To illustrate how it can be useful to introduce an index set like Connections explicitly in the
model, consider the following new problem.

Problem 23.
Solve Problem 22, the original example transportation problem, with one modification: only those

connections are allowed for transportation whose unit costs are not greater than 7.

We introduce a parameter to denote the unit cost limit.

param Max_Unit_Cost, default 7;

Note that by providing a default value of 7 instead of setting the parameter equal to 7, we allow
the possibility to alter Max_Unit_Cost by providing a value in the data section, if we ever want to
choose another limit.

One possible solution is to express a new constraint that explicitly finds each prohibited connec-
tion and sets the transported amount there to zero, effectively excluding the connection from the
model.

s.t. Connections_Prohibited
{s in Supplies, d in Demands: Cost[s,d] > Max_Unit_Cost}: tran[s,d] = 0;

However, in this case we use many variables in the model just to fix them at zero. It is possible
not to include those variables in the model formulation at all, and this can be done by introducing
a filter at the setof expression defining the Connections set.

set Connections :=
setof {s in Supplies, d in Demands: Cost[s,d] <= Max_Unit_Cost} (s,d);

By this filter, we only include those connections in the Connections set that are allowed. There-
fore without the modification of other parts of the model, the exclusion is implemented – just the
indexing expressions (s,d) in Connections iterate over a smaller set in the background.

Note that care must be taken with this method, because now the following constraint would give
an out of domain error.
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s.t. Availability_at_Supply_Points {s in Supplies}:
sum {d in Demands} tran[s,d] <= Available[s];

The problem is that tran[s,d] is iterated over all pairs of s in Supplies and d in Demands,
but the variable is simply not defined for all such pairs now. This is in strong contrast with the first
approach where they are defined, but explicitly set to zero. We must now ensure that the sum only
considers allowed connections, and it can be done as follows.

s.t. Availability_at_Supply_Points {s in Supplies}:
sum {(s,d) in Connections} tran[s,d] <= Available[s];

In this case, the role of s and d are different in the sum operator. Despite used as an index, s is a
constant value. But d is introduced inside the indexing expression, therefore it can be freely chosen
by the sum. The meaning of the indexing expression is that all (s,d) pairs are selected for which
the s is a given value. This effectively sums over all demands that are allowed to be connected to
the particular s, and the constraint works as desired.

The point is that an n-tuple index in an indexing expression can have constant coordinates as
long as it contains at least one new, free symbol for a coordinate. In the GNU MathProg language
documentation, an index symbol which is introduced by an indexing expression is called a dummy
index. Dummy indices are freely selected by the indexing expression in all possible ways, and can
be used as constants afterwards in the expression. Here s is a dummy index from the indexing of
the constraint, whereas d is a dummy index from the indexing expression of the sum operator, but
both can be referred to in the operand of the sum, which is tran[s,d] now.

The model contains another constraint, for the demands, this must also be updated similarly, by
replacing s in Supplies with (s,d) in Connections, and our model section for the new problem
is ready.

Solving it with the original problem data reports an optimal solution of 2790, slightly worse than
the original solution of 2700. This is not surprising, as the original solution used a unit cost of 8. By
excluding it, in theory it is possible to obtain the same objective another way, but it is not the case
here. The moral of the story is that contrary to first thought, excluding too expensive connections
can be a disadvantage in the transportation problem.

Note that although the transportation problem has feasible (and optimal) solutions if the total
supplies are not less than the total demands, this is no longer guaranteed if certain connections are
prohibited.

6.3 Increasing unit costs
So far, a linear transportation cost was supposed at each connection. The amount is simply multi-
plied by a constant to obtain the cost. The relation of the total amount transported and the total
cost incurred can be schematically represented as in Figure 2. The red line represents the calculated
total costs, but the area above that curve can be regarded as „feasible” too. The logic behind this
is that we are allowed to pay more than needed, it just makes no sense.

The term proportional cost is also widely used. Proportional cost means such a cost or its
component for which the ratio of total amounts and costs is a parameter constant.

In practice, the total cost or effort to be paid for some resource to be used is not always propor-
tional to the amount of resource actually used. A few common examples are shown in this and the
following sections, which can be modeled as an LP, or at least as an MILP model.

The first example is when the unit cost is a constant, but after some threshold amount is
reached, it increases to a higher constant value. This is common in practice and the phenomenon is
called the law of diminishing returns. This means if we spend an additional unit for costs, we
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Figure 2: Linear transportation costs.

get less and less return. This is equivalent of having a unit price which increases with total amounts
already obtained.

Problem 24.
Solve Problem 21, the transportation problem, with one modification: there are two unit costs for

transportation, one below a given threshold amount transported, and a higher unit cost for surplus
amounts above that threshold.

The example problem to be solved here is the following.

Problem 25.
Solve Problem 22, the original example transportation problem, with one modification: the given

unit costs are only for transportation amounts below 100 units. Above that limit, costs are increased
by 25% per material units transported.

Schematically, the cost function (in contrast with the simple linear case) can be represented as in
Figure 3. Again, the region above the red curve denoting the total costs can be termed as feasible,
because we can pay more if we want, it is just not advantageous and therefore will never happen.

In the example problem, all thresholds and increased cost are uniform across the connections.
Note that this is not necessarily a case. In other problem definitions, each connection may have
unique thresholds, basic and increased unit costs.

The first thing to do is to define the data in the model needed to calculate the alternative cost
function. Two parameters are introduced: CostThreshold is the amount over which the unit costs
increase, and CostIncPercent denotes the rate of increase, in percent. Note that the increase must
be positive.

param CostThreshold, >=0;
param CostIncPercent, >0;

In the particular example, Problem 25 to be solved, the following values can be given in the data
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Figure 3: Transportation costs with an increased unit cost above a threshold.

section.

param CostThreshold := 100;
param CostIncPercent := 25;

We introduce another parameter CostOverThreshold, which calculates the increased unit cost
by the following formula. Note that the original unit cost is Cost[s,d].

param CostOverThreshold {(s,d) in Connections} :=
Cost[s,d] * (1 + CostIncPercent / 100);

At this point, we have all the required data defined in the model. The question is how we could
implement the correct calculation of total costs, regardless of being below or above the threshold.
First, we can simply introduce two variables, tranBase for the amounts below, and tranOver for
the amounts above the threshold.

var tranBase {(s,d) in Connections}, >=0, <=CostThreshold;
var tranOver {(s,d) in Connections}, >=0;

Note that both quantities are nonnegative. The amount to be transported over the threshold
for the increased cost is unlimited, however, we can only transport a limited amount for the original
cost. Therefore, tranBase gets an upper bound: the threshold itself. Note that the decision of
transported amounts are individual for each connection, therefore all these variables are defined for
each connection.

The amounts represented by tranBase and tranOver are just a separation of the total amount
represented by tran. Therefore a constraint is provided to ensure that the sum of the former two
equals tran, for each connection.
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s.t. Total_Transported {(s,d) in Connections}:
tran[s,d] = tranBase[s,d] + tranOver[s,d];

Instead of using tran in the objective, we can refer to the tranBase and tranOver part
separately and multiply these amounts with their corresponding unit costs, which are Cost and
CostOverThreshold.

minimize Total_Costs: sum {(s,d) in Connections}
(tranBase[s,d] * Cost[s,d] + tranOver[s,d] * CostOverThreshold[s,d]);

Our model is ready, but think about one thing. Now, the tranBase and tranOver amounts can
be freely set. For example, if the threshold is 100, then transporting 130 units in total can be done
as tranBase=100 and tranOver=30, but also for example as tranBase=50, tranOver=80. In the
latter case, the total cost is not calculated correctly in the objective, but it is still allowed by the
constraints.

But the model is still working, because the unit cost above the threshold is strictly higher than
the cost below it. Therefore the optimal solution would not attempt transporting any amounts over
the threshold unless all possible amount is transported below it, i.e. tranBase=100 in the example.
Therefore spending more is allowed as feasible solutions in the model, but these cases are eliminated
by the optimization procedure. Consequently, in the optimal solution, there is either zero amount
above the threshold, or full amount below it, for each connection. The costs are calculated correctly
in both scenarios.

The full model section for the transportation problem with increasing rates is shown here.

set Supplies;
set Demands;
param Available {s in Supplies}, >=0;
param Required {d in Demands}, >=0;

set Connections := Supplies cross Demands;

param Cost {(s,d) in Connections}, >=0;

param CostThreshold, >=0;
param CostIncPercent, >0;

param CostOverThreshold {(s,d) in Connections} :=
Cost[s,d] * (1 + CostIncPercent / 100);

check sum {s in Supplies} Available[s] >= sum {d in Demands} Required[d];

var tran {(s,d) in Connections}, >=0;
var tranBase {(s,d) in Connections}, >=0, <=CostThreshold;
var tranOver {(s,d) in Connections}, >=0;

s.t. Availability_at_Supply_Points {s in Supplies}:
sum {d in Demands} tran[s,d] <= Available[s];

s.t. Requirement_at_Demand_Points {d in Demands}:
sum {s in Supplies} tran[s,d] >= Required[d];
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s.t. Total_Transported {(s,d) in Connections}:
tran[s,d] = tranBase[s,d] + tranOver[s,d];

minimize Total_Costs: sum {(s,d) in Connections}
(tranBase[s,d] * Cost[s,d] + tranOver[s,d] * CostOverThreshold[s,d]);

solve;

printf "Optimal cost: %g.\n", Total_Costs;
for {(s,d) in Connections: tran[s,d] > 0}
{

printf "From %s to %s, transport %g=%g+%g " &
"amount for %g (unit cost: %g/%g).\n",

s, d, tran[s,d], tranBase[s,d], tranOver[s,d],
(tranBase[s,d] * Cost[s,d] + tranOver[s,d] * CostOverThreshold[s,d]),
Cost[s,d], CostOverThreshold[s,d];

}

Solving the model with a value of 100 for CostThreshold and 25 for CostIncPercent, we get
the following result.

Optimal cost: 2772.5.
From S1 to D5, transport 100=100+0 amount for 500 (unit cost: 5/6.25).
From S2 to D1, transport 120=100+20 amount for 125 (unit cost: 1/1.25).
From S2 to D2, transport 130=100+30 amount for 275 (unit cost: 2/2.5).
From S3 to D2, transport 10=10+0 amount for 50 (unit cost: 5/6.25).
From S3 to D3, transport 170=100+70 amount for 187.5 (unit cost: 1/1.25).
From S3 to D5, transport 10=10+0 amount for 40 (unit cost: 4/5).
From S4 to D4, transport 90=90+0 amount for 720 (unit cost: 8/10).
From S4 to D6, transport 120=100+20 amount for 875 (unit cost: 7/8.75).

The optimal solution is 2772.5 units, and in some cases the thresholds are surpassed. The
objective is slightly worse than the original 2700. This is not surprising, because the current and
original problems only differ in the increased costs. If we closely look at the transportation amounts,
we can observe that the increased unit costs over the 100 threshold do not only change the pricing,
but the optimal transportation decisions as well.

6.4 Economy of scale
The previous Section 6.3 deals with the case of increased unit costs, but what happens when the
unit costs do not increase, but decrease above the threshold?

The case when the larger amounts provide lower unit prices is called the economy of scale.
This is also common in practice. In production environments, if more products are to be processed,
the same investment and/or operating costs might share between more products, therefore the cost
per product decreases, making production in larger volumes cost-efficient. In trade, it is possible
we get a discount if we purchase in a larger volume.

Here, the simplest case of economy of scale is presented, where unit costs simply decrease above
a threshold. As usual, we provide a general problem definition and an example problem.
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Problem 26.
Solve Problem 21, the transportation problem, with one modification: there are two unit costs for

transportation, one below a given threshold amount transported, and a lower unit cost for surplus
amounts above that threshold.

Problem 27.
Solve Problem 22, the original example transportation problem, with one modification: the given

unit costs are only for transportation amounts below 100 units. Above that limit, costs are decreased
by 25% per amount transported.

Note that the only difference between this problems and the previous one is that the unit costs
above the threshold are not higher, but lower. Even the threshold of 100 and the rate of 25%
are the same. Therefore it is tempting to address this problem by only slightly modifying our
code to calculate with decreasing costs instead. The parameter CostIncPercent is renamed to
CostDecPercent, and the CostOverThreshold is calculated accordingly.

param CostDecPercent, >0, <=100;
param CostOverThreshold {(s,d) in Connections} :=

Cost[s,d] * (1 - CostDecPercent / 100);

However, if we solve the model, the results do not reflect reality.

Optimal cost: 2025.
From S1 to D1, transport 10=0+10 amount for 37.5 (unit cost: 5/3.75).
From S1 to D5, transport 90=0+90 amount for 337.5 (unit cost: 5/3.75).
From S2 to D1, transport 110=0+110 amount for 82.5 (unit cost: 1/0.75).
From S2 to D2, transport 140=0+140 amount for 210 (unit cost: 2/1.5).
From S3 to D3, transport 170=0+170 amount for 127.5 (unit cost: 1/0.75).
From S3 to D5, transport 20=0+20 amount for 60 (unit cost: 4/3).
From S4 to D4, transport 90=0+90 amount for 540 (unit cost: 8/6).
From S4 to D6, transport 120=0+120 amount for 630 (unit cost: 7/5.25).

The optimal solution is 2025, way better than the original 2700. There is nothing wrong so far,
because costs decreased. But the details show that there is zero transportation amounts below the
threshold, the total amount is transported for the lower price, for amounts above the threshold.
This is clearly not allowed, as we can only use the lower unit costs if we filled the thresholds first,
after spending the higher unit cost for the amounts below.

The case where the cost above the threshold was higher, the model worked perfectly. Now, when
the cost above the threshold is lower, the model is wrong. What makes this difference?

• If the unit costs increase above the threshold, the amounts above the threshold are filled first,
and then we can optionally transport additional amounts above the threshold. We (and the
model) are allowed to transport above the threshold first, but it does not give any benefit,
therefore these approaches are ruled out by the optimization procedure.

• If the unit costs decrease above the threshold, however, the optimization prefers using the
amounts above the threshold because of the lower cost. However, it does not work like a „free
option”, but a „right” that must be obtained: we can only use the lower unit cost if we filled
the amounts below the threshold first. This is not enforced by the constraints, and therefore
the reported optimal solution is infeasible in reality.
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To better understand the difference, observe the slightly modified schematic representation of
economy of scale (see Figure 4). One might argue that the only difference is that the curve is going
downward, not upward, but observe the feasible region.

Figure 4: Transportation costs with an increased unit cost above a threshold.

One property of LP problems is that their search space is always convex. This means, if
we have two feasible solutions, and make a convex sum of these, then the result is also a feasible
solution. For example, if x1 = 3, y1 = 1 is one feasible solution, and x2 = 7, y2 = 9 is another,
then let us obtain a convex sum of these with weights 3

4 and 1
4 . We get x3 = 3

4x1 + 1
4x2 = 4,

y3 = 3
4y1 + 1

4y2 = 4, which is guaranteed to be also feasible. If we investigate what general
constraints are allowed in LP models, the convexity of the feasible region could be verified easily.

However, if we look at the schematic representation in Figure 4, the feasible region is not convex.
Moreover, we cannot make it convex by cutting down parts from it. The reason is that we should
allow feasibility on both of the two red line segments, but their convex sums fall into the infeasible
region that must be prohibited by model constraints. We can see why this was not a problem in case
if increasing unit costs: because the convex sums of the two red line segments fell into the feasible
region – those cases did not make sense in reality though, but the model still included them, and
overall the problem could be perfectly modeled by LP.

But the feasible region is clearly not convex, which suggests that economy of scale cannot
be modeled by LP. However, we can model it by adding integer variables, making the model
an MILP. Our goal is to ensure that the amounts below the threshold, denoted by tranBase are
utilized in full whenever any amounts are transported above the threshold, denoted by tranOver.

For each connection, we introduce a binary variable isOver.

var isOver {(s,d) in Connections}, binary;

The meaning of isOver is that whether we are entitled (= 1) or not (= 0) to transport for the
lower unit cost, for amounts above the threshold. This binary variable introduces a discrete nature
to the problem, and now the search space is not convex, because no fractional values are allowed
for isOver between 0 and 1. Depending on the value isOver takes, there are specific circumstances
required.
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• If isOver=0, then we cannot use the lower cost, hence the amounts above the threshold must
be zero.

• If isOver=1, then we must get the right to use the lower costs, hence the amounts below the
threshold must be maximal, i.e. equal to the threshold amount.

It is a common problem in mathematical programming that we have an ordinary linear constraint,
like A ≥ B, but we want this constraint to be active if and only if a certain condition is met. The
condition is often represented by the value of a binary variable x. If x = 1, then constraint A ≥ B
must hold. However, if x = 0, there is no restrictions about A or B.

The modeling technique used is called big-M constraint. The first step is to arrange the linear
constraint into the form B − A ≤ 0, then find a positive upper bound for B − A. This upper
bound shall be large enough to include all possible values for all model variables appearing in the
expression B −A. In practice, often a very large number, like M = 1000000 is selected as an upper
bound, which is magnitudes larger than any sensible solution for the problem, is sufficient. This is
the so-called big-M value.

Then, include the following constraint in the model formulation.

B −A ≤M · (1− x) (12)

Now investigate what this constraint does in the model. Because x is an integer variable, there
are two cases. If x = 1, then the constraint reduces to B −A ≤ 0, which is exactly what we wanted
to achieve if x = 1. If x = 0 however, the constraint reduces to B − A ≤ M . Remember that M
is magnitudes larger than any possible, sensible values of B −A. Therefore the constraint becomes
redundant, as it does not impose further restrictions on model variables – again, what we exactly
wanted for x = 0.

If the linear constraint is an equation, like A = B, then we can express it as two inequalities
A ≥ B and A ≤ B and implement a big-M constraint for each.

If the condition is not x = 1 but x = 0 instead, then we can simply replace (1− x) by x in the
model formulations as the negation of any binary value x is (1− x).

We can see that this is a very general technique which allows conditional inclusion of linear
constraints in MILP models, provided that their condition can be expressed as a binary variable (or
any other linear expression which results in a value that can only be 0 or 1, but nothing in between).

One might ask: if M is only required to be large enough, what is the most suitable M to be
given? In the solution algorithmic point of view, the best choice is usually the lowest possible M .
Be careful though, if M is too small, the constraint is not redundant when the condition is not met,
and we risk excluding valuable solutions. (It might be OK to exclude feasible solutions, and even
optimal ones, provided that at least one optimal solution remains.) Too large M values may also
result in numerical errors in the solution procedure.

Now that the general technique of big-M constraints is introduced, let us head back to the
economy of scale and implement the required constraints. There are two conditional constraints to
implement.

• If isOver=0, then tranOver=0 must hold.

• If isOver=1, then tranBase=CostThreshold must hold.

The first constraint can be formulated as follows.

param M := sum {s in Supplies} Available[s];
s.t. Zero_Over_Threshold_if_Threshold_Not_Chosen {(s,d) in Connections}:

tranOver[s,d] <= M * isOver[s,d];
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Note that when isOver[s,d]=0, then tranOver[s,d]<=0 is enforced, and because it is a non-
negative variable, it will be zero. The value M must be selected to be larger than any sensible values
of tranOver[s,d]. One easy possibility is to add up all total supplies in the problem. Clearly, no
single transportation amount can be larger than this M, we introduced this value as a parameter.
We could provide smaller values for each tranOver[s,d] if we wanted, but a single M will suffice.

The second constraint can be formulated as follows.

s.t. Full_Below_Threshold_if_Threshold_Chosen {(s,d) in Connections}:
tranBase[s,d] >= CostThreshold - M * (1 - isOver[s,d]);

If isOver[s,d]=1, then tranBase[s,d]>=CostThreshold is enforced, and because parameter
CostThreshold is also an upper bound for tranBase[s,d], they will be equal. If isOver[s,d]=0,
then the constraint is redundant, because the right-hand side, CostThreshold-M is a negative num-
ber and tranBase[s,d] is a nonnegative variable. However, we can provide a more clever big-M
for this constraint. The only requirement is that CostThreshold-M cannot be positive, otherwise
tranBase[s,d]=0 would be excluded from the search space entirely, which is unacceptable. But the
big-M in this constraint can be set as low as CostThreshold, in which case CostThreshold-M=0
and the constraint is still redundant when isOver[s,d]=1. However, for this particular big-M, the
whole constraint can be rearranged into a more readable form, as follows.

s.t. Full_Below_Threshold_if_Threshold_Chosen {(s,d) in Connections}:
tranBase[s,d] >= CostThreshold * isOver[s,d];

We can see that if isOver[s,d]=1, then tranBase[s,d]>=CostThreshold is enforced, but if
isOver[s,d]=0, then the constraint is equivalent to tranBase[s,d]>=0, which is redundant.

In conclusion, we added the variable isOver and these two constraints to the previous model for
increasing cost rates, and now our model for transportation problem with economy of scale is ready.

set Supplies;
set Demands;

param Available {s in Supplies}, >=0;
param Required {d in Demands}, >=0;

set Connections := Supplies cross Demands;

param Cost {(s,d) in Connections}, >=0;

param CostThreshold, >=0;
param CostDecPercent, >0, <=100;

param CostOverThreshold {(s,d) in Connections} :=
Cost[s,d] * (1 - CostDecPercent / 100);

check sum {s in Supplies} Available[s] >= sum {d in Demands} Required[d];

var tran {(s,d) in Connections}, >=0;
var tranBase {(s,d) in Connections}, >=0, <=CostThreshold;
var tranOver {(s,d) in Connections}, >=0;
var isOver {(s,d) in Connections}, binary;
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s.t. Availability_at_Supply_Points {s in Supplies}:
sum {d in Demands} tran[s,d] <= Available[s];

s.t. Requirement_at_Demand_Points {d in Demands}:
sum {s in Supplies} tran[s,d] >= Required[d];

s.t. Total_Transported {(s,d) in Connections}:
tran[s,d] = tranBase[s,d] + tranOver[s,d];

param M := sum {s in Supplies} Available[s];

s.t. Zero_Over_Threshold_if_Threshold_Not_Chosen {(s,d) in Connections}:
tranOver[s,d] <= M * isOver[s,d];

s.t. Full_Below_Threshold_if_Threshold_Chosen {(s,d) in Connections}:
# tranBase[s,d] >= CostThreshold - M * (1 - isOver[s,d]);

tranBase[s,d] >= CostThreshold * isOver[s,d];

minimize Total_Costs: sum {(s,d) in Connections}
(tranBase[s,d] * Cost[s,d] + tranOver[s,d] * CostOverThreshold[s,d]);

solve;

printf "Optimal cost: %g.\n", Total_Costs;
for {(s,d) in Connections: tran[s,d] > 0}
{

printf "From %s to %s, transport %g=%g+%g " &
"amount for %g (unit cost: %g/%g).\n",

s, d, tran[s,d], tranBase[s,d], tranOver[s,d],
(tranBase[s,d] * Cost[s,d] + tranOver[s,d] * CostOverThreshold[s,d]),
Cost[s,d], CostOverThreshold[s,d];

}

We get the following results for Problem 27.

Optimal cost: 2625.
From S1 to D1, transport 10=10+0 amount for 50 (unit cost: 5/3.75).
From S1 to D5, transport 90=90+0 amount for 450 (unit cost: 5/3.75).
From S2 to D1, transport 110=100+10 amount for 107.5 (unit cost: 1/0.75).
From S2 to D2, transport 140=100+40 amount for 260 (unit cost: 2/1.5).
From S3 to D3, transport 170=100+70 amount for 152.5 (unit cost: 1/0.75).
From S3 to D5, transport 20=20+0 amount for 80 (unit cost: 4/3).
From S4 to D4, transport 90=90+0 amount for 720 (unit cost: 8/6).
From S4 to D6, transport 120=100+20 amount for 805 (unit cost: 7/5.25).

Now the optimal solution is 2625, still better than the original 2700, but not significantly. We
can observe that each time a lower cost is used, the threshold 100 is first reached. Unlike the case
for the increasing unit costs, in Section 6.3, the reduced costs above the threshold now only affect
the objective through pricing, but the optimal solution remains the same in terms of transported
amounts.

Remember that the model contains binary variables, making it an MILP, instead of a pure LP
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model. If the number of binary variables in an MILP is large, computational time required for the
final solution will eventually explode. This is not the case here only because the resulting MILP
model with its 24 binary variables is still considered small.

6.5 Fixed costs
Different scenarios for unit costs and changes were considered. These kinds of costs were all pro-
portional costs, because the calculation formula was always based on the amount in question,
which was multiplied by some constant. In some cases, not only proportional costs, but fixed costs
may be present.

Problem 28.
Solve Problem 21, the transportation problem, with the following modification: for each con-

nection, there is a fixed cost to be paid once for establishing it, in order to use that connection to
transport materials.

The term fixed cost means that its value does not depend on the actual amounts in question.
We only have to pay the fixed cost once in order to utilize a feature. In this example, the feature
is transportation through each connection. We may choose not to establish a connection, but then
we cannot transport between that particular supply and demand.

The example problem to be solved here is the following.

Problem 29.
Solve Problem 28, the transportation problem with fixed costs, with data from the original example

Problem 22, and the following fixed establishment costs per connection.

D1 D2 D3 D4 D5 D6
S1 50 50 50 50 200 50
S2 200 50 50 50 200 50
S3 50 200 200 50 50 50
S4 50 50 50 200 200 200

The starting point for implementing our model is the general implementation from Section 6.2
where all connections were present. We add a new parameter FixedCost for the establishment costs
per connection. The matrix in Problem 29 can then be implemented in the data section to provide
values for FixedCost.

param FixedCost {(s,d) in Connections}, >=0;

param FixedCost:
D1 D2 D3 D4 D5 D6 :=

S1 50 50 80 50 200 50
S2 200 50 50 50 200 50
S3 50 200 200 50 50 50
S4 50 50 50 200 200 200
;
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Figure 5: Fixed establishment cost when any positive amount of transportation is utilized.

If we observe the schematic representation of the fixed cost (see Figure 5), then we can see that
the curve is again not convex, as in the case of economy of scale. The non-convex nature comes from
the single point where the total amount and the total cost are zero, a single point which cannot
be directly connected to the horizontal line describing the fixed cost for any amounts above zero,
without intersecting the infeasible region.

As in case of the economy of scale, we need a binary decision variable to distinguish the two
cases. Here, tranUsed equals one if we want to establish the connection and be able to send any
positive amount of materials over it. If tranUsed is zero, then transportation on that particular
connection must also be zero.

var tranUsed {(s,d) in Connections}, binary;

Two things must be enforced about the fixed cost and the tranUsed variable. The first is that
if we do not establish the connection, then there must be no amount transported there. This can
be done with a single big-M constraint.

param M := sum {s in Supplies} Available[s];

s.t. Zero_Transport_If_Fix_Cost_Not_Paid {(s,d) in Connections}:
tran[s,d] <= M * tranUsed[s,d];

The coefficient M must be large in order not to exclude legitimate solutions from the search space.
Precisely, it must be at least the largest possible value of tran[s,d] in the optimal solution to be
found. The total of all available supplies, denoted by M is a single valid candidate for all big-M
constraints, for any supply and demand. However, if we want stricter constraints that might result
in better solver running times, we can provide a particular value for each supply and demand, which
is the minimum of the available amount at the supply and the required amount at the demand.
There cannot be more traffic between the two points.
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s.t. Zero_Transport_If_Fix_Cost_Not_Paid {(s,d) in Connections}:
tran[s,d] <= min(Available[s],Required[d]) * tranUsed[s,d];

The second thing to implement is the inclusion of the fixed establishment cost into the objective.

minimize Total_Costs: sum {(s,d) in Connections}
(tran[s,d] * Cost[s,d] + tranUsed[s,d] * FixedCost[s,d]);

Our implementation is ready. Variable tranUsed[s,d] is either zero, in which case there is no
fixed cost but also no transportation over that connection, or tranUsed[s,d] is one, the cost is
paid and there can be a positive transportation amount over that connection. Simultaneously zero
transportation while still establishing the connection is allowed as a feasible solution in the model,
but optimization rules these cases out. The full model section is the following.

set Supplies;
set Demands;

param Available {s in Supplies}, >=0;
param Required {d in Demands}, >=0;

set Connections := Supplies cross Demands;

param Cost {(s,d) in Connections}, >=0;
param FixedCost {(s,d) in Connections}, >=0;

check sum {s in Supplies} Available[s] >= sum {d in Demands} Required[d];

var tran {(s,d) in Connections}, >=0;
var tranUsed {(s,d) in Connections}, binary;

s.t. Availability_at_Supply_Points {s in Supplies}:
sum {d in Demands} tran[s,d] <= Available[s];

s.t. Requirement_at_Demand_Points {d in Demands}:
sum {s in Supplies} tran[s,d] >= Required[d];

s.t. Zero_Transport_If_Fix_Cost_Not_Paid {(s,d) in Connections}:
tran[s,d] <= min(Available[s],Required[d]) * tranUsed[s,d];

minimize Total_Costs: sum {(s,d) in Connections}
(tran[s,d] * Cost[s,d] + tranUsed[s,d] * FixedCost[s,d]);

solve;

printf "Optimal cost: %g.\n", Total_Costs;
for {(s,d) in Connections: tran[s,d] > 0}
{

printf "From %s to %s, transport %g " &
"amount for %g (unit cost: %g, fixed: %g).\n",

s, d, tran[s,d],
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tran[s,d] * Cost[s,d] + FixedCost[s,d], Cost[s,d], FixedCost[s,d];
}

end;

The original Problem 22 with zero fixed costs and the new Problem 29 mentioned here are both
solved by the model. The original optimal solution is 2700, and is reproduced for the model with
fixed costs if these fixed costs are simply zero. If nonzero fixed costs are present, the following
output is reported.

Optimal cost: 3640.
From S1 to D1, transport 100 amount for 550 (unit cost: 5, fixed: 50).
From S2 to D1, transport 20 amount for 220 (unit cost: 1, fixed: 200).
From S2 to D2, transport 140 amount for 330 (unit cost: 2, fixed: 50).
From S2 to D4, transport 90 amount for 140 (unit cost: 1, fixed: 50).
From S3 to D3, transport 80 amount for 280 (unit cost: 1, fixed: 200).
From S3 to D5, transport 110 amount for 490 (unit cost: 4, fixed: 50).
From S4 to D3, transport 90 amount for 590 (unit cost: 6, fixed: 50).
From S4 to D6, transport 120 amount for 1040 (unit cost: 7, fixed: 200).

The objective is 3640. The connections used are not the same in the two cases. The establishment
cost paid is in total is 850, note that it is smaller than the increment of 940 of the objective. This is
natural, because not only the extra cost must be paid, but the new transportation solution obtained
is not necessarily optimal according to the original objective anymore.

6.6 Flexible demands
Several transportation cost functions were introduced, including increasing, decreasing proportional
and fixed costs. One additional example is mentioned now, but in a slightly different context.

The common property of transportation costs was that total cost increased (or remained con-
stant) as the total transported amount increased. But what happens when the curve is not mono-
tonically increasing? As this is not so practical for transportation costs, we rather demonstrate it
throughout the demands. So far, the required amount at each demand point was a strict con-
straint. It means that those solutions for the problem in which demands are not met are infeasible
and eliminated from the search. Any constraints so far were strict.

In some cases constraints are soft constraints instead. It means that we are interested in
solutions which violate them. In that case, the extent of violation shall be minimized, which is
another objective of the optimization procedure. Considering multiple objectives is under the field of
goal programming [17], and is not covered here. However, there are techniques to merge different
objective functions into a single one, resulting in an LP/MILP model again. One technique is the
usage of penalties, which are terms added to the objective function and are proportional to the
extent a constraint is violated. Penalties are practical: failing to comprehend to a desired goal can
sometimes be measured or estimated as costs which can be added to the objective if it is profit
maximization or cost minimization.

In this section, the starting point is the original transportation problem again, and is expanded
with flexible demands.

Problem 30.
Solve Problem 21, the transportation problem with the addition of flexible demands. For each

demand point, we do not require the exact requirement to be served. Instead, a penalty is introduced

111



6.6. FLEXIBLE DEMANDS TRANSPORTATION PROBLEM

into the objective which is proportional to the extent of difference between required amount at a
demand point and actually served amount.

Two example problems will be solved, which differ in the parameter constants only.

Problem 31.
Solve Problem 22, the originally proposed transportation problem, with flexible demands added.

There is a surplus and a shortage penalty constant. The penalty for each demand is calculated by
multiplying the difference of actual transported materials and the requirement, by a corresponding
penalty constant.

There are two different scenarios to be evaluated.

• The shortage penalty constant is 3, and the surplus penalty constant is 1. This is the „small”
penalty scenario.

• The shortage penalty constant is 15, and the surplus penalty constant is 10. This is the „large”
penalty scenario.

The starting point for implementation is the model with connections, from Section 6.2. Data
content is expanded by two parameters, let us call them ShortagePenalty and SurplusPenalty.
These can be given values in the data section according to the scenarios in Problem 31.

Figure 6: Penalty as a function of total delivered amount. The minimum point zero, and the
requirement is exactly met there.

Let us investigate penalties as a function of total materials delivered at a given demand point
(see Figure 6). Linear penalty functions are assumed in both directions. We can observe that this
penalty can be considered as a special cost function, which decreases below and increases above the
actual requirement for the demand point. If the requirement is exactly met, the penalty is zero.
Although the function curve is „broken” in a manner similar to the absolute value function, the
feasible region is still convex, which suggests a pure LP model.

The model is extended with an auxiliary variable satisfied. This is defined for each demand,
and denotes the total amount of materials delivered to that demand. This helps in the formulation
as penalty for a demand d is based on the difference between satisfied[d] and Required[d].
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var satisfied {d in Demands}, >=0;

s.t. Calculating_Demand_Satisfied {d in Demands}:
satisfied[d] = sum {s in Supplies} tran[s,d];

From this point, two different methods are shown, which are applicable to penalties in general
and are considered equally effective.

1. The first method introduces a single variable for the penalty itself.

2. The second method introduces two variables for the shortage and the surplus of materials.

The first method relies on the idea that the feasible region of the problem is determined by two
lines: one for penalty below, and one for penalty above the requirement. This means that two linear
constraints can achieve what we want.

var penalty {d in Demands}, >=0;

s.t. Shortage_Penalty_Constraint {d in Demands}:
penalty[d] >= ShortagePenalty * (Required[d] - satisfied[d]);

s.t. Surplus_Penalty_Constraint {d in Demands}:
penalty[d] >= SurplusPenalty * (satisfied[d] - Required[d]);

The first constraint ensures that the penalty is at least as defined for shortage. Note that this
constraint is redundant if the demand is satisfied, as the RHS becomes negative.

The second constraint ensures that the penalty is at least as defined for surplus. Similarly, this
constraint becomes redundant if the demand is not met, as the RHS becomes negative.

The penalty variable can be directly included into the objective function, and the model formu-
lation for the first method is ready. Note that the model allows penalty values higher than described
as feasible solutions, but these are eliminated by the optimization procedure. That means, in the
optimal solution, one of the constraints will be strict, or both if the requirement is exactly met and
the penalty is zero.

minimize Total_Costs:
sum {(s,d) in Connections} tran[s,d] * Cost[s,d] +
sum {d in Demands} penalty[d];

Let us see the second method for implementing flexible demands. This alternative way uses more
variables, but less constraints. The exact shortage and surplus amounts are introduced as variables
in this formulation.

var surplus {d in Demands}, >=0;
var shortage {d in Demands}, >=0;

s.t. Calculating_Exact_Demands {d in Demands}:
Required[d] - shortage[d] + surplus[d] = satisfied[d];

Note that the exactly transported amount, termed as satisfied[d] is now the required amount,
minus the shortage, plus the surplus – provided that either variable is zero, as common sense dictates.
This is expressed by the constraint shown.
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However, the model allows both the shortage and the surplus value to be increased by the same
amount, and everything else remains the same. But these cases will be eliminated by the opti-
mization procedure, as the new variables are introduced into the objective with their corresponding
penalty constants as factors. This completes the implementation of the second method. Note that
the optimization procedure ensures that either the shortage or the surplus is zero.

minimize Total_Costs:
sum {(s,d) in Connections} tran[s,d] * Cost[s,d] +
sum {d in Demands} (shortage[d] * ShortagePenalty +

surplus[d] * SurplusPenalty);

The full model section for the first method is presented below. Remember that the two methods
are equivalent.

set Supplies;
set Demands;

param Available {s in Supplies}, >=0;
param Required {d in Demands}, >=0;

set Connections := Supplies cross Demands;

param Cost {(s,d) in Connections}, >=0;

check sum {s in Supplies} Available[s] >= sum {d in Demands} Required[d];

param ShortagePenalty, >=0;
param SurplusPenalty, >=0;

var tran {(s,d) in Connections}, >=0;
var satisfied {d in Demands}, >=0;
var penalty {d in Demands}, >=0;

s.t. Calculating_Demand_Satisfied {d in Demands}:
satisfied[d] = sum {s in Supplies} tran[s,d];

s.t. Availability_at_Supply_Points {s in Supplies}:
sum {d in Demands} tran[s,d] <= Available[s];

s.t. Shortage_Penalty_Constraint {d in Demands}:
penalty[d] >= ShortagePenalty * (Required[d] - satisfied[d]);

s.t. Surplus_Penalty_Constraint {d in Demands}:
penalty[d] >= SurplusPenalty * (satisfied[d] - Required[d]);

minimize Total_Costs:
sum {(s,d) in Connections} tran[s,d] * Cost[s,d] +
sum {d in Demands} penalty[d];

solve;
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printf "Optimal cost: %g.\n", Total_Costs;
for {d in Demands}
{

printf "Required: %s, Satisfied: %g (%+g)\n",
d, satisfied[d], satisfied[d]-Required[d];

}
for {(s,d) in Connections: tran[s,d] > 0}
{

printf "From %s to %s, transport %g amount for %g (unit cost: %g).\n",
s, d, tran[s,d], tran[s,d] * Cost[s,d], Cost[s,d];

}

end;

Regardless of which method we choose, the same result is obtained. For the „small” penalty
scenario, we can see that the total costs are cut by almost a half.

Optimal cost: 1450.
Required: D1, Satisfied: 120 (+0)
Required: D2, Satisfied: 40 (-100)
Required: D3, Satisfied: 170 (+0)
Required: D4, Satisfied: 90 (+0)
Required: D5, Satisfied: 0 (-110)
Required: D6, Satisfied: 0 (-120)
From S2 to D1, transport 120 amount for 120 (unit cost: 1).
From S2 to D2, transport 40 amount for 80 (unit cost: 2).
From S2 to D4, transport 90 amount for 90 (unit cost: 1).
From S3 to D3, transport 170 amount for 170 (unit cost: 1).

There are no surplus penalties, but vast shortages for D2, D5 and D6. The latter two demand
sites do not receive any materials at all. The reason is that the unit cost of transportation exceeds
the gain by satisfying the demand. In case of D2, the first 40 units can be transported for low costs,
but the remaining part of the requirements cannot. The reason for not satisfying demands is that
the shortage penalty constant 3 is very low, so it is worth not delivering any materials at all.

On the other hand, the „large” penalty scenario results in exactly the same solution as the original
transportation problem without the penalties. There is no surplus again, but no shortages either,
simply because the shortage penalty of 15 per unit material is more costly than transporting the
material from any available supply. Therefore there are no shortages either.

There were no surplus deliveries in any case, which is not surprising. There had been no point
in surplus delivery to any demand point in the original problem as well, because it just increases the
transportation costs. The surplus penalty just makes surplus even less beneficial. The case would be
different if surplus deliveries were somehow needed – for example, if available supplies were required
to be transported completely.

6.7 Adding a middle level
In the former sections, different modeling techniques for cost functions and penalties were presented.
Now, the transportation problem is expanded to a larger scale.
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So far, the graph had been very simple: there were two sets of nodes in the network, the supplies
and demands, and these were all connected. But what happens, when the network is more complex,
for example, if there is a third set of nodes?

Problem 32.
Solve Problem 21, the transportation problem extended with a middle level of so-called centers

introduced.
Material does not go directly from the supply to the demand. Instead, material goes from supply

nodes to center nodes first, and then from center nodes to demand nodes. Connections between
either supplies and centers, or centers and demands, have their own transportation costs as usual.

Moreover, centers are not necessarily used in transportation, but if are, an establishment cost
must be paid first if any transportation is planned there. Establishment costs are one-time, and given
for each center.

As already mentioned, the original transportation problem can be represented by a graph with
two types of nodes: supplies and demands (see Figure 1 in Section 6.1). In contrast, the scheme of
the new transportation problem can be seen in Figure 7. Connections from supplies to centers are
termed as A-type, while connections from centers to demands are termed as B-type, as the Figure
shows.

Note that in general, there could be any network for transportation. However, if cycles are
present, care must be taken to correctly interpret material flow through these cycles. Throughout
this chapter, there are no cycles, material only flows in one direction.

Figure 7: Graph representing the transportation problem with center nodes included.

Problem 33.
Solve Problem 21, the general transportation problem with centers, with the following problem

data. There are four supplies, named S1 to S4, two centers, C1 and C2, and six demands, named D1
to D6. Transportation costs, available amounts for supplies, and required amounts for demands are
summarized in the following table.

S1 S2 S3 S4 D1 D2 D3 D4 D5 D6
C1 5 10 3 10 10 3 9 8 1 6
C2 10 2 7 4 2 7 3 2 7 8

Amounts 100 250 190 210 120 140 170 90 110 120
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Two scenarios must be evaluated.

• In the first, „small” establishment cost scenario, using C1 and C2 require a fixed cost of 1200
and 1400, respectively.

• In the second, „large” establishment cost scenario, fixed costs are multiplied by 10, e.g. 12000
and 14000, respectively.

Before model implementation starts, the data section describing Problem 33 can be implemented
as follows. The only difference of the two scenarios is in the value of the EstablishCost parameter.

data;

set Supplies := S1 S2 S3 S4;
set Centers := C1 C2;
set Demands := D1 D2 D3 D4 D5 D6;

param Available :=
S1 100
S2 250
S3 190
S4 210
;

param Required :=
D1 120
D2 140
D3 170
D4 90
D5 110
D6 120
;

param CostA:
C1 C2 :=

S1 5 10
S2 10 2
S3 3 7
S4 10 4
;

param CostB:
D1 D2 D3 D4 D5 D6 :=

C1 10 3 9 8 1 6
C2 2 7 3 2 7 8
;

param EstablishCost :=
C1 1200
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C2 1400
;

Sets Supplies and Demands, and parameters Available and Required have the same meaning as
before. However, instead of a single parameter for transportation costs, two parameters named CostA
and CostB are introduced for A-type and B-type connections, respectively. Finally, EstablishCost
denotes the fixed cost of using a center node.

The corresponding definitions in the model section are the following. Note that the sets of all
A-type and B-type connections are also defined.

set Supplies;
set Centers;
set Demands;

param Available {s in Supplies}, >=0;
param Required {d in Demands}, >=0;

set ConnectionsA := Supplies cross Centers;
set ConnectionsB := Centers cross Demands;

param CostA {(s,c) in ConnectionsA}, >=0;
param CostB {(c,d) in ConnectionsB}, >=0;
param EstablishCost {c in Centers}, >=0;

We can still check feasibility of the problem by asserting that the available amounts are larger
than required amounts in total.

check sum {s in Supplies} Available[s] >= sum {d in Demands} Required[d];

Now the data are available in the model section, let us find out what the decision variables in
the model shall be. At first glance, the problem seems like two independent transportation sub-
problems: one from supplies to centers, and one from centers to demands. However, we cannot solve
these two transportation stages separately, because the amounts at the center nodes are not fixed:
these are part of the decision.

However, we can solve the two transportation sub-problems in a single model. The necessary
decision variables for both transportation problems are simultaneously defined in the model: from
supplies to centers, and from centers to demands. The only difference is that the amount of mate-
rials delivered to, and sent from the centers are not fixed values in the sub-problems, but variable
quantities. Moreover, the amount delivered to and from a center node shall be equal. This is where
the two sub-problems are connected, and can be easily established by constraints.

Because of these considerations, variables tranA and tranB are introduced to denote transporta-
tion amounts for connections of A-type and B-type, e.g. from supplies to centers and from centers
to demands. In fact, these decisions are sufficient to determine everything about the resulting
transportation system, however, additional variables are required. Variable atCenter denotes the
amount of material going through each center node, which is exactly the amount going in, and going
out. This is rather an auxiliary variable as not strictly required but makes implementation easier.
However, binary variable useCenter denoting whether a center is used at all (= 1) or not (= 0) is
required in order to implement the fixed establishment costs associated with center nodes.

118



6.7. ADDING A MIDDLE LEVEL TRANSPORTATION PROBLEM

var tranA {(s,c) in ConnectionsA}, >=0;
var tranB {(c,d) in ConnectionsB}, >=0;
var atCenter {c in Centers}, >=0;
var useCenter {c in Centers}, binary;

Four constraints ensure the consistency of material flow through the whole network. In order,
the following rules are expressed.

1. Transportation from supply nodes in total shall not exceed the availability.

2. Transportation to center nodes in total is equal to the atCenter value of that center node.

3. Transportation from center nodes in total is equal to the atCenter value of that center node.

4. Transportation to demand nodes in total shall be at least the required amount.

s.t. Availability_at_Supply_Points {s in Supplies}:
sum {c in Centers} tranA[s,c] <= Available[s];

s.t. Total_To_Center {c in Centers}:
atCenter[c] = sum {s in Supplies} tranA[s,c];

s.t. Total_From_Center {c in Centers}:
atCenter[c] = sum {d in Demands} tranB[c,d];

s.t. Requirement_at_Demand_Points {d in Demands}:
sum {c in Centers} tranB[c,d] >= Required[d];

Note that as we express atCenter in two different ways, the two expressions that are equal to
atCenter are made equal to each other.

A fifth constraint must be added to ensure that a center node can only receive or send materials
if it established. The total availability is denoted by M which serves as the coefficient in the required
big-M constraint.

param M := sum {s in Supplies} Available[s];

s.t. Zero_at_Center_if_Not_Established {c in Centers}:
atCenter[c] <= M * useCenter[c];

The objective is the total of all costs, which has three components: A-type, B-type connections,
and establishment costs of center nodes.

minimize Total_Costs:
sum {(s,c) in ConnectionsA} tranA[s,c] * CostA[s,c] +
sum {(c,d) in ConnectionsB} tranB[c,d] * CostB[c,d] +
sum {c in Centers} useCenter[c] * EstablishCost[c];

We can include printf statements after the solve statement as usual to show the details of the
optimal solution found. Our model section is ready.
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set Supplies;
set Centers;
set Demands;

param Available {s in Supplies}, >=0;
param Required {d in Demands}, >=0;

set ConnectionsA := Supplies cross Centers;
set ConnectionsB := Centers cross Demands;

param CostA {(s,c) in ConnectionsA}, >=0;
param CostB {(c,d) in ConnectionsB}, >=0;
param EstablishCost {c in Centers}, >=0;

check sum {s in Supplies} Available[s] >= sum {d in Demands} Required[d];

var tranA {(s,c) in ConnectionsA}, >=0;
var tranB {(c,d) in ConnectionsB}, >=0;
var atCenter {c in Centers}, >=0;
var useCenter {c in Centers}, binary;

s.t. Availability_at_Supply_Points {s in Supplies}:
sum {c in Centers} tranA[s,c] <= Available[s];

s.t. Total_To_Center {c in Centers}:
atCenter[c] = sum {s in Supplies} tranA[s,c];

s.t. Total_From_Center {c in Centers}:
atCenter[c] = sum {d in Demands} tranB[c,d];

s.t. Requirement_at_Demand_Points {d in Demands}:
sum {c in Centers} tranB[c,d] >= Required[d];

param M := sum {s in Supplies} Available[s];

s.t. Zero_at_Center_if_Not_Established {c in Centers}:
atCenter[c] <= M * useCenter[c];

minimize Total_Costs:
sum {(s,c) in ConnectionsA} tranA[s,c] * CostA[s,c] +
sum {(c,d) in ConnectionsB} tranB[c,d] * CostB[c,d] +
sum {c in Centers} useCenter[c] * EstablishCost[c];

solve;

printf "Optimal cost: %g.\n", Total_Costs;
for {c in Centers: useCenter[c]}
{

printf "Establishing center %s for %g.\n", c, EstablishCost[c];
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}
for {(s,c) in ConnectionsA: tranA[s,c] > 0}
{

printf "A: From %s to %s, transport %g amount for %g (unit cost: %g).\n",
s, c, tranA[s,c], tranA[s,c] * CostA[s,c], CostA[s,c];

}
for {(c,d) in ConnectionsB: tranB[c,d] > 0}
{

printf "B: From %s to %s, transport %g amount for %g (unit cost: %g).\n",
c, d, tranB[c,d], tranB[c,d] * CostB[c,d], CostB[c,d];

}

end;

Now we can use the solver to find the optimal decisions for both scenarios in Problem 33. Recall
that the small scenario assumes fixed costs of 1200 and 1400 for establishing C1 and C2, while the
large scenario assumes 12000 and 14000.

The results of the small scenario are the following.

Optimal cost: 7350.
Establishing center C1 for 1200.
Establishing center C2 for 1400.
A: From S1 to C1, transport 100 amount for 500 (unit cost: 5).
A: From S2 to C2, transport 250 amount for 500 (unit cost: 2).
A: From S3 to C1, transport 190 amount for 570 (unit cost: 3).
A: From S4 to C2, transport 210 amount for 840 (unit cost: 4).
B: From C1 to D2, transport 140 amount for 420 (unit cost: 3).
B: From C1 to D5, transport 110 amount for 110 (unit cost: 1).
B: From C1 to D6, transport 40 amount for 240 (unit cost: 6).
B: From C2 to D1, transport 120 amount for 240 (unit cost: 2).
B: From C2 to D3, transport 170 amount for 510 (unit cost: 3).
B: From C2 to D4, transport 90 amount for 180 (unit cost: 2).
B: From C2 to D6, transport 80 amount for 640 (unit cost: 8).

The results of the large scenario are the following.

Optimal cost: 21310.
Establishing center C2 for 14000.
A: From S1 to C2, transport 100 amount for 1000 (unit cost: 10).
A: From S2 to C2, transport 250 amount for 500 (unit cost: 2).
A: From S3 to C2, transport 190 amount for 1330 (unit cost: 7).
A: From S4 to C2, transport 210 amount for 840 (unit cost: 4).
B: From C2 to D1, transport 120 amount for 240 (unit cost: 2).
B: From C2 to D2, transport 140 amount for 980 (unit cost: 7).
B: From C2 to D3, transport 170 amount for 510 (unit cost: 3).
B: From C2 to D4, transport 90 amount for 180 (unit cost: 2).
B: From C2 to D5, transport 110 amount for 770 (unit cost: 7).
B: From C2 to D6, transport 120 amount for 960 (unit cost: 8).

As we can see, the optimal solution for the small scenario uses both center nodes, in an almost
equal distribution of materials. Therefore establishing both centers for 2600 is advantageous. There
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is no need to deliver to both center nodes from the same supply, and there is only a single demand
D6 where delivery is made from both center nodes. It seems like establishment costs are paid, and
then the cheapest possible routes are used from supplies to demands.

In contrast, the establishment costs are too high in the large scenario, so establishing both
centers is not beneficial. However, we still need at least one center node for the network, and the
optimal solution chooses C2 with a fixed cost of 14000. Assuming this decision, transportation is
straightforward: every supply is transported to C2 and then from C2 to demands. Note that C2
is more expensive than C1 by 2000, but choosing C2 seems to be justified by larger transportation
costs across C1.

6.8 Transportation problem – Summary
The basic case of the transportation problem was first presented, which involves a set of supply and
demand nodes, and transportation costs between these. The implementation was later improved by
the introduction of index sets and some additional features of GNU MathProg.

The transportation problem results in an LP model, and transportation costs for each connection
are linear, e.g. can be described by a single cost coefficient, which multiplied by the transported
amount gives the total cost. Four cases of more elaborate cost functions, example problems and
their implementations were also presented, which are the following.

• Increasing unit costs. Two factors and a threshold describe the situation, but we still use an
LP model.

• Economy of scale. Two factors and a threshold describes the function again, but the cost
above the threshold is now less. Binary decision variables are required, making it an MILP
model.

• Fixed costs. A fixed cost once paid instead of a proportional cost describes the cost function.
A binary variable is used, the model is MILP.

• Linear penalties. Flexible demands were assumed, and any difference, either positive or neg-
ative, was penalized by a linear factor. This results in an LP model.

Finally, the transportation problem was extended by center nodes, which divides the whole
problem into two related sub-problems, and a fixed cost decision problem is also involved.
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Chapter 7

MILP models

In the previous chapters, proposed problems were mostly solvable by an LP model. Nevertheless,
some advanced problem elements like order fulfillment in a whole, economy of scale and fixed costs
required integer variables, resulting in an MILP model solution. But the main problems involved,
like the production, the diet and transportation problems were continuous in nature. That is,
variables can take any value in an interval of real numbers. Integer values were only required in
specific circumstances.

In this chapter, we will see several optimization problems that involve discrete decisions, where
the solution space is not a convex continuous region, but finite – or divided into finite parts. These
problems naturally require integer, mostly binary variables to express discrete decisions, always
resulting in MILP models. Complexity is usually substantially higher than for problems involving
continuous decisions only. Some not too large MILP problem instances are difficult to impossible
to be exhaustively solved. The exact limit depends on the problem itself, the MILP model applied,
the solver software, its configuration and the machine used.

7.1 Knapsack problem
One of the simplest optimization problems that are discrete by nature is the knapsack problem
[18], its definition follows.

Problem 34.
Given a set of items, each having a nonnegative weight and a gain value. A weight limit is

known. Select some of the items so that their total weight does not exceed the given limit, and the
total gain is maximal.

The problem is termed as knapsack problem because it can be explained as we have a huge
knapsack which must be filled with some of the items, but the total weight we can carry is limited.
Therefore we must carefully choose which items we carry, in order to obtain the highest possible
gain.

As usual, a concrete knapsack problem instance is described for the general problem

Problem 35.
Solve Problem 34, the knapsack problem, with a weight capacity of 60, and the following items.
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Item A B C D E F G H I J
Weight 16.1 19.2 15.0 14.7 11.3 20.1 17.5 14.5 14.8 18.1
Gain 4.4 4.9 4.3 4.0 3.7 5.1 4.6 4.2 4.3 4.8

Starting with the GNU MathProg implementation, first we can define the sets and parameters
describing problem data. The set Items denotes the items, and there are two parameters for each
item: Weight and Gain. A single Capacity number describes the weight limit. We set all of these
as nonnegative to avoid errors in the data section.

set Items;

param Weight {i in Items}, >=0;
param Gain {i in Items}, >=0;

param Capacity, >=0;

Implementing the data section according to Problem 35 and the sets and parameters described
here is straightforward.

set Items := A B C D E F G H I J;

param Weight :=
A 16.1
B 19.2
C 15.0
D 14.7
E 11.3
F 20.1
G 17.5
H 14.5
I 14.8
J 18.1
;

param Gain :=
A 4.4
B 4.9
C 4.3
D 4.0
E 3.7
F 5.1
G 4.6
H 4.2
I 4.3
J 4.8
;

param Capacity := 60;

Now let us think about our freedom in choosing a solution for the knapsack problem. Any
subset of all items is a possible solution, including none and all items selected. If the number of
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items is n, then the number of different solutions is 2n. Note that not all of these subsets are feasible
because of the weight limit, and we can rule out many non-optimal solutions as well. Nevertheless,
the optimization problem for general weights and gains is NP-hard. Therefore, for a large n, an
exhaustive solution can be practically impossible.

In mathematical programming, we only express our freedom in decision variables. This can
be done easily in the form of a single binary variable per item. We name it select, and denotes
whether the item is chosen into the knapsack (= 1) or not (= 0).

var select {i in Items}, binary;

There is only one restriction which can prevent a solution from being feasible: the total weight
of the items. We express in a single constraint that the total weight of selected items is at most the
limit given. The total weight of the knapsack is obtained by adding each select variable multiplied
by the weight of the object. This gives the correct result, because if an item is selected in the
knapsack, its weight is added, but if not selected, nothing happens in terms of total weight of the
knapsack.

s.t. Total_Weight:
sum {i in Items} select[i] * Weight[i] <= Capacity;

The objective is the total gain which is maximized. We add each select variable multiplied by
the Gain value of the item.

maximize Total_Gain:
sum {i in Items} select[i] * Gain[i];

After the solve statement, we add some printing work to show us the solution. Our model
section is ready.

set Items;

param Weight {i in Items}, >=0;
param Gain {i in Items}, >=0;

param Capacity, >=0;

var select {i in Items}, binary;
# var select {i in Items}, >=0, <=1;

s.t. Total_Weight:
sum {i in Items} select[i] * Weight[i] <= Capacity;

maximize Total_Gain:
sum {i in Items} select[i] * Gain[i];

solve;

printf "Optimal Gain: %g\n", Total_Gain;
printf "Total Weight: %g\n",

sum {i in Items} select[i] * Weight[i];
for {i in Items}
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{
printf "%s:%s\n", i, if (select[i]) then " SELECTED" else "";

}

end;

Solving Problem 35 reports an optimal gain of 17.1, which is obtained by selecting items C, E, I
and J . The total weight of these is 59.2, which fits into the limit of 60 given, although not perfectly.

Note that we used a conditional expression to print the word SELECTED after each object i
for which select[i] is 1, and nothing where it is 0. The condition of such an expression shall be a
constant expression that can be interpreted as a logical value. Remember that variables only behave
as constants after the solve statement in the model section. The output produced is the following.

Optimal Gain: 17.1
Total Weight: 59.2
A:
B:
C: SELECTED
D:
E: SELECTED
F:
G:
H:
I: SELECTED
J: SELECTED

One may think about an easy and straightforward heuristic for the knapsack problem: let us
arrange the items in the order of descending gain/weight ratios, and select items in this order
until we reach the limit. This greedy strategy seems good, because the weight limit works as a
fixed resource, therefore we need to maximize the gain obtained per unit weight. The term greedy
means that each time we make a decision, the most beneficial choice is made according to some
heuristic. Items having a larger gain/weight ratio mean a more efficient usage of the weight limit.

Actually the only problem with this strategy is the slack weight. We may (and will usually)
have some weight under the limit which is not used. However, we might probably obtain a better
solution by sacrificing some items with a higher gain/weight ratio, in order to fill the weight limit
better with other items. This is the small difference which makes the straightforward heuristic
non-optimal, and the knapsack problem difficult.

Let us consider a „relaxed” version of the knapsack problem, where items are actually fluids.
This means, we are allowed to select a fraction of an item into the knapsack, which means only the
same fraction of its weight and gain is obtained. For this relaxation, the binary variable can be
replaced by a continuous one, as follows.

var select {i in Items}, >=0, <=1;

Note that this effect can also be achieved if the original model is run with glpsol, with the
--nomip option added, as follows.

glpsol -m knapsack.mod -d example.dat --nomip

Furthermore, we change the output method a bit. Instead of printing a SELECTED word, we print
the actual value of the now continuous select variable, as follows.
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for {i in Items}
{

printf "%s: %g\n", i, select[i];
}

Solving the relaxed model with the exactly same data gives the following results.

Optimal Gain: 17.7025
Total Weight: 60
A: 0.273292
B: 0
C: 1
D: 0
E: 1
F: 0
G: 0
H: 1
I: 1
J: 0

We can observe that C, E and I are common, but instead of choosing J as the fourth and last
selected item, the relaxed model chooses H, and then A in a fractional ratio. With this selection, a
prefect weight limit utilization of 60 is obtained, and a slightly better objective of 17.7025 instead
of 17.1. If we further analyze problem data, it turns out that the decreasing order of gain/weight
ratio is E, I, H, C, A, D, J, G, B, F. Therefore the relaxed model does exactly what the greedy heuristic
describes: it selects the first four items and then the fraction of the fifth (A) to fill the weight limit.
Whereas the optimal solution to the actual, integer programming problem does not choose H, instead
it chooses J, which is way down in the order, but fills better the weight limit by its larger weight
and gain.

Now that we have seen what complications may arise in case of an integer problem, let us consider
another, similar problem, the multi-way number partitioning problem [19].

Problem 36.
Given a set of N ≥ 1 real numbers, divide them exhaustively into exactly K ≥ 1 subsets so that

the difference between the smallest and largest sum of numbers in a subset is minimal.

The multi-way number partitioning problem can be interpreted as a modified version of the
knapsack problem where all N items must be packed into any one of K given knapsacks, and this
distribution shall be as balanced as possible. There is no gain value in the multi-way number
partitioning problem, (or, it can be interpreted as being equal to the weight of the item).

We solve one example problem.

Problem 37.
Distribute the N = 10 items described in Problem 35, the knapsack example problem, into K = 3

knapsacks so that the difference of the lightest and the heaviest knapsack is minimal.

Let us see how this can be implemented in GNU MathProg. First, there is an Items set and
a Weight parameter as before, but there is no Gain parameter. Instead, we define a single integer
parameter Knapsack_Count, which refers to the positive integer K in the problem description.
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set Items;

param Weight {i in Items}, >=0;

param Knapsack_Count, integer;
set Knapsacks := 1 .. Knapsack_Count;

We also introduced the set Knapsacks. However, instead of reading this set from the data
section, we denote each knapsack by numbers from 1 to K. The operator .. defines a set by the
smallest and largest integer element, enlisting all integers in between.

Note that we require Weight to be nonnegative, however, these parameters can be restricted to
integers in general, or relaxed to take values. The model is exactly the same in all cases.

There are more decisions to be made as in the original knapsack problem. For each item, we do
not only decide whether it goes to the knapsack or not, but we now decide which knapsack it goes
into. This can be done by defining a binary decision variable select for each pair of an item and
a knapsack, denoting whether the item goes into that particular knapsack or not. These decisions
determine the situation well, but auxiliary and other variables are needed to express the objective
function concisely. Therefore we also introduce an auxiliary variable weight for each knapsack,
denoting its total weight, and min_weight and max_weight for the minimal and maximal knapsack
weight.

var select {i in Items, k in Knapsacks}, binary;
var weight {k in Knapsacks};
var min_weight;
var max_weight;

There is only one constraint which establishes whether a decision about knapsacks is feasible:
each item must go exactly into one knapsack, not more and not less. If we add some binary variables
and set the sum equal to one, then its only feasible solution is when one binary variable is 1 and all
others are 0. Therefore the constraint is the following.

s.t. Partitioning {i in Items}:
sum {k in Knapsacks} select[i,k] = 1;

We provide three additional constraint statements, to express the calculation of the weight of
each knapsack, a lower limit on all knapsack weights min_weight and an upper limit max_weight,
respectively.

s.t. Total_Weights {k in Knapsacks}:
weight[k] = sum {i in Items} select[i,k] * Weight[i];

s.t. Total_Weight_from_Below {k in Knapsacks}:
min_weight <= weight[k];

s.t. Total_Weight_from_Above {k in Knapsacks}:
max_weight >= weight[k];

The objective can be the difference of the upper and lower limit.
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minimize Difference: max_weight - min_weight;

This design had been used before, for minimizing errors in equations (see Section 4.8), maximizing
minimum production volumes (see Section 5.3), and some cost functions (see for example Sections 6.3
or 6.6). The key is that the solver is allowed not to assign the actual minimum and maximum weights
to the variables min_weight and max_weight to obtain feasible solutions. It is just not beneficial
to do, and therefore those solutions where these two bounds are not strict are automatically ruled
out.

Finally, we print the contents of each knapsack after the solve statement, and our model section
is ready.

set Items;

param Weight {i in Items}, >=0;

param Knapsack_Count, integer;
set Knapsacks := 1 .. Knapsack_Count;

var select {i in Items, k in Knapsacks}, binary;
var weight {k in Knapsacks};
var min_weight;
var max_weight;

s.t. Partitioning {i in Items}:
sum {k in Knapsacks} select[i,k] = 1;

s.t. Total_Weights {k in Knapsacks}:
weight[k] = sum {i in Items} select[i,k] * Weight[i];

s.t. Total_Weight_from_Below {k in Knapsacks}:
min_weight <= weight[k];

s.t. Total_Weight_from_Above {k in Knapsacks}:
max_weight >= weight[k];

minimize Difference: max_weight - min_weight;

solve;

printf "Smallest difference: %g (%g - %g)\n",
Difference, max_weight, min_weight;

for {k in Knapsacks}
{

printf "%d:", k;
for {i in Items: select[i,k]}
{

printf " %s", i;
}
printf " (%g)\n", weight[k];

}
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end;

Solving the example Problem 37 gives the following result.

Smallest difference: 2.5 (55.3 - 52.8)
1: C F J (53.2)
2: D E H I (55.3)
3: A B G (52.8)

The ten items could be divided into three subsets of roughly equal size. The largest knapsack is
the second, with a weight of 55.3, and the smallest is the third, with 52.8, but note that the order of
knapsacks is not important. Because all ten items are distributed, it is guaranteed that the sum of
the three knapsacks is a constant, therefore their average is also constant, and must be in between
the two limits.

Another similar, interesting, and better-known problem is the so-called bin packing problem,
where all items are known, but the knapsack sizes are fixed, therefore the number of knapsacks
(called bins) is to be minimized [20]. This could also be solved in GNU MathProg, but is not
detailed here.

7.2 Tiling the grid
The knapsack and similar problems require items to „fit” somewhere. Fitting means that each item
has a weight, and the sum of the weights is under a constraint. But what happens when fitting is
more complex? For instance, considering size or shape of items and their container is also a common
real-world question can lead to much more difficult optimization problems.

A two-dimensional example is the class of tiling problems, where copies of the same shape
called tiles are used to cover a region in the plane. Tiles are usually forbidden to overlap, and
the cover is often required to be perfect, i.e. all of the designated region is covered. If we do
not require perfect covering, then one may ask what is the most area we can cover, which is an
optimization problem. Provided that there is a single tile, the congruent copies of which are used,
the optimization problem simplifies to maximizing the non-overlapping tiles that can be put into
the region.

In this section, we restrict tiling to the rectangular grid of unit squares. The tile, its all possible
positions, and the region to be covered all fit onto unit squares of the same grid. The tile will be
the simplest cross consisting of five squares. For the sake of simplicity, the region to be covered is
a rectangular area (see Figure 8). Tiles cannot cover area outside the region.

Problem 38.
Determine the maximum number of non-overlapping crosses in an N ×M grid.

One might argue that the general problem itself is very special in the class of tiling problems.
Indeed, many tiling problems are not solvable effectively by mathematical programming tools. Here,
on the term general problem, we mean a general model section which is applicable to any problem
instance.

The data for the problem is very short: only the dimensions of the rectangular area must be
specified. Let us see some examples.

Problem 39.
Solve Problem 38, the rectangle tiling problem with crosses for the following rectangle sizes.
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Figure 8: Rectangular area imperfectly covered by some five-square cross tiles.

• 6× 4

• 10× 10

• 30× 30

Probably the shortest data sections so far are required for this problem. The following is for the
smallest instance.

param Width := 6;
param Height := 4;

We use parameter names Width and Height to use for the dimensions of the rectangular region
to be tiled. These must be positive integers. Parameter Height represents N , which is the number
of rows, and Width represents M , which is the number of columns in the area. Rows are denoted by
numbers from 1 to N , while columns are denoted by numbers from 1 to M . The set of all squares,
called cells in the rectangular grid is the Cartesian product of the sets of rows and columns, having
a size of N ·M . These are defined as shown below.

param Height, integer, >=1;
param Width, integer, >=1;

set Rows := 1 .. Height;
set Cols := 1 .. Width;
set Cells := Rows cross Cols;

At this point, the minimal requirement of data is defined in the model, but a concise implemen-
tation will require some more. Let us see first what kind of decisions we can make to describe a
tiling.

First, we want to do something like „deciding for all possible positions of a cross tile whether to
put a tile there or not”. This can be done with a binary variable introduced for each such position
as follows.

var place {(r,c) in Tiles}, binary;

Here, the set Tiles refer to some set not yet characterized, but listing all possible positioning
of cross tiles. Decisions for this place variable well determine all required properties of the tiling,
but an auxiliary variable will also be useful.
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var covered {(r,c) in Cells}, binary;

Here, covered is defined for each cell, and decides whether the cell is covered by a placed tile or
not. This helps us formulating constraints that each cell can only be covered at most once to avoid
overlapping tiles.

As usual, the value of 1 means yes, and 0 means no for all of these binary variables. For instance,
a place variable is 1 if the tile is placed on the particular position, and a covered variable is 1 if
the particular cell is covered by some tile.

Before going forward, we must somehow characterize the set Tiles describing all possible tile
positions. Luckily, the five-cell cross is symmetric: rotating or reflecting it does not yield a different
orientation. That means the only difference between tile positions is shifting. In short, we might
call it position. Therefore a binary variable is introduced for each possible position of the tile, and
the set Tiles just contains these positions.

Note that if we do want to tile with asymmetric shapes where multiple orientations are possible,
we must define different binary decision variables for each different orientation and position. In
that case, the Tiles set would need a third index dimension to denote orientation, apart from
the first two dimensions denoting position. But since the cross only has a single orientation, that
index dimension is simply omitted from our model, and Tiles is just a two-dimensional set listing
positions.

Finally, let us decide how two-dimensional coordinates may define positioning of tiles. For this
purpose, we define an anchor point of the cross tile as the central cell of the tile. The set Tiles
will enlist all possible anchor points of correctly positioned tiles. This is valid, because different
positions of tiles have different anchor points.

The selection of the anchor point relative to the tile can be arbitrary, it just needs to be consistent
throughout the model. It is also possible to be outside the tile, for example, it could also be the
corner cell of the 3× 3 square containing the cross tile.

The last thing which remains is to determine the anchor points. All correctly positioned cross
tiles in the rectangular grid must be considered. Clearly, because the anchor point is a cell inside the
tile, the anchor point of a correctly positioned tile must be in the rectangular grid as well. However,
not all cells of the rectangular grid can be anchor points. For example, no cells at the edge of the
rectangle are valid choices, as it cannot cover area outside the region. Moreover, the corner cells of
a rectangular grid cannot even be covered by any correctly positioned cross tiles.

Based on an anchor (r,c), we can define all cells of the cross tile if placed onto that anchor.
This is done by the CellsOf set. Note that this set statement is itself indexed over all cells (that
is, possible anchors), which mean that N ×M different sets of 5 cells each are defined.

set CellsOf {(r,c) in Cells} :=
{(r,c),(r+1,c),(r-1,c),(r,c+1),(r,c-1)};

The set Tiles of correct tile positions (anchor points) are those for which these 5 cells defined
in CellsOf are all within the rectangular area.

set Tiles, within Cells :=
setof {(r,c) in Cells: CellsOf[r,c] within Cells} (r,c);

Of course, we could have answered the question about correct anchor points right at the be-
ginning: these are exactly the cells not on the edges. However, this approach is chosen for two
reasons.

• Defining all cells of the placed tile, and keeping only those positions that are entirely in the
region to be tiled is a very general approach. It would work not only on arbitrary tiles, but
on arbitrary regions as well, on a finite grid.
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• The sets CellsOf provide us a shorter model formulation, as we will see.

The definitions CellsOf and Tiles must be placed before the definition of variable place.
We need two things to be established by constraints. The first is the calculation of the auxiliary

variable covered for each cell. The second is that each cell can only be covered at most once.
Surprisingly, both can be done in a single constraint statement as follows.

s.t. No_Overlap {(r,c) in Cells}: covered[r,c] =
sum {(x,y) in Tiles: (r,c) in CellsOf[x,y]} place[x,y];

In words, for each cell we add the place variables of all tiles that cover that cell. As place is
an integer variable, the sum exactly yields the number of tiles covering that particular cell. This
can either be zero, or one, but two or more is forbidden. The latter is implicitly assured because
the sum equals the single binary variable covered[r,c] and it cannot be more than one, as it is a
binary variable.

Note that in fact, variable covered does not even need to be formulated as binary. The constraint
ensures that its value is integer, because it is obtained as a sum of integer variables. The only required
property of variable covered is its upper bound, 1.

This knowledge might be useful if the complexity of the problem is analyzed. Generally, the more
binary variables are there, the more difficult the model is. However, as covered is not necessarily
binary, it is not expected to increase complexity that much. The true integer nature and difficulty
of the problem is based on the place variable, denoting tile placements. Nevertheless, marking
covered binary might alter the course of the solution algorithm.

The objective is the number of tiles placed in total.

maximize Number_of_Crosses:
sum {(r,c) in Tiles} place[r,c];

After the solve statement, a good way to print the solution is to visualize the tiling itself with
some character graphic.

for {r in Rows}
{

for {c in Cols}
{

printf "%s",
if (!covered[r,c]) then "."
else if ((r,c) in Tiles) then (if (place[r,c]) then "#" else "+")
else "+";

}
printf "\n";

}

The output is textual, so we must print each row in one line, and inside a row, we print each
cell denoted by the column. A single character is printed for each cell so that the whole rectangular
area looks correctly adjusted, for fixed-width fonts.

• If a cell is not covered, a dot (.) is put there.

• If a cell is an anchor point of a placed tile, it is denoted by a hash mark (#).

• Otherwise, if the cell is covered by a cross but not its center, then it is denoted by a plus sign
(+).
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Note that nested if operators are used to obtain the desired result. One might argue that there
is an unnecessary if, because of the two cases both ending in a + sign. The point is that we first
check whether (r,c) is a proper anchor point or not, and only if it is, then we check the value of the
place[r,c] variable. We do this because if place[r,c] is referred for a non-anchor point (r,c),
then out of domain error occurs, as the variable place is only defined for anchor points. Note that
if an else value is omitted, it is assumed to be zero.

The model section for Problem 38 is ready.

param Height, integer, >=1;
param Width, integer, >=1;

set Rows := 1 .. Height;
set Cols := 1 .. Width;
set Cells := Rows cross Cols;

set CellsOf {(r,c) in Cells} :=
{(r,c),(r+1,c),(r-1,c),(r,c+1),(r,c-1)};

set Tiles, within Cells :=
setof {(r,c) in Cells: CellsOf[r,c] within Cells} (r,c);

var covered {(r,c) in Cells}, binary;
var place {(r,c) in Tiles}, binary;

s.t. No_Overlap {(r,c) in Cells}: covered[r,c] =
sum {(x,y) in Tiles: (r,c) in CellsOf[x,y]} place[x,y];

maximize Number_of_Crosses:
sum {(r,c) in Tiles} place[r,c];

solve;

printf "Max. Cross Tiles (%dx%d): %g\n",
Height, Width, Number_of_Crosses;

for {r in Rows}
{

for {c in Cols}
{

printf "%s",
if (!covered[r,c]) then "."
else if ((r,c) in Tiles) then (if (place[r,c]) then "#" else "+")
else "+";

}
printf "\n";

}

end;

Solving the model for the smallest instance of a 6 × 4 area shows that no more than two cross
tiles can fit in such a small area. One possible construction is shown below, reported by the model
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output.

Max. Cross Tiles (4x6): 2
....+.
.+.+#+
+#+.+.
.+....

The medium instance of a 10× 10 area is still solved very fast. At most 13 cross tiles fit in the
area, the solution reported is the following.

Max. Cross Tiles (10x10): 13
.+...+..+.
+#+.+#++#+
.++..+.++.
.+#+.++#+.
..+++#+++.
.++#++++#+
+#++.+#++.
.++..++.+.
.+#++#++#+
..+..+..+.

The large instance of 30× 30 cells was included to show what happens when the model is really
big, and thus cannot be solved fast. In such cases, the solver would take an eternity to complete.
Therefore, a time limit of 60 seconds is provided. In command line, this can be done by adding the
--tmlim 60 as arguments to glpsol.

glpsol -m tiling.mod -d example.dat --tmlim 60

If the time limit option is omitted, there is no time limit. Note that the limit given this way is
not a strong bound of running time actually available for the solver: glpsol tends to exceed this
limit slightly, especially if preparing steps themselves are tedious.

Running glpsol with a one-minute time limit produced the following output.

GLPK Integer Optimizer, v4.65
901 rows, 1684 columns, 5604 non-zeros
1684 integer variables, all of which are binary
Preprocessing...
896 rows, 1680 columns, 4816 non-zeros
1680 integer variables, all of which are binary
Scaling...
A: min|aij| = 1.000e+00 max|aij| = 1.000e+00 ratio = 1.000e+00

Problem data seem to be well scaled
Constructing initial basis...
Size of triangular part is 896
Solving LP relaxation...
GLPK Simplex Optimizer, v4.65
896 rows, 1680 columns, 4816 non-zeros
* 0: obj = -0.000000000e+00 inf = 0.000e+00 (784)
Perturbing LP to avoid stalling [253]...
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Removing LP perturbation [1896]...
* 1896: obj = 1.631480829e+02 inf = 0.000e+00 (0) 12
OPTIMAL LP SOLUTION FOUND

Note that the original model contained a vast 1684 binary variables, the preprocessing only
removed four of them (probably the corner cells because those cannot by any means be covered, but
we cannot verify this claim).

After that, the LP-relaxation of the MILP model is solved. The rows regarding perturbation
tell us that the solver made countermeasures to avoid stalling, which is a possible infinite loop in
the Simplex algorithm. The presence of this message indicates that the LP solved is itself difficult,
very big or have special properties. The last line shows us that 163.15 was the optimal solution of
the LP relaxation. This information is valuable, because we know that the optimal solution of the
actual MILP model cannot be more than 163. The solution algorithm also uses the result of the LP
relaxation.

Integer optimization begins...
Long-step dual simplex will be used
+ 1896: mip = not found yet <= +inf (1; 0)
+ 4865: mip = not found yet <= 1.630000000e+02 (44; 0)
+ 9025: mip = not found yet <= 1.630000000e+02 (102; 0)
+ 11252: >>>>> 1.380000000e+02 <= 1.630000000e+02 18.1% (176; 0)
+ 14948: mip = 1.380000000e+02 <= 1.620000000e+02 17.4% (200; 35)
+ 18811: mip = 1.380000000e+02 <= 1.620000000e+02 17.4% (266; 35)
+ 22402: mip = 1.380000000e+02 <= 1.620000000e+02 17.4% (330; 36)
+ 25362: mip = 1.380000000e+02 <= 1.620000000e+02 17.4% (384; 36)
+ 28609: mip = 1.380000000e+02 <= 1.620000000e+02 17.4% (457; 36)
+ 29844: >>>>> 1.400000000e+02 <= 1.620000000e+02 15.7% (484; 36)
+ 33482: mip = 1.400000000e+02 <= 1.620000000e+02 15.7% (492; 108)
+ 36688: mip = 1.400000000e+02 <= 1.620000000e+02 15.7% (557; 108)
+ 40050: mip = 1.400000000e+02 <= 1.620000000e+02 15.7% (639; 109)
+ 43326: mip = 1.400000000e+02 <= 1.620000000e+02 15.7% (687; 109)
Time used: 60.0 secs. Memory used: 6.4 Mb.
+ 43866: mip = 1.400000000e+02 <= 1.620000000e+02 15.7% (698; 109)
TIME LIMIT EXCEEDED; SEARCH TERMINATED
Time used: 60.3 secs
Memory used: 6.7 Mb (7071653 bytes)

The integer optimization begins afterwards, which, in general, is usually a Branch and Bound
procedure. Branching is used to check different values of integer variables one by one, and bounding
is used to rule out branches before checking. We do not go into details here.

Rows of output are regularly printed, either periodically or after some important event, for
example when a better solution is found.

The numbers on the left, ending in 43866, denote the number „steps” made by the solution
algorithm.

The column right of it is the actually known best solution for the problem. If a solution branch is
known to be unable to produce a better result (for example, if the relaxation of that branch is even
worse), then that branch can be skipped without sacrificing solutions. This speeds up the procedure
a lot. The best solution cannot decrease during the search. We can observe the following.

• Initially, the solver had not found any solutions.

• The first solution found involved 138 tiles.
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• In 60 seconds this was improved to 140 tiles, then optimization stopped due to the time limit.

The column to the right denotes the current best bound. This is an upper limit on the objective
of any feasible solutions. This cannot increase during the search, but can decrease, which means
improvement. In the example, it is first 163 based on the LP relaxation, then slightly improved to
162. This means that although the solution procedure did not finish, there cannot be more than
162 tiles.

At any time, the optimal solution of the problem lies somewhere between the best solution and
the best bound. The solution procedure therefore tries to constantly improve both of these values
to eliminate the difference between them. If they are equal, then the optimal solution is found.
Sometimes the current best solution is called a lower bound, because it is a lower bound for the
final optimal solution. Note that if the objective is not maximized but minimized, the same notions
are used, but all relations are the opposite.

The relative difference between the best solution and the best bound is called the integrality
gap, which is usually given in percent. The integrality gap is used as a measure of our knowledge
about the optimal solution. The solver tries to minimize the gap, eventually reaching zero.

Concluding the results of the large case, we have a solution for 140 tiles, but the actual optimal
solution can be as large as 162, the gap after one minute is 15.7%. It is possible that 140 is indeed
the optimal solution, but it is not proven by the solver for sure. Note that these results may be
slightly different for each run, especially if different machines or glpsol versions are used.

What can we do about a large model, which glpsol failed to solve? There are different options
based on the exact situation. Note that each option is limited: some problems are just naturally
very difficult and simply cannot be solved fast.

• Spend more time solving. Unfortunately, improvement usually tends to slow down after some
point. Finishing may take an unacceptably long time.

• Formulate a better model solving the same problem. There is a wide range of practices we
can try, including choosing different decision variables, and applying tightening constraints
which help the solver by cutting out parts of the search space, usually improving the model
relaxation. Sometimes, a better formulation can improve efficiency in magnitudes.

• Choosing a different solver or machine. Note that there are more effective LP/MILP solvers
than glpsol. Example free software are CBC and lpsolve, but even stronger commercial
solvers exist. Note that glpsol supports exporting of the model into a commonly supported
format like CPLEX-LP, which is supported by most MILP solvers. There can be surprising
performance differences between solvers.

• Even glpsol has some options which alter the solution algorithms and can be helpful, including
the usage of heuristics and non-default solution algorithms.

We will now demonstrate the last option: running glpsol again, but now with the following two
heuristic configuration options enabled:

• Feasibility pumping. (--fpump option) This is a heuristic which aims to obtain good
solutions early on in the optimization procedure. This can help the solver later by ruling out
branches with too low objective values.

• Cuts. (--cuts option) This allows all the available cuts glpsol knows to be used in the model.
Cuts are constraints automatically added to the model to improve the solution algorithm by
trimming the search space. These are used for solving MILP models. The cuts enabled by
the option are the Gomory, Mixed-Integer Rounding, Clique and Mixed Cover cuts, note that
each of these can be enabled or disabled individually.
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glpsol -m tiling.mod -d example.dat --fpump --cuts

The mentioned heuristics often help in solving the problem, sometimes dramatically. But again,
there are cases where they do not help, furthermore, the overhead slows down the solution procedure.

The output produced by glpsol by solving the 30 × 30 instance, now with the --fpump and
--cuts options is the following.

Integer optimization begins...
Long-step dual simplex will be used
Gomory's cuts enabled
MIR cuts enabled
Cover cuts enabled
Number of 0-1 knapsack inequalities = 784
Clique cuts enabled
Constructing conflict graph...
Conflict graph has 896 + 1004 = 1900 vertices
+ 1896: mip = not found yet <= +inf (1; 0)
Applying FPUMP heuristic...
Pass 1
Solution found by heuristic: 153
Pass 1
Pass 2
Pass 3
Pass 4
Pass 5
Cuts on level 0: gmi = 12; clq = 1;
+ 2759: mip = 1.530000000e+02 <= 1.620000000e+02 5.9% (15; 0)
+ 5134: mip = 1.530000000e+02 <= 1.620000000e+02 5.9% (44; 0)
+ 7111: mip = 1.530000000e+02 <= 1.620000000e+02 5.9% (73; 1)
+ 8009: mip = 1.530000000e+02 <= 1.620000000e+02 5.9% (89; 1)
+ 9294: mip = 1.530000000e+02 <= 1.620000000e+02 5.9% (106; 1)
+ 10509: mip = 1.530000000e+02 <= 1.620000000e+02 5.9% (124; 1)
+ 12685: mip = 1.530000000e+02 <= 1.620000000e+02 5.9% (141; 2)
+ 14071: mip = 1.530000000e+02 <= 1.620000000e+02 5.9% (160; 2)
+ 15544: mip = 1.530000000e+02 <= 1.620000000e+02 5.9% (181; 2)
+ 16909: mip = 1.530000000e+02 <= 1.620000000e+02 5.9% (195; 3)
+ 17875: mip = 1.530000000e+02 <= 1.620000000e+02 5.9% (211; 3)
Time used: 60.2 secs. Memory used: 10.8 Mb.
+ 18551: mip = 1.530000000e+02 <= 1.620000000e+02 5.9% (225; 3)
TIME LIMIT EXCEEDED; SEARCH TERMINATED
Time used: 60.5 secs
Memory used: 13.1 Mb (13730993 bytes)

Note that we can see traces of preprocessing and mid-time work associated with some of the cuts.
However, the absolute improvement was due to the feasibility pumping, which obtained a feasible
solution of 153 tiles. This is substantially better than the 140 before. The gap is much smaller, just
5.9% instead of 15.7%.

Note that if we are unsure about the complexity of our model, we can always omit time limits,
and simply kill glpsol on demand, as the current best solution is periodically reported in the output
anyways. But in this case, the best found solution itself is not reported, as any subsequent printing
work after the solve statement is skipped. In contrast, if glpsol stops on itself before finding
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the optimal solution, due to time limit for example, then the variables are all set according to the
current best solution instead, and that particular solution will be printed out. For example, this is
the reported solution with 153 tiles placed.

Max. Cross Tiles (30x30): 153
..+....+.....+...+....+....+..
.+#+.++#+.+.+#+++#+.++#+.++#+.
..+++#++++#++++#++++#++++#+++.
.++#++++#+++#+.+++#++++#++++#+
+#++++#+++..+.++#++++#++++#++.
.+++#++++#+.++#++++#++++#+++..
.+#++++#++++#++++#++++#++++#+.
..+.+#++++#++++#++++#++++#+++.
..+..+++#++++#++++#++++#++++#+
.+#+++#++++#++++#++++#++++#++.
.+++#++++#++++#++++#++++#+++..
+#+.+++#++++#++++#++++#++++#+.
.++.+#++++#++++#++++#++++#+++.
.+#+.+++#++++#++++#++++#++++#+
..++.+#++++#++++#++++#++++#++.
.++#+.+++#++++#++++#++++#+++..
+#++.++#++++#++++#++++#++++#+.
.+.++#++++#++++#++++#++++#+++.
.++#++++#++++#++++#++++#++++#+
+#++++#++++#++++#++++#++++#++.
.+++#++++#++++#++++#++++#+++..
.+#++++#++++#++++#++++#++++#+.
..+++#++++#++++#++++#++++#+++.
.++#++++#++++#++++#++++#++++#+
+#++++#++++#++++#++++#++++#++.
.+++#++++#++++#++++#++++#++.+.
.+#++++#++++#++.+#++++#+++.+#+
..+++#++++#+++..++.+#++++#+++.
..+#++.+#++.+#++#+..+.+#+++#+.
...+....+....+..+......+...+..

We can observe that the inside of the 30 × 30 square is almost perfectly filled with cross tiles.
The gap between the best found 153 and the possibly best 162 is left open for now.

7.3 Assignment problem
Another well-known optimization problem is presented in this section, which is the assignment
problem [21].

Problem 40.
Given N workers and N tasks. For each worker and each task, we know how well that particular

worker can execute that particular task, which is described by a cost value for that pair.
Assign each worker exactly one task so that the total cost is maximized.

As usual, the general problem is demonstrated through an example.
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Problem 41.
Solve Problem 40, the assignment problem, with the following data. There are N = 7 the workers,

named W1 to W7, the tasks are named T1 to T7, and the following matrix describes the costs that
incurred whenever a particular task is assigned a particular worker.

T1 T2 T3 T4 T5 T6 T7
W1 9 6 10 10 8 7 11
W2 7 12 6 14 10 5 5
W3 8 9 7 11 10 15 6
W4 4 10 2 10 6 4 7
W5 10 11 7 12 14 9 10
W6 5 9 8 9 13 3 8
W7 7 12 7 7 11 10 9

Defining the input sets and parameters and implementing the data section can be done in different
ways. One possibility is to only read N , the number of workers and tasks, and use a fixed naming
convention for them, for example, numbers from 1 to N . But now, we want to allow the naming
of workers and tasks from the data section, and therefore two sets named Workers and Tasks are
provided. The only requirement is that these sets must have the same size, otherwise the assignment
is impossible. This is established by a check statement.

Next, we introduce the Assignments set for all possible assignments between workers and tasks.
This helps in the formulation later. The Cost parameter is then defined for all possible assignments.

set Workers;
set Tasks;
check card(Workers)==card(Tasks);
set Assignments := Workers cross Tasks;

param Cost {(w,t) in Assignments};

Data for the example Problem 41 can be implemented as follows.

data;

set Workers := W1 W2 W3 W4 W5 W6 W7;
set Tasks := T1 T2 T3 T4 T5 T6 T7;

param Cost:
T1 T2 T3 T4 T5 T6 T7 :=

W1 9 6 10 10 8 7 11
W2 7 12 6 14 10 5 5
W3 8 9 7 11 10 15 6
W4 4 10 2 10 6 4 7
W5 10 11 7 12 14 9 10
W6 5 9 8 9 13 3 8
W7 7 12 7 7 11 10 9
;
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end;

There is only one kind of decision to be made in the model: for each assignment, decide whether
we assign that particular job to the worker or not. This is a binary variable, we name it assign.

var assign {(w,t) in Assignments}, binary;

There are two rules we must obey when choosing assignments: each worker must have exactly
one task, and each task must have exactly one worker assigned. These are implemented as follows.

s.t. One_Task_Per_Worker {w in Workers}:
sum {t in Tasks} assign[w,t] = 1;

s.t. One_Worker_Per_Task {t in Tasks}:
sum {w in Workers} assign[w,t] = 1;

The objective is the total cost, which is obtained by adding each assignment variable multiplied
by the associated cost.

minimize Total_Cost:
sum {(w,t) in Assignments} assign[w,t] * Cost[w,t];

Finally, after the solve statement, we print the optimal total cost, and for each worker, the task
assigned. The model section is ready.

set Workers;
set Tasks;
check card(Workers)==card(Tasks);
set Assignments := Workers cross Tasks;

param Cost {(w,t) in Assignments};

var assign {(w,t) in Assignments}, binary;

s.t. One_Task_Per_Worker {w in Workers}:
sum {t in Tasks} assign[w,t] = 1;

s.t. One_Worker_Per_Task {t in Tasks}:
sum {w in Workers} assign[w,t] = 1;

minimize Total_Cost:
sum {(w,t) in Assignments} assign[w,t] * Cost[w,t];

solve;

printf "Optimal Cost: %g\n", Total_Cost;
for {w in Workers}
{

printf "%s->", w;
for {t in Tasks: assign[w,t]}
{

141



7.3. ASSIGNMENT PROBLEM MILP MODELS

printf "%s (%g)\n", t, Cost[w,t];
}

}

end;

Note that the task assigned to the worker is printed by a for loop iterating over all tasks. As
each worker has exactly one task assigned, this loop is guaranteed to print exactly one task as
desired.

The solution of the example problem is the following. The cost of each assignment is shown in
parentheses.

Optimal Cost: 42
W1->T2 (6)
W2->T1 (7)
W3->T7 (6)
W4->T5 (6)
W5->T3 (7)
W6->T6 (3)
W7->T4 (7)

Therefore, the smallest possible sum of assignments is 42. As usual, it is not guaranteed that
the shown solution is the only optimal one.

There are plenty of things we must note about the assignment problem.

• As we can see, the model formulation is relatively simple. The number of different feasible
solutions for N workers is exactly N ! (factorial), because the assignment of tasks to workers
can be regarded as a permutation of the tasks (or the workers). For N = 7, it is 5040, not too
much to check even by brute-force. But the factorial function quickly rises, in fact, quicker
than exponentially. For 20 tasks, the number of solutions is 20! > 1018, such number of steps
is not considered feasible for average computers, for naive brute-force methods.

• With mathematical programming, we can solve assignment problems much larger in size.
However, this is one of the few integer programming problems for which a polynomial time
algorithmic solution exists. The Hungarian method [22] is specifically designed to the assign-
ment problem, and is substantially faster than using a mathematical programming tool.

• The assignment problem also has a rare property: its LP relaxation yields the optimal result
for the MILP model as well. Therefore, the integrality gap is guaranteed to be zero. This
means that we do not even need binary variables, simple continuous variables with 0 lower
and 1 upper bounds suffice. The reasons behind this property is out of scope of this Tutorial.
Nevertheless, this is a useful knowledge because the assignment problem can be solved by LP,
for which the practical limits in size are usually much larger than for MILP models.

• The assignment problem is also closely related to the transportation problem. In fact, it can
be interpreted as a transportation problem with N sources and N demands, each having an
availability and requirement of 1, and the cost matrix for the transportation problem is the
same as for the assignment problem. The only difference is that the 1 unit of material cannot
be split over multiple connections. But this is not even beneficial: as we previously remarked,
the LP relaxation of the problem is sufficient to provide the optimal solution.
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• In general, the assignment problem can be part of more complex optimization problems where
finding a bijection between two sets is part of the decisions. A bijection, also called one-
to-one correspondence relation between two sets of the same size is when exactly one element
from the other set is assigned to each element.

• Another interesting property is that we can add the same number to any row, or any column
of the cost matrix, without altering the optimal solution. The only thing which changes is the
optimal objective value, which is changed exactly by the number added/subtracted from the
row or column.

• This assignment problem shown here involves minimization, but maximization could also be
a valid objective. These problems are equivalent. If costs are simply negated, we get the
opposite problem, and the solution procedure remains the same.

Now, we will show one interesting extension of the problem. What happens when some decisions
about assignments are already made?

Problem 42.
Solve Problem 40, the assignment problem, with the addition of a priori decisions: some possible

assignments are explicitly declared to either be used or not used.

This extension is not specific to the assignment problem. Such considerations may arise for every
real-world optimization problem. The technique we show here is also not specific.

Our primary goal is to support a priori decisions without compromising the already implemented
functionality. That means, old data files not containing any decisions shall still work.

First, we define a new parameter named Fixing to express these a priori decisions, for all
assignments.

param Fixing {(w,t) in Assignments}, in {0,1,2}, default 2;

This parameter has three possible values.

• The value 0 means we exclude the assignment from the possible choices.

• The value 1 means we must use this assignment in the solution.

• The value 2 means that we do not decide beforehand whether we want the assignment or not,
this decision is rather left as freedom for optimization.

As the value 2 is set as the default for the parameter, if the Fixing variable is not mentioned at
all in the data sections, then the model assumes that there are no a priori decisions. This addresses
compatibility with old data files.

Next, we need these decisions to work. For all Fixing values that are either 0 or 1, we explicitly
set the assign variable to the Fixing value. The indexing goes over all possible assignments, but
those possible assignments that are left to be decided are filtered out and therefore not fixed.

s.t. Fixing_Constraints {(w,t) in Assignments: Fixing[w,t]!=2}:
assign[w,t] = Fixing[w,t];

This completes our new model, which not only solves the assignment problem, but supports a
priori decisions to be made, and only optimizes over the restricted set of cases. We now demonstrate
its usage by two alternative trials.

First, we set the assignment W6 to T6 fixed as zero. This is the only possible assignment that
is decided a priori. This case is related to the original example Problem 41, because its optimal
solution involves this assignment. Therefore prohibiting this assignment forces the solver to find
another solution. The data section modifications and the results are shown below.
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param Fixing :=
W6 T6 0
;

Optimal Cost: 42
W1->T2 (6)
W2->T6 (5)
W3->T7 (6)
W4->T5 (6)
W5->T3 (7)
W6->T1 (5)
W7->T4 (7)

It turns out that although the W6 to T6 assignment has a cost of 3 which is the second smallest
in the whole cost matrix, there is still an alternative solution with the objective 42 which omits it.

Now for the second trial, set the assignment W4 to T3 as mandatory. This is the cheapest possible
assignment in the whole matrix with a cost of 2, but was not included in either optimal solution
previously reported. This is the only a priori decision in the second trial. The data added and
results are the following.

param Fixing :=
W4 T3 1
;

Optimal Cost: 43
W1->T2 (6)
W2->T7 (5)
W3->T5 (10)
W4->T3 (2)
W5->T1 (10)
W6->T6 (3)
W7->T4 (7)

Surprisingly, including assigning W4 to T3 turns out to be a bad idea, as the optimal solution
with this decision is only 43 now, 42 cannot be obtained anymore.

Further than demonstrating the usage of a priori decisions made for a model, the results show
that simple greedy heuristics like taking the smallest cost first does not work perfectly for the
assignment problem.

Finally, note that the implementation of a priori decisions by manipulating problem data –
particularly for the assignment problem – is also possible.

• If a possible assignment is assigned a very large positive cost, like a positive big-M, then it is
not beneficial for the solver to use. Therefore that assignment is effectively excluded.

• If a possible assignment is assigned a very large negative cost, like a negative big-M, then the
solver is effectively forced to use that assignment.

A priori decisions can easily make the problem infeasible, if those decisions are contradictory.
In case we implement a priori decisions by very large negative and positive big-M costs, then the
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model will not be infeasible. Instead, it tries to select as few forbidden and as many mandatory
possible assignments as possible. Assignments in the solution despite their positive big-M costs, or
assignments missing despite their negative big-M costs indicate that the assignment is not possible
as described by a priori decisions. Nevertheless, the solver does its best to minimize the objective
anyways.

7.4 Graphs and optimization
Two basic problems from the field of graph theory are mentioned now which can be solved by MILP
models. For readers interested in topics of graph theory, we offer a good introductory book [23],
but the definitions and theorems needed for the two problems are presented in this Tutorial.

A simple graph has nodes and undirected edges, where each edge connects two different
nodes, and any two nodes are connected by at most one edge. This is in contrast with non-simple
graphs where loops and multiple edges are allowed, and with directed graphs, where edges are
substituted by arcs directing from one node to another.

Some further definitions are introduced that are required to understand the upcoming problem
definitions.

• A path in a graph is a sequence of distinct nodes, where the adjacent nodes in the sequence
are connected by an edge. If the first and last member of a path are connected by an edge,
then together with that edge, the path forms a cycle (see Figure 9).

• A graph is connected if any two of its nodes can be connected with a path. Otherwise, it is
disconnected (see Figure 10). Informally, a connected graph is „one big component”, and a
disconnected graph consists of multiple components.

• A tree is a connected graph with no cycles.

• A spanning subgraph of a graph is another graph with the all its nodes, and the same or
fewer edges.

• A spanning tree of a graph is a spanning subgraph which is a tree (see Figure 11). Spanning
trees are obtained by erasing edges of the graph until it contains no more cycles, but is still
connected.

Figure 9: A path and a cycle in the same graph.

Simple graphs are useful for representing the scheme of a network of connections, but sometimes
the graph is extended by additional data. One common extension is edge weight, which is a number
assigned to each edge. This leads to a weighted simple graph. From now on, we assume weights
are positive. The two problems to be solved are the following.

Problem 43.
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Figure 10: A connected and a disconnected graph.

Figure 11: A spanning tree of a graph connects all nodes but does not contain cycles.

Solve the shortest path problem [24] on an arbitrary simple weighted graph, specified as follows.
Given two nodes, find a path connecting these two nodes so that the total weight of edges on the path
is minimal.

Problem 44.
Solve the minimum weight spanning tree [25] problem on an arbitrary simple weighted graph:

find the spanning tree of the graph with the minimal total edge weight.

In the shortest path problem, edge weights represent distances between two nodes. This is
common in practice, for example in navigation. In the minimum weight spanning tree problem,
weights may represent connection establishment costs. This problem may arise in real-world situa-
tions where a minimal-cost connected network is to be established between a set of nodes, because
the minimal connected spanning subgraphs are always spanning trees – we omit the proof
here. But this idea is a key observation: we are looking for the minimum weight connected graph
on the set of nodes, and this eventually coincides with the minimum weight spanning tree problem.

Before going on, we must note that these problems have very efficient algorithms solving them,
running in polynomial time.

• The shortest path problem is solved by Dijkstra’s algorithm [26].

• The minimum weight spanning tree problem is solved, for example, by Kruskal’s algorithm
[27], or Prim’s algorithm.

Other approaches are also available. Our aim here is to show howMILP models can be utilized for
graphs. Although a specific algorithm can be superior in efficiency, but a mathematical programming
model can be much easier to formulate, and to adapt to more complex problems if the problem
definition changes.

Figure 12 shows an example of a simple weighted graph, which is used for demonstration.
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Figure 12: A simple weighted graph with 9 nodes and 16 weighted edges.

Problem 45.
On the graph depicted in Figure 12, find the shortest path between nodes A and I, and find the

minimum weight spanning tree.

First, we analyze the problems in terms of feasibility. If a graph is disconnected, then there
are nodes which cannot be by moving along edges, and there is no connecting path. Disconnected
graphs have no spanning trees either. On the other hand, if a graph is connected, there should be
paths form any node to any other, and also a spanning tree. We omit proofs of these claims here.

The graph in Figure 12 is connected and clearly have paths and spanning trees, so feasibility is
guaranteed.

The main idea about modeling graphs with mathematical programming tools is that edges are
defined by pairs of nodes. Therefore, edges can be indexed by two-dimensional indices where both
dimensions refer to the set of nodes.

We first implement a data section describing the graph under question. The set of Nodes has
two important elements, the two nodes between which the shortest path is to be found. We name
these as Start and Finish nodes. Note that the two roles are interchangeable. Finally, a Weight
parameter describes edge weights. Note that only those pairs of nodes are mentioned for which an
edge is defined in the graph, and only in one order. For example A B 5 is in the list, but B A 5 is
not. More on that later.

data;

set Nodes := A B C D E F G H I;
param Start := A;
param Finish := I;
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param Weight :=
A B 5
B C 7
A D 3
B E 4
C F 6
D E 6
E F 4
D G 6
E H 2
F I 8
G H 5
H I 9
B D 1
C E 8
E G 7
F H 2
;

end;

Parameters Start and Finish have special characteristics. They do not take numeric values as
parameters usually do, but values from the set Nodes. For this reason, we mark these parameters
as symbolic. For safety reasons, we also add in Nodes to the definitions so that the data section
can only provide names from the Nodes set previously defined. Also, we assert that the two nodes
are different, by a check statement.

set Nodes;
param Start, symbolic, in Nodes;
param Finish, symbolic, in Nodes;
check Start!=Finish;

The notion of edges in simple graph only allows a single, undirected edge between two nodes.
That means, edge AB and BA are the same. However, in mathematical programming, it is more
convenient to refer to edges as (A,B) ordered pairs, because it is easy to index: both A and B can
be any node. There are two approaches to resolve this confusion.

• We could allow only one direction of edges. For example, we can make a convention that for
each X < Y , XY is considered as an edge, but Y X is not. Here X < Y refers to some kind
of ordering, like lexicographical. Note that lexicographical comparison of symbolic values
(strings) is supported in GNU MathProg.

• We could allow all ordered pairs, and therefore work with directed arcs instead of undirected
edges. Later we can identify two arcs as the same edge if needed, by constraints.

We choose the latter option for two reasons. First, only allowing specific node orders for edges
would mess up with the data to be provided, as we cannot exchange the two nodes in the description
of an edge. Second, and more importantly, edge direction will be used in the model implementation
anyways.

A parameter Infty is introduced to serve as a very high edge cost. In both the shortest path
and the minimum weight spanning tree problem, if an edge has such a cost, it is not beneficial for
the solver to select. This effectively eliminates those edges from the search.
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For this reason, we set Infty as the default value for the Weight parameter. This makes edges
not mentioned in the data section automatically excluded from the search by their very large cost.

param Infty, default 99999;
param Weight {a in Nodes, b in Nodes}, >0, default Infty;
param W {a in Nodes, b in Nodes} := min(Weight[a,b],Weight[b,a]);

Finally, a parameter W is introduced for the weight of an edge used in the model, which will be
used in the model formulation. The min operator ensures the following, for all edges XY :

• If neither of XY or Y X have data provided, the weight W is Infty, therefore the edge is
practically excluded.

• If only one of XY or Y X have date provided, then W will be equal to that given weight.
Therefore we only have to mention each edge once in the data section, in arbitrary order of
the two nodes it connects.

• If both XY and Y X have data provided, then the minimum of these weights is used for both.
Note that this is not an intended functionality, we should not provide both weights in the
data. This could also be asserted by a check statement.

The idea for the shortest path problem is the following. We put one imaginary droplet of
material into the Start node, and it will flow through the arcs of the graph to finally reach the
Finish node. We expect the droplet to draw the path we look for. This is the point where the usage
of arcs is more convenient than the usage of edges, because the direction of flow is very important.

A binary variable flow is introduced for each possible arc (a,b), denoting whether the droplet
flows through that arc from a to b or not. This variable shall be binary, as the droplet cannot split.

var flow {a in Nodes, b in Nodes}, binary;

No more variables are needed, not even auxiliary ones. The question is what property of the
arcs must satisfy in order to actually form a path between the starting and finishing node?

It is a basic idea to check the material balance at each node of a graph with flows. In short,
material balance ensures the connection between the total amount of material coming in and going
out. This concept was implicitly used for the center nodes in the transportation problem, where all
materials coming into a center node must have left it towards the demand nodes (see Section 6.7).
We also refer to some constraints as material balance constraints if they express a relation between
different material amounts, as in Chapter 5.

Now let us see how the material balance works for a single droplet. The quantity under in-
vestigation is the times the droplet enters the node, minus the times it leaves, we will call this the
balance at the node.

• From the starting node, the droplet must go out. We may may allow it getting back there,
but then it shall go out again each time. Therefore the balance at the starting node is −1.

• To the ending node, the droplet must arrive. We may allow it leaving, but then it must come
back again each time. Therefore, the balance at the ending node is 1.

• For any other nodes, the droplet shall arrive several times, but leave so many times as well.
Therefore the balance in any other node is 0.

With a single s.t. statement, we establish these balances with the following code.
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subject to Path_Balance {x in Nodes}:
sum {a in Nodes} flow[a,x] - sum {b in Nodes} flow[x,b] =
if (x==Start) then -1 else if (x==Finish) then 1 else 0;

Now let us understand why this single constraint ensures that the model works, and no more are
needed. If a set of arcs is selected by these balance rules, these arcs will form some directed graph
inside the original one. Let us start the droplet and travel around a trail along the selected arcs.
A trail is a sequence of nodes, where adjacent nodes in the sequence are connected by an arc (or
edge, in simple graphs).

We start from the starting node, let it be called A0. Because of the balance, we can get to at
least one other node, A1. Because of the balance there, either we arrived at the finish node, or there
must be another node A2 the droplet can go out. And so on. The balance constraints ensure that
each time we arrive at any node, we are either at the finishing node, or we can select a new arc not
already travelled to go out. The trail is using up the arcs, therefore it cannot be infinite, it must end
at some point. And by the balances, the only possible node the trail can end is the finishing point.
Therefore, the flow variables provide a feasible trail between the Start and Finish nodes.

The objective is the total weight of the selected arcs.

minimize Total_Weight:
sum {a in Nodes, b in Nodes} flow[a,b] * W[a,b];

Note that there are two discrepancies between a path to be found and the set of arcs selected in
the model.

• The balance constraint only ensures an existing trail, but more arcs are allowed to be selected.

• The trail is not necessarily a path, as trails may visit the same node multiple times.

However, as we have seen many times before, optimization will eventually rule out these differ-
ences and will find an actual path. First, it is not beneficial to select additional edges because of
their positive weight. Second, trails can be trimmed to paths, by cutting out cycles between visiting
the same node multiple times. In practice, it sounds like: „If I can travel from A to B by visiting
some places more than once, then I can surely travel without doing so.”

We print out the used arcs after the solve statement, and our model is now ready.

set Nodes;
param Start, symbolic, in Nodes;
param Finish, symbolic, in Nodes;
check Start!=Finish;

param Infty, default 99999;
param Weight {a in Nodes, b in Nodes}, >0, default Infty;
param W {a in Nodes, b in Nodes} := min(Weight[a,b],Weight[b,a]);

var flow {a in Nodes, b in Nodes}, binary;

subject to Path_Balance {x in Nodes}:
sum {a in Nodes} flow[a,x] - sum {b in Nodes} flow[x,b] =
if (x==Start) then -1 else if (x==Finish) then 1 else 0;

minimize Total_Weight:
sum {a in Nodes, b in Nodes} flow[a,b] * W[a,b];
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solve;

printf "Distance %s-%s: %g\n", Start, Finish, Total_Weight;
for {a in Nodes, b in Nodes: flow[a,b]}
{

printf "%s->%s (%g)\n", a, b, W[a,b];
}

end;

Now, let us find the shortest path from A to I in the given graph. We get the following result.

Distance A-I: 19
A->D (3)
B->E (4)
D->B (1)
E->H (2)
H->I (9)

This means the shortest path is 19, and the path itself is ADBEHI. The arcs show the direction
of the path from A to I well, but unfortunately the arcs are not in order. Printing them in order is
possible in GNU MathProg, but would require extensive workarounds spoiling the simplicity of this
model formulation.

Figure 13: Shortest path of length 19 found from node A to node I.

The path can be seen in Figure 13. We can observe that the shortest path is not the path with
the minimal number of edges, and is not always going into the „cheapest” direction.

We make two additional notes on the shortest path problem.
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• We could impose stricter constraints, to only allow at most one incoming and outgoing arc
at each node. This would eliminate trails visiting nodes multiple times, but would not elim-
inate unnecessary arcs to be included: note that a cycle between unrelated nodes meets the
requirements of even the strict balance constraints.

• The shortest path problem in this form has the same nice property as the assignment problem
(see Section 7.3): the LP relaxation of the problem yields the optimal solution. So the model
could be an LP instead. This is not surprising: if the droplet is split, then all of its pieces
shall still go simultaneously on the shortest path to travel the minimal distance in total.

Now let us solve the minimum weight spanning tree problem on the same graph. This time, we
start with the strategy.

Recall the note that the minimal connected spanning subgraph is always a tree. Therefore the
optimization has nothing to do with cycles and tree definitions. The objective shall be the total
weight of selected edges, and the constraints shall only ensure that the graph is connected.
Then, optimization will find the minimum weight connected spanning subgraph, which eventually
will be a tree.

Now the real question is how we can assure by constraints that some edges form a connected
graph of the nodes? We again use the idea of flows. Let us put a single droplet in each node, and
these droplets may flow through edges of the graph, eventually arriving into a single designated
sink node.

If the graph formed by the selected edges is connected, then droplets can reach all nodes from
any. If the graph is disconnected, then only part of the nodes is reachable and the flow is infeasible.

Now let us start implement the model based on this idea. The data section can be almost the
same, the only difference is that we do not define a Start and Finish node, only a single Sink. The
selection of the Sink node is arbitrary, and we could use the model section itself to automatically
choose one, but providing it in the data section is easier. The role of the Sink node is to serve as
the common endpoint of all droplets. We select A as the Sink node.

param Sink := A;

Edge weights are determined exactly the same way as for the shortest path problem. Therefore
the rest of the data section remains unchanged.

set Nodes;
param Start, symbolic, in Nodes;

param Infty, default 99999;
param Weight {a in Nodes, b in Nodes}, >0, default Infty;
param W {a in Nodes, b in Nodes} := min(Weight[a,b],Weight[b,a]);

We use two kinds of decision variables this time. Variable use is defined for each arc, and
denotes whether the droplets may flow through that direction (= 1) or not (= 0). Variable flow is
continuous, and denotes how much material (eventually, how many droplets) flow through that arc.
Note that flow can be negative, more on that later.

var use {a in Nodes, b in Nodes}, binary;
var flow {a in Nodes, b in Nodes};

Without proof, we note that edges of a spanning tree can be uniquely directed towards any one
of its nodes. The variable use will denote if the edge is selected, and it points towards the Sink
node.

152



7.4. GRAPHS AND OPTIMIZATION MILP MODELS

Although both variables are defined for arcs, there is no point for droplets to flow in both
directions through an edge. The reason is that their endpoint is the same. Therefore the optimization
will select at most one of the directions for each edge. A flow of k droplets in one direction can be
regarded as a flow of −k droplets in the opposite direction. The following constraint ensures that if
there is flow between two nodes, then one is some positive k > 0, which is the actual direction, and
the other direction is its exact opposite, −k < 0. Alternatively, both flows can be zero as well.

subject to Flow_Direction {a in Nodes, b in Nodes}:
flow[a,b] + flow[b,a] = 0;

A positive flow of droplets is only allowed in the arcs selected by the use variable. This is
established by a big-M constraint. Note that the coefficient is the number of nodes minus one. This
is the maximum number of droplets in motion, as the droplet put directly on the Sink node does
not need to move. Observe that two constraints are generated for a single edge, which represents
the two directions, but the constraint for the negative flow is redundant.

subject to Flow_On_Used {a in Nodes, b in Nodes}:
flow[a,b] <= use[a,b] * (card(Nodes) - 1);

Finally, establish the material balance of the droplets, which is the following at each node.

• If the node is the Sink, then it shall receive the number of nodes minus one droplets.

• For any other node, it must send one droplet. Note that droplets may enter and exit the same
node, but these do not contribute to the balance of any node.

subject to Material_Balance {x in Nodes}:
sum {a in Nodes} flow[a,x] - sum {b in Nodes} flow[x,b] =
if (x==Sink) then (1-card(Nodes)) else 1;

It can be proven that the arc and flow selection satisfying the balance constraints provide a
connected graph. The logic is similar to the case of the shortest paths: we can start trails at each
node and move through positive flows until reaching the Sink. The sink is the only node where
trails can end. Therefore, all nodes must be connected to the Sink, and consequently to each other
as well.

The objective is the total weight of arcs where the flow is positive. This minimizes the arcs to
be selected, resulting in a spanning tree, all its edges directed towards the Sink.

minimize Total_Weight:
sum {a in Nodes, b in Nodes} use[a,b] * W[a,b];

We print the selected arcs again after the solve statement, and our model section is ready.

set Nodes;
param Sink, symbolic, in Nodes;

param Infty, default 99999;
param Weight {a in Nodes, b in Nodes}, >0, default Infty;
param W {a in Nodes, b in Nodes} := min(Weight[a,b],Weight[b,a]);

var use {a in Nodes, b in Nodes}, binary;
var flow {a in Nodes, b in Nodes};
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subject to Flow_Direction {a in Nodes, b in Nodes}:
flow[a,b] + flow[b,a] = 0;

subject to Flow_On_Used {a in Nodes, b in Nodes}:
flow[a,b] <= use[a,b] * (card(Nodes) - 1);

subject to Material_Balance {x in Nodes}:
sum {a in Nodes} flow[a,x] - sum {b in Nodes} flow[x,b] =
if (x==Sink) then (1-card(Nodes)) else 1;

minimize Total_Weight:
sum {a in Nodes, b in Nodes} use[a,b] * W[a,b];

solve;

printf "Cheapest spanning tree: %g\n", Total_Weight;
for {a in Nodes, b in Nodes: use[a,b]}
{

printf "%s->%s (%g)\n", a, b, W[a,b];
}

end;

Solving the example with Sink node A gives the following results, also visible in Figure 14.

Cheapest spanning tree: 31
A<-D (3)
B<-E (4)
D<-B (1)
E<-H (2)
F<-C (6)
F<-I (8)
H<-F (2)
H<-G (5)

We can observe that all directed paths unambiguously lead to the designated Sink node A. If
another Sink was selected, then the solution graph could be the same (or another one with exactly
the same objective), but the direction of the arcs would be different.

Note that droplets may be split as flows are not integers, but it is not beneficial and therefore
not happening in the optimal solution. This is a similarity to the shortest path problem. However,
in this case the MILP model cannot be relaxed into an LP, because the selection of the arcs is a
mandatory integer part. It does not matter whether only a single or all droplets travel through an
edge, its full weight must be calculated. Therefore variable use needs to remain binary.

One final note about these MILP formulations: how are loops treated? For the sake of easier
indexing, for all nodes a in Nodes and b in Nodes, the arc (a,b) was included in both models.
But this does not only allow two directions for the same edge, but also loops. These are edges in the
form (a,a), silently present throughout all of the formulation: parameters, variables, constraints
and the objective. We can verify that loops are either not beneficial to be used, or using them does
not make a difference, in all instances they are present.
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Figure 14: Minimum weight spanning tree (weight is 31), directed towards Sink node A.

7.5 Travelling salesman problem
A well-known and notoriously difficult optimization problem and its GNU MathProg model imple-
mentation is presented here. This is the travelling salesman problem, or TSP in short [28].

Problem 46.
A set of nodes and distances between any two are given. Find the shortest cycle visiting all nodes.

The motivation behind TSP is that an agent must visit a set of targets in the least amount of
time or least distance travelled, then go back to the starting point. The route, if optimal, will be
a cycle. Note that a cycle visiting all nodes of a graph is also called a Hamiltonian cycle. The
starting node in TSP can be arbitrary, as the cycle visits all nodes anyway.

Comparing the TSP to the knapsack problem, although both are NP-hard in general, the knap-
sack tends to be solvable for much larger number of items than the number of nodes in a TSP.

In general, the distances can be different between two nodes depending on direction, but we
assume they are equal throughout this section.

For the sake of simplicity, we solve the TSP problem for nodes situated on the plane (see Figure
15), and an arbitrary starting point is also determined. The distances are Euclidean, e.g. the
ordinary definition of distance between two points on the plane.

Problem 47.
Find the shortest route starting and ending at the green node and visiting all red nodes depicted

in Figure 15.

For this particular problem, rather than calculating distance matrix, we implement a model which
accepts the planar positions of the nodes instead and calculates Euclidean distances accordingly.

For this reason, a new kind of data section formulation is introduced: the nodes and their
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Figure 15: Set of nodes on the plane, for which TSP is to be solved. The green node is designated
as an arbitrary starting point for travelling.

positions are listed in a single set statement named as Node_List.
Another parameter Start is for the arbitrary starting node. Its role is similar to the arbitrary

sink node in the minimum weight spanning tree problem (see Section 7.4) – it could be avoided, but
makes implementation easier.

data;

set Node_List :=
P00 0 0
P08 0 8
P15 1 5
P22 2 2
P23 2 3
P28 2 8
P29 2 9
P31 3 1
P34 3 4
P40 4 0
P56 5 6
P60 6 0
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P61 6 1
P69 6 9
P73 7 3
P90 9 0
P93 9 3
P94 9 4
P97 9 7
;

param Start := P23;

end;

Let us see how such a data format can be implemented in the model file. What we first need is
a three-dimensional set called Node_List. Note that here we must add dimen 3 to the definition
to indicate that each element of this set has three coordinates. These coordinates are the name of
the node, its X and Y coordinates in plane, respectively.

set Node_List, dimen 3;
set Nodes := setof {(name,x,y) in Node_List} name;
check card(Nodes)==card(Node_List);
param X {n in Nodes} := sum {(n,x,y) in Node_List} x;
param Y {n in Nodes} := sum {(n,x,y) in Node_List} y;

After this point, the set Nodes is derived from the list, by picking each name mentioned there.
Node names shall be unique in the data section. This can be asserted by a check statement telling
the Nodes set has the same size as Node_List. If there are duplicates, the Nodes set is smaller.

The numeric parameters X and Y denote the planar coordinates of the nodes. Technically, this
is obtained by a sum. Since each node name appears in the list exactly once, the sum will result
in selecting the corresponding coordinate of that particular node. The Node_List set is no longer
needed.

The arbitrary Start can be any node from the Nodes set.

param Start, symbolic, in Nodes;

The parameter W denoting the Euclidean distances are calculated based on the X and Y param-
eters. The formula of the Euclidean distance between two points P1 (x1, y1) and P2 (x2, y2) is the
following. The implementation in GNU MathProg uses the sqrt built-in function and the operator
ˆ for exponentiation.

P1P2 =

√
(x1 − x2)

2
+ (y1 − y2)

2 (13)

param W {a in Nodes, b in Nodes} := sqrt((X[a]-X[b])^2+(Y[a]-Y[b])^2);

We have all the required data defined in the model, now the solution strategy and appropriate
decision variables must be determined.

First, observe that TSP is in close connection with the assignment problem (see Section 7.3).
For each node in the TSP, we must decide the next node in the cycle. Therefore the solution of the
TSP is an assignment from the set of nodes to itself.

The variable use for each arc, and the two constraints ensure that each node have exactly one
„next”, and one „previous” neighbor.
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var use {a in Nodes, b in Nodes}, binary;

subject to Path_In {b in Nodes}:
sum {a in Nodes} use[a,b] = 1;

subject to Path_Out {a in Nodes}:
sum {b in Nodes} use[a,b] = 1;

Applying the logic of the shortest paths, we can start a trail and go into the direction of the
only selected arc outside, obtaining a sequence A0A1A2 . . . of nodes. For each i ≥ 1, the arc going
into Ai is Ai−1Ai, and the arc going out is AiAi+1. Therefore it is impossible for the sequence to
run from Ai into an already visited node Aj , 1 ≤ j < i, because Aj has only one arc going in, and
it is Aj−1Aj , not AiAj . This means that the only way the trail can end is running into A0 and the
cycle closes. Ideally, we would obtain a single cycle of the nodes this way (see Figure 16).

Figure 16: Cycle containing all nodes, representing a feasible solution for TSP.

Unfortunately, this simple solution is not sufficient. The mistake in the above consideration is
that the cycle starting from and ending at the Start node does not necessarily include all nodes.
The assignment of nodes to other nodes can possibly form not a single Hamiltonian cycle, but two
or several smaller cycles (see Figure 17).

To prevent the case of more than one cycle, we must ensure connectivity of the graph. And this
is where the technique shown for the minimum weight spanning tree (see Section 7.4) is reused: a
single droplet is put at each node, and they shall flow through selected arcs into the Start node.
This is possible if and only if the assignment is a single cycle.

Note that the resulting graph is not a tree, but the new variable flow and the corresponding
constraints guarantee connectivity only, as they did for the minimum weight spanning tree problem.

var flow {a in Nodes, b in Nodes};

subject to Flow_Direction {a in Nodes, b in Nodes}:
flow[a,b] + flow[b,a] = 0;
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Figure 17: Feasible assignment of nodes but infeasible for TSP.

subject to Flow_On_Used {a in Nodes, b in Nodes}:
flow[a,b] <= use[a,b] * (card(Nodes) - 1);

subject to Material_Balance {x in Nodes}:
sum {a in Nodes} flow[a,x] - sum {b in Nodes} flow[x,b] =
if (x==Start) then (1-card(Nodes)) else 1;

The objective is the total weight of the selected arcs.

minimize Total_Weight:
sum {a in Nodes, b in Nodes} use[a,b] * W[a,b];

We finished the model implementation. As we can see, the TSP model is just the „combination”
of the assignment problem and the minimum weight spanning tree problem. The optimization
procedure does not end up with a spanning tree, but a Hamiltonian cycle because of the assignment
rules. Note that because the assignment problem can be solved by an LP, the assignment problem
can be used as a relaxation of the TSP problem. Solution techniques for TSP may exploit this fact.

We can again print out the used edges one by one after the solve statement, likely not in their
correct order.

printf "Shortest Hamiltonian cycle: %g\n", Total_Weight;
for {a in Nodes, b in Nodes: use[a,b]}
{

printf "%s->%s (%g)\n", a, b, W[a,b];
}

Solving example Problem 47 gives the following result.

159



7.5. TRAVELLING SALESMAN PROBLEM MILP MODELS

Shortest Hamiltonian cycle: 44.5948
P00->P31 (3.16228)
P08->P15 (3.16228)
P15->P34 (2.23607)
P22->P00 (2.82843)
P23->P22 (1)
P28->P29 (1)
P29->P08 (2.23607)
P31->P40 (1.41421)
P34->P23 (1.41421)
P40->P60 (2)
P56->P28 (3.60555)
P60->P61 (1)
P61->P90 (3.16228)
P69->P56 (3.16228)
P73->P93 (2)
P90->P73 (3.60555)
P93->P94 (1)
P94->P97 (3)
P97->P69 (3.60555)

Note that although the number of nodes is only 19, it still takes some time to be solved. The
output of glpsol shows clearly how the solution was gradually improved to optimality.

Integer optimization begins...
Long-step dual simplex will be used
+ 545: mip = not found yet >= -inf (1; 0)
+ 1859: >>>>> 5.969014627e+01 >= 2.300457897e+01 61.5% (48; 1)
+ 4111: >>>>> 4.777953551e+01 >= 2.623268810e+01 45.1% (75; 7)
+ 7223: >>>>> 4.576632755e+01 >= 2.722682823e+01 40.5% (90; 32)
+ 15676: >>>>> 4.459475467e+01 >= 3.434024294e+01 23.0% (154; 77)
+ 39752: mip = 4.459475467e+01 >= 4.136099600e+01 7.3% (501; 612)
+ 52815: mip = 4.459475467e+01 >= tree is empty 0.0% (0; 2407)
INTEGER OPTIMAL SOLUTION FOUND
Time used: 9.4 secs
Memory used: 4.7 Mb (4954539 bytes)

The optimal cycle length is 44.59. Our manual output tells everything about the solution, but
is difficult to interpret. Instead, a visualization is produced, this time by the model section itself.
We print out the solution in Scalable Vector Graphics (SVG) format [29].

SVG is a vector-graphical image representation format. Instead of storing pixels, the primitives
making up the image are described. The SVG relies on XML data format. Therefore, we only need
to print properly formatted XML containing the grid, the nodes and the found TSP solution. This
whole work goes after the solve statement.

Producing SVG with GNU MathProg has more spectacular demonstrations publicly available
[30], we basically use the cited approach here. The syntax of neither SVG nor XML is explained in
this Tutorial.

First, the particular TSP, Problem 47 uses X and Y coordinates from 0 to 9, therefore the image
would fit in a 500× 500 image with a 50 pixels distance between grid lines, the edges being padded
by 25 pixels. In the SVG to be produced, we refer to x and y coordinates from the top left corner,
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increasing right and down. First, we translate coordinates in the TSP problem into coordinates in
the SVG image as follows.

param PX {n in Nodes} := 25 + 50 * X[n];
param PY {n in Nodes} := 475 - 50 * Y[n];

We also define an SVGFILE parameter to contain the name of the SVG file to be produced. This
is solution.svg by default, but can be overridden in a data section.

param SVGFILE, symbolic, default "solution.svg";

We first print an empty string by printf. But this is not printed into the result of the glpsol,
but the file we specify, by adding >SVGFILE at the end of the printf statement. If we want to append
to the end of the file instead, we should write >>SVGFILE, similarly to redirection in command line.

printf "" >SVGFILE;

The first >SVGFILE erases the file if it was present, but all subsequent printf statements shall
end with >>SVGFILE to keep previously written content.

The SVG is an XML file, and a properly formatted header is needed.

printf "<?xml version=""1.0"" standalone=""no""?>\n" >>SVGFILE;
printf "<!DOCTYPE svg PUBLIC ""-//W3C//DTD SVG 1.1//EN"" " >>SVGFILE;
printf """http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"">\n" >>SVGFILE;

Note that GNU MathProg does not allow too long symbolic names and character strings in code
(not more than 100 characters), therefore the work is separated into multiple printf statements.

Afterwards, XML tags will be inserted. The SVG content starts with the opening of an svg
tag, with the width and height of the image. Note that we have to use a lot of " characters in the
SVG code. These must be escaped as "" if we want to print such characters with printf in GNU
MathProg.

printf "<svg width=""500"" height=""500"" version=""1.0"" " >>SVGFILE;
printf "xmlns=""http://www.w3.org/2000/svg"">\n" >>SVGFILE;

First, a „canvas” is printed, which is a rectangle having the same size as the whole image,
providing a uniform pale yellow background. We can use the & operator in GNU MathProg to
concatenate strings together, to separate a single string into multiple lines.

printf "<rect x=""0"" y=""0"" width=""500"" height=""500"" " &
"stroke=""none"" fill=""rgb(255,255,208)""/>\n" >>SVGFILE;

First, the grid is drawn, consisting of 10 vertical and 10 horizontal, narrow black lines at appro-
priate positions.

for {i in 0..9}
{

printf "<line x1=""%g"" y1=""%g"" x2=""%g"" y2=""%g"" " &
"stroke=""black"" stroke-width=""1""/>\n",
25+50*i, 475, 25+50*i, 25 >>SVGFILE;

printf "<line x1=""%g"" y1=""%g"" x2=""%g"" y2=""%g"" " &
"stroke=""black"" stroke-width=""1""/>\n",
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25, 25+50*i, 475, 25+50*i >>SVGFILE;
}

Next, the TSP solution is drawn. A wide, blue line segment is put between each pair of nodes
that appear in the optimal cycle. The direction is not represented, it does not matter anyways.

for {a in Nodes, b in Nodes: use[a,b]}
{

printf "<line x1=""%g"" y1=""%g"" x2=""%g"" y2=""%g"" " &
"stroke=""blue"" stroke-width=""3""/>\n",
PX[a], PY[a], PX[b], PY[b] >>SVGFILE;

}

Finally, the nodes are printed upon the grid and the blue cycle. All nodes apart from Start are
printed as small black circles with red fill.

for {n in Nodes: n!=Start}
{

printf "<circle cx=""%g"" cy=""%g"" r=""%g"" " &
"stroke=""black"" stroke-width=""1.5"" fill=""red""/>\n",
PX[n], PY[n], 8 >>SVGFILE;

}

The Start node is a small black rectangle with green fill.

printf "<rect x=""%g"" y=""%g"" width=""16"" height=""16"" " &
"stroke=""black"" stroke-width=""1.5"" fill=""green""/>\n",
PX[Start]-8, PY[Start]-8 >>SVGFILE;

Note that the mentioned order of elements to be printed is important, as it determines how they
cover each other in the result. Finally, the svg tag is closed.

printf "</svg>\n" >>SVGFILE;

By running glpsol to solve TSP, Problem 47, we do not only get the textual output, but the
SVG image file which shows the drawing (see Figure 18).

Note that the TSP problem has more effective implementations than the one shown here, and
even this one could be improved significantly to find solutions faster for larger TSP problem in-
stances. The focus was on the relation to the assignment problem and the connectivity constraints.
Here we show the full model section, note that the MILP model logic almost as large as the code
responsible for the textual and SVG output.

set Node_List, dimen 3;
set Nodes := setof {(name,x,y) in Node_List} name;
check card(Nodes)==card(Node_List);
param X {n in Nodes} := sum {(n,x,y) in Node_List} x;
param Y {n in Nodes} := sum {(n,x,y) in Node_List} y;

param Start, symbolic, in Nodes;

param W {a in Nodes, b in Nodes} := sqrt((X[a]-X[b])^2+(Y[a]-Y[b])^2);
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Figure 18: Optimal solution of TSP, Problem 47.

var use {a in Nodes, b in Nodes}, binary;
var flow {a in Nodes, b in Nodes};

subject to Path_In {b in Nodes}:
sum {a in Nodes} use[a,b] = 1;

subject to Path_Out {a in Nodes}:
sum {b in Nodes} use[a,b] = 1;

subject to Flow_Direction {a in Nodes, b in Nodes}:
flow[a,b] + flow[b,a] = 0;

subject to Flow_On_Used {a in Nodes, b in Nodes}:
flow[a,b] <= use[a,b] * (card(Nodes) - 1);

subject to Material_Balance {x in Nodes}:
sum {a in Nodes} flow[a,x] - sum {b in Nodes} flow[x,b] =
if (x==Start) then (1-card(Nodes)) else 1;

minimize Total_Weight:

163



7.5. TRAVELLING SALESMAN PROBLEM MILP MODELS

sum {a in Nodes, b in Nodes} use[a,b] * W[a,b];

solve;

printf "Shortest Hamiltonian cycle: %g\n", Total_Weight;
for {a in Nodes, b in Nodes: use[a,b]}
{

printf "%s->%s (%g)\n", a, b, W[a,b];
}

param PX {n in Nodes} := 25 + 50 * X[n];
param PY {n in Nodes} := 475 - 50 * Y[n];

param SVGFILE, symbolic, default "solution.svg";
printf "" >SVGFILE;
printf "<?xml version=""1.0"" standalone=""no""?>\n" >>SVGFILE;
printf "<!DOCTYPE svg PUBLIC ""-//W3C//DTD SVG 1.1//EN"" " >>SVGFILE;
printf """http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"">\n" >>SVGFILE;
printf "<svg width=""500"" height=""500"" version=""1.0"" " >>SVGFILE;
printf "xmlns=""http://www.w3.org/2000/svg"">\n" >>SVGFILE;

printf "<rect x=""0"" y=""0"" width=""500"" height=""500"" " &
"stroke=""none"" fill=""rgb(255,255,208)""/>\n" >>SVGFILE;

for {i in 0..9}
{

printf "<line x1=""%g"" y1=""%g"" x2=""%g"" y2=""%g"" " &
"stroke=""black"" stroke-width=""1""/>\n",
25+50*i, 475, 25+50*i, 25 >>SVGFILE;

printf "<line x1=""%g"" y1=""%g"" x2=""%g"" y2=""%g"" " &
"stroke=""black"" stroke-width=""1""/>\n",
25, 25+50*i, 475, 25+50*i >>SVGFILE;

}

for {a in Nodes, b in Nodes: use[a,b]}
{

printf "<line x1=""%g"" y1=""%g"" x2=""%g"" y2=""%g"" " &
"stroke=""blue"" stroke-width=""3""/>\n",
PX[a], PY[a], PX[b], PY[b] >>SVGFILE;

}

for {n in Nodes: n!=Start}
{

printf "<circle cx=""%g"" cy=""%g"" r=""%g"" " &
"stroke=""black"" stroke-width=""1.5"" fill=""red""/>\n",
PX[n], PY[n], 8 >>SVGFILE;

}

printf "<rect x=""%g"" y=""%g"" width=""16"" height=""16"" " &
"stroke=""black"" stroke-width=""1.5"" fill=""green""/>\n",
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PX[Start]-8, PY[Start]-8 >>SVGFILE;

printf "</svg>\n" >>SVGFILE;

end;

7.6 MILP models – Summary
Several optimization problems where shown where MILP models are an adequate solution technique,
while further capabilities of the GNU MathProg language were demonstrated.

• The knapsack and the multi-way number partitioning problem are easy examples for models
involving discrete decisions and requiring integer variables.

• Tiling can also be addressed by MILP approaches, provided that our choices on tile placement
are finite. This was shown on the tiling of an arbitrary rectangle with cross-shaped tiles. Some
set and param definitions allowed a more concise model formulation.

• The assignment problem is a well-known optimization problem, and was implemented as an
MILP model, turned out to be not more difficult than its LP relaxation. The functionality of
making a priori decisions for a model was demonstrated on the assignment problem.

• Some problems on weighted graphs were also addressed. The shortest path problem and the
minimum weight spanning tree problem were both formulated as an MILP model, with similar
techniques. The idea was the management of imaginary material flows through the edges of
the graph.

• Finally, the travelling salesman problem was solved as a combination of the assignment problem
and the connectivity constraints from the minimum weight spanning tree problem. Visual
output was also produced by the GNU MathProg code itself, in SVG format.

The examples shown here included some of the most common linear programming techniques
and their possible implementations. These can be part of more complex real-world optimization
problems. Integer programming techniques make a much wider range of problems to be solvable
than pure LP models, but at a price of exploding computational complexity.
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Chapter 8

Solution algorithms

So far, the LP and MILP modeling techniques and GNU MathProg implementation details were in
focus. Mathematical programming models are solved by dedicated solvers. Usually the modeling
procedure can be performed without knowing how the solvers work.

Nevertheless, an expertise in the solution algorithms themselves can be valuable when modeling.
It may help designing models, improving their efficiency, choosing the appropriate solver tools and
configurations, interpreting results and solver outputs. Therefore, this chapter is dedicated to give
an insight into how the models we describe in a modeling language are solved in the background.

Operations research has a very rich literature from the seventies regarding solution algorithms,
we propose some books for the interested readers. First of all, book of W. L. Winston [31] is a very
commonly used handbook, considering the main models and algorithms. We recommend also the
book of István Maros about Linear Programming [32], and the book of George Dantzig [33].

In fact, Linear Programming (LP) is a main technique within operations research. There are
several solution methods, and within them we must mention the Simplex Method (and its different
versions). The first version called Primal Simplex Method was introduced by George Dantzig in
1947. In the next chapter we briefly introduce it by solving a simple production problem.

8.1 The Primal Simplex Method
Given the next table with the data of a production problem.

P1 P2 P3 P4 P5 Cap
Res1 1 2 1 3 0 24
Res2 0 1 1 5 1 43
Res3 1 0 0 2 2 18
Profit 19 23 15 42 33

The meaning of the data is analogous to production problems mentioned before (see Problem 9
from Chapter 5).

We have a small factory where we may produce several products (P1, ..., P5). We have three
resources for the production, a column belongs for each product, showing how many units from
the resources must be used, respectively, for producing one unit of the corresponding product. For
example, if we produce one unit from product P4, we will use 3 units from resource Res1, 5 units
from resource Res2, and 2 units from resource Res3. A resource can be in fact some kind of raw
material, or a human resource, electricity, etc. We can produce as many from the products as we
want, except that the production will consume the capacities of the resources, and these capacities
must not be exceeded. For example, if we produce 8 units from P2 and 1 unit from P4, then in
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total we will consume as many as 8 · 2+ 1 · 3 = 19 units from the first resource. The usage from the
other resources can be calculated similarly. We will gain certain amount of profit for the production,
this is again a linear combination of the production plan and the vector of coefficients of the profit.
If the production vector is as before, x(0, 8, 0, 1, 0), introducing vector c(19, 23, 15, 42, 33) for the
profit, the gained profit would be c · x = (19, 23, 15, 42, 33) · (0, 8, 0, 1, 0) = 226. Our goal is to find
a production plan where all constraints are satisfied and the gained profit is as large as possible.
Denoting the matrix of the coefficients in the rows of resources and columns of products by A, the
vector of capacities of resources by b, our problem can be written as below:

z = c · x→ max

st. Ax ≤ b, x ≥ 0.

We can see that this is a general format for LP models. We show how we can solve it by the
Primal Simplex Method. First let us see the model in a detailed form:

x1 +2x2 +x3 +3x4 ≤ 24
+x2 +x3 +5x4 +x5 ≤ 43

x1 +2x4 +2x5 ≤ 18
xi ≥ 0, 1 ≤ i ≤ 5

19x1 +23x2 +15x3 +42x4 +33x5 = z → max

First we change the inequalities by adding so-called slack variables to the left hand side, gaining
equations, like below.

x1 +2x2 +x3 +3x4 +s1 = 24
x2 +x3 +5x4 +x5 +s2 = 43

x1 +2x4 +2x5 +s3 = 18
x≥ 0, s ≥ 0

19x1 +23x2 +15x3 +42x4 +33x5 = z → max

In the above model we write x ≥ 0 instead of writing the nonnegativity constraints one by one
for the variables but the meaning is the same. The same holds for the s vector. Instead of the
system of equations we can use a brief form to handle the data. This brief form is called simplex
tableau, which is shown below.

B xB a1 a2 a3 a4 a5 u1 u2 u3

u1 24 1 2 1 3 0 1 0 0
u2 43 0 1 1 5 1 0 1 0
u3 18 1 0 0 2 2 0 0 1
z 0 −19 −23 −15 −42 −33 0 0 0

We note that there are several versions of the simplex tableau; and all are equivalent. Here we
use that version where the basis solution is put to the left hand side, and the extra row belonging
to the objective is put in the bottom. These special choices have no importance in fact.

Here B means basis, which is a maximal linearly independent set of vectors. Now B =
{u1, u2, u3}, the basis is composed now (initially) from the three unit vectors. The correspond-
ing basis solution is xB = (0, 0, 0, 0, 0, 24, 43, 18). This is a solution of the linear system, moreover
each variable is nonnegative (i.e. the solution is feasible), and any nonzero component in the vector
belongs to a basis vector.

The tableau contains all data, and it also has an extra row.
How do we define the extra row of the objective function? Here simply the negatives of the

coefficients of the c vector appear.
The next theorem is crucial:
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Theorem 1 Exactly one of the following options happens.
a, There is no negative entry in the last row. In this case the corresponding basis solution is optimal.
b, There is a negative value in the last row, such that there is no positive value in its column. In
this case there is no optimal solution, as the objective value is not bounded from above.
c, Otherwise (there is a negative value in the last row, but for any such value there exists a positive
value in its column) we can perform a basis transformation so that the corresponding value of the
objective will not be smaller.

Since we give only a brief overview here about the simplex method, we do not prove the theorem,
the interested reader can find it in any proposed book. But we show how the transformation goes.
Each transformation exchanges one vector in the basis to another one not already there.

Let us suppose that we choose the column of a2 for the vector that enters the basis. We are not
allowed to choose the vector that will leave the basis, this choice must be made by a rule that is
called the minimum rule. This is as follows. We take the following minimum: min

{
24
2 , 43

1

}
, here

the fractions are created so that the numerator is taken from the basis solution, and the denominator
is taken from the same row and the chosen column. We cannot divide by zero, and we do not want
to divide by negative value. The minimum is found as 24/2, this means that the vector of the row
of 24 must be chosen as leaving vector. So u1 leaves the basis. We call the 2 value as pivot number,
we wrote it by bold letter in the tableau.

How do we perform the transformation? The row of the pivot value is divided by the pivot value
(i.e. by 2), and 1/2 times of the row of the pivot value is subtracted from the second row, 0/2 times
of the row of the pivot value is subtracted from the third row, and 23/2 times of the row of the
pivot value is added to the row of the objective. In the above calculations (i.e. 1/2, 0/2, and 23/2)
the numerator comes from the column of the pivot value, and the denominator is always the pivot
value. The goal of choosing these factors is that by adding the pivot row to others, each element in
the pivot column other than the pivot element is eliminated to zero. After the transformation we
get the following tableau.

B xB a1 a2 a3 a4 a5 u1 u2 u3

a2 12 1/2 1 1/2 3/2 0 1/2 0 0
u2 31 −1/2 0 1/2 7/2 1 −1/2 1 0
u3 18 1 0 0 2 2 0 0 1
z 276 −15/2 0 −7/2 −15/2 −33 23/2 0 0

Now let us choose the column of a5 to enter the basis. According to the minimum rule u3 is the
leaving vector. After the transformation we get:

B xB a1 a2 a3 a4 a5 u1 u2 u3

a2 12 1/2 1 1/2 3/2 0 1/2 0 0
u2 22 −1 0 1/2 5/2 0 −1/2 1 −1/2
a5 9 1/2 0 0 1 1 0 0 1/2
z 573 9 0 −7/2 51/2 0 23/2 0 33/2

Only one negative entry remained in the last row, we must choose this column to enter the basis.
According to the minimum rule a2 leaves the basis.

As we could realize, the rule of the change of the objective function is the following:

• If we choose a column to enter the basis where the value is negative in the row of the objective:
the consequence is that the objective value is growing.

• If we choose a column where the value in the bottom is positive: the objective will decrease
(but we do not want this as our goal is to maximize the objective)
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• If we choose a column where the value in the bottom line is zero: there will be no change in
the objective value.

Note that this rule about the choice of the entering column and the change of the objective is
only true if the basis solution is non-degenerate, which means that if for example the current basis
is B(a2, u2, a5), then all out of x2, s2, x5 are positive. In fact, if the value of the variable in the basis
solution in the row of the pivot value would be zero then there will be no change in the column of
the basis solution, so there is no change in the objective.

Let us see what happened after the transformation:

B xB a1 a2 a3 a4 a5 u1 u2 u3

a3 24 1 2 1 3 0 1 0 0
u2 10 −3/2 −1 0 1 0 −1 1 −1/2
a5 9 1/2 0 0 1 1 0 0 1/2
z 657 25/2 7 0 36 0 15 0 33/2

We can see that there is no more negative entry in the last row which means (according to
Theorem 1) that the present solution is optimal. This optimal solution is as follows: xB =
(0, 0, 24, 0, 9 |0, 10, 0). Here in the vector we put a vertical line to separate the first five variables
from the last three variables (i.e. the slack variables), as their meanings are different. Now the
solution means that in the optimal solution (if we get maximal amount of profit, so that all con-
straints are still satisfied) we need to produce 24 units and 9 units from the third and fifth products,
respectively. Moreover, 10 units form the second resource remains, the whole amounts of the other
two resources are completely consumed.

We can realize that we have performed three transformations, but we could also have reached the
final tableau by only two transformations (as only a3 and a5 needed to be changed in the original
basis). It is not easy to see in advance what kinds of transformations will lead to the final state in
the fewest steps. But there are several tricks that can help. For example (for such a small problem)
it can be beneficial if we choose such a vector to leave the basis, for which the increment of the
objective is as much as possible.

There are other issues that can make the case difficult, for example very rarely "cycling" can
happen, this means that after several transformations we return to some basis that we had before.
This case is very rare in the practice, it almost never happens.

Another issue is that in many cases before we start to solve a problem, we can make some
preprocessings, e.g. some constraints can be found that are redundant (which means that we loose
nothing if we delete the constraint, the optimal solution of the remaining system will be the same).

What happens if the factory introduces a new (in fact a sixth) product, so that the data of
its resource need is given by a6? We can realize easily that there is no need to repeat the whole
computation, we compute only the column of the new product (the transformed form of the a6
vector can be written as B−1a6, where B is the present basis, and B−1 is its inverse), and we insert
this column vector into the tableau. If the coefficient of this new vector in the last row (calculated
as cBB

−1a6 − c6) is nonnegative, it means that producing this new product is not advantageous.
Otherwise this value is negative, and only this one is the negative value in the last row. Then we
continue the transformations as we made it before. For an example, let us suppose that the column
of the new product is a6(1, 2, 1)

T , here the components mean the resource consumption from the
three resources for producing one unit from this new product (say product P6). Furthermore, let
c6 = 35 which means the profit gained from producing one unit from this product. Note that
currently the basis is

B(a3, u2, a5) =

 1 0 0
1 1 1
0 0 2

 and B−1 =

 1 0 0
−1 1 −1/2
0 0 1/2

 .
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We can find the inverse also in the last three columns of the simplex tableau. Thus B−1a6 =(
1, 1

2 ,
1
2

)∗
, and cBB

−1a6−c6 = (15, 0, 33)·(1, 1/2, 1/2)−35 = −7/2, which means that the production
of the new product is advantageous, and the procedure will continue, the vector representing the
new product will enter the basis.

Finally we mention an article which treats certain different pivoting rules [34].

8.2 The Two-phase (Primal) Simplex Method
Here we introduce very briefly the two-phase method. What has been shown before, this is in fact
the second phase of the method. So we need to show the first phase.

The purpose of the first phase is finding a feasible basis solution, while in the second phase,
starting from the feasible (basis) solution, step by step we get an optimal solution. When do we
need the first phase? In such a case when we are not able to begin with a suitable feasible solution.
We show the first phase through an example. Let us suppose that our LP is as follows:

x1 +2x2 +x3 +3x4 ≥ 24
x2 +x3 +5x4 +x5 ≤ 43

x1 +2x4 +2x5 = 18
xi ≥ 0, 1 ≤ i ≤ 5

19x1 +23x2 +15x3 +42x4 +33x5 = z → max

We modified our original example a little bit. It can be interpreted that from the first resource
we need to use at least 24 units, we can use at most 43 units from the second resource (as before),
and finally, we need to consume all amounts of the third resource.

First we convert the inequalities to equations.

x1 +2x2 +x3 +3x4 −s1 = 24
x2 +x3 +5x4 +x5 +s2 = 43

x1 +2x4 +2x5 = 18
x≥ 0, s ≥ 0

19x1 +23x2 +15x3 +42x4 +33x5 = z → max

Now we can realize that we do not have enough unit vectors (that would serve us as an initial
basis). We note that here s2 is called slack variable and s1 is called surplus variable. Let us create
the missing unit vectors that we will need for a basis:

x1 +2x2 +x3 +3x4 −s1 +t1 = 24
x2 +x3 +5x4 +x5 +s2 = 43

x1 +2x4 +2x5 +t2 = 18
x≥ 0, s ≥ 0, t ≥ 0

19x1 +23x2 +15x3 +42x4 +33x5 = z → max

We call t1 and t2 as artificial variables, as we will use them but we „are not allowed” to use
them. It is true that the original equation system has a feasible solution (which means that all
equations are satisfied with the bounded x and s variables) if and only if we can eliminate the
artificial variables from the system. So our goal is to eliminate them, this will be the task of the
first phase. Our technique is to introduce an artificial (or secondary) objective function as follows,
let
∧
z = −t1 − t2. Instead of the original objective function z, we will maximize

∧
z in the first phase

(in the same way as we have shown how we maximize z). If the maximum value of
∧
z is zero, it

means that we already eliminated the artificial variables, and continue with the second phase, where
we return to the original objective function. Otherwise, if the maximum of

∧
z is negative, it means

that the original LP cannot be solved without the artificial variables, i.e. does not have a feasible
solution.
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8.3 The Dual Simplex Method
There are several versions of the simplex method, besides the Primal Simplex Method, the Dual
Simplex Method is the other main version. We introduce it briefly. Let us consider the following
LP:

x1 +x3 ≥ 1
2x1 +x2 +3x3 ≥ 3
x1 +2x2 ≥ 5

4x1 +2x2 +x3 ≥ 7
x≥ 0

10x1 +12x2 +15x3 = z → min

After multiplying all inequalities and the objective function by −1, and adding slack variables
we get the following system:

−x1 −x3 +s1 = −1
−2x1 −x2 −3x3 +s2 = −3
−x1 −2x2 +s3 = −5
−4x1 −2x2 −x3 +s4 = −7

x≥ 0
−10x1 −12x2 −15x3 = −z → max

And here is the first simplex tableau below:

B xB a1 a2 a3 u4 u5 u3 u4

u1 −1 −1 0 −1 1 0 0 0
u2 −3 −2 −1 −3 0 1 0 0
u3 −5 −1 −2 0 0 0 1 0
u4 −7 −4 −2 −1 0 0 0 1
−z 0 10 12 15 0 0 0 0

For the first sight we can realize that now the simplex tableau is different from the previous form.
In the last row there are only nonnegative values. We will call this property that the basis solution
is dual-feasible. But now the basis solution is not primal feasible, i.e. there are negative values
in the basis solution. In fact, all values are negative or zero since now this is the basis solution:
xB = (0, 0, 0,−1,−3,−5,−7). If we can reach that the tableau is both dual and primal feasible after
several transformations, this means that we will get the optimal tableau. Note that in the Primal
Simplex Method (in the second phase of it) we go through primal feasible solutions, while in the
Dual Simplex Method we go through dual feasible solutions.

Here is the rule of the transformation:

• We choose a row where the coordinate of the basis solution is negative (this vector of the basis
will leave the basis).

• From this row we will choose a negative pivot value.

• We apply an appropriate version of the minimum rule for choosing the entering column.

Let us suppose that the leaving vector is u1, so we choose the pivot value from the first row.
We can choose the entering column from a1, a2 and a3 as all other vectors are in the basis. The
appropriate values in this row and in these columns are −1, 0 and again −1. As we told, we would
choose a negative value, so we cannot choose the zero. Regarding the two other values we make the
following calculation min {10/1, 15/1}. Here the numerators come from the row of the objective,
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and the denominators are the negatives of the previously listed two −1 values. Since 10/1 is smaller,
the appropriate value is chosen as pivot value, we denoted it by bold letter in the tableau. After the
transformation (where the rule is the same as in the transformation for the primal simplex method),
we get the following tableau:

B xB a1 a2 a3 u4 u5 u3 u4

a1 1 1 0 1 −1 0 0 0
u2 −1 0 −1 −1 −2 1 0 0
u3 −4 0 −2 1 −1 0 1 0
u4 −3 0 −2 3 −4 0 0 1
−z −10 0 12 5 10 0 0 0

Now let us choose u3 as the leaving vector. There are only two negative values in its row that can
be considered as pivot value. The calculation is the following: min {12/2, 10/1}. Since the former
fraction is the smaller, −2 is chosen as the pivot value. After the transformation the next tableau
is the following:

B xB a1 a2 a3 u4 u5 u3 u4

a1 1 1 0 1 −1 0 0 0
u2 1 0 0 −3/2 −3/2 1 −1/2 0
a2 2 0 1 −1/2 1/2 0 −1/2 0
u4 1 0 0 2 −3 0 −1 1
−z −34 0 0 11 4 0 6 0

Since we got a tableau with a solution that is both primal and dual feasible, this is an optimal
solution. Here xB = (1, 2, 0 |, 0, 1, 0, 1) and the (optimal) value of the objective is z = 34.

8.4 The Gomory Cut
The Gomory cut is a main tool for getting integer solutions for an LP. If we require that the variables
of an LP are in fact integer numbers, we call the model Integer Linear Program (ILP). In many
cases some of the variables are required as integers but the other are allowed to be real values, in
this case the program is called Mixed-Integer Linear Program (MILP).

Solving an integer (or mixed-integer) program is (usually) much harder. There are several tools
to handle the integrality of the variables, we show only one such method, which is commonly used.
We will show the method through an example. The example comes from a book of András Prékopa,
as it is mentioned in the manuscript of Tamás Szántai [35], page 28 (in Hungarian), and it is
also shown in the short (Hungarian) draft of Mihály Hujter [36]. We note that we perform the
calculations in a little bit different way, as we tried to make our calculations uniform (for the Primal
Simplex and Dual Simplex tableau).

Let us consider the next ILP:

2x1 +x2 ≥ 1
2x1 +5x2 ≥ 4
−x1 +x2 ≥ 0
−x1 −x2 ≥ −5
−x1 −2x2 ≥ −4

x≥ 0, x1, x2 are integers
5x1 +4x2 = z → min

Let us transform the inequalities to „≤” type, then form them to equations by introducing slack
variables. Also, let us transform the objective to „max” form. We get the following.
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−2x1 −x2 +s1 = −1
−2x1 −5x2 +s2 = −4

x1 −x2 +s3 = 0
x1 +x2 +s4 = 5
x1 +2x2 +s5 = 4

x≥ 0
−5x1 −4x2 = −z → max

Now let us create the usual simplex tableau:

B xB a1 a2 u1 u2 u3 u4 u5

u1 −1 −2 −1 1 0 0 0 0
u2 −4 −2 −5 0 1 0 0 0
u3 0 1 −1 0 0 1 0 0
u4 5 1 1 0 0 0 1 0
u5 4 1 2 0 0 0 0 1
−z 0 5 4 0 0 0 0 0

The tableau is dual feasible, but primal infeasible. Let us make basis transformations with the
Dual Simplex Method to reach the optimal solution. In fact, two steps will be enough. First u1

leaves the basis and a1 enters (according to the minimum rule), then u2 leaves the basis and a2
enters. The resulting tableau is as follows:

B xB a1 a2 u1 u2 u3 u4 u5

a1 1/8 1 0 −5/8 1/8 0 0 0
a2 3/4 0 1 1/4 −1/4 0 0 0
u3 5/8 0 0 7/8 −3/8 1 0 0
u4 33/8 0 0 3/8 1/8 0 1 0
u5 19/8 0 0 1/8 3/8 0 0 1
−z −29/8 0 0 17/8 3/8 0 0 0

The given tableau is optimal. The optimal (fractional) solution is the following:

xB = (1/8, 3/4 |0, 0, 5/8, 33/8, 19/8)

This is the optimal solution of the relaxed model, where x ≥ 0 is still required, but the integrality
of the variables is not required. The optimum value of the relaxed problem is z = 29/8.

At this point we will perform the famous Gomory Cut !
Let us choose a fractional variable, e.g. x1 = 1/8. Let us consider the row of this variable in the

tableau, as well. Here the meaning of the data (provided by the tableau) is the following:

1/8 = x1 − 5/8u1 + 1/8u2

We round up all coefficients in this equation. The values (to round up 1/8, 1, −5/8 and 1/8)
are the following: 7/8, 0, 5/8 and 7/8, respectively. With these values (using them one by one and
omitting the zero) we create the next (new) constraint:

7/8 ≤ 5/8u1 + 7/8u2

We can realize that this condition does not hold, since u1 = u2 = 0 in the current optimal
(fractional) basis solution. It means that adding this last constraint to the previously used con-
straints, the current basis solution becomes infeasible. Let us multiply the new constraint by −1
and introduce a new slack variable denoted by s6, we get:

173



8.4. THE GOMORY CUT SOLUTION ALGORITHMS

−5/8u1 − 7/8u2 + s6 = −7/8

We add this new equation to the system, and write it into a new line into the simplex tableau
as follows:

B xB a1 a2 u1 u2 u3 u4 u5 u6

a1 1/8 1 0 −5/8 1/8 0 0 0 0
a2 3/4 0 1 1/4 −1/4 0 0 0 0
u3 5/8 0 0 7/8 −3/8 1 0 0 0
u4 33/8 0 0 3/8 1/8 0 1 0 0
u5 19/8 0 0 1/8 3/8 0 0 1 0
u6 −7/8 0 0 −5/8 −7/8 0 0 0 1
−z −29/8 0 0 17/8 3/8 0 0 0 0

Now the tableau is still dual feasible but not primal feasible. We choose the row of u6 for the
leaving vector. According to the minimum rule the pivot value is −7/8 (denoted by bold), since
3/7 < 17/5. After the transformation the next tableau is as follows:

B xB a1 a2 u1 u2 u3 u4 u5 u6

a1 0 1 0 −5/7 0 0 0 0 1/7
a2 1 0 1 3/7 0 0 0 0 −2/7
u3 1 0 0 8/7 0 1 0 0 −3/7
u4 4 0 0 2/7 0 0 1 0 1/7
u5 2 0 0 −1/7 0 0 0 1 3/7
u2 1 0 0 5/7 1 0 0 0 −8/7
−z −4 0 0 13/7 0 0 0 0 3/7

We got an optimal tableau again (primal feasible and dual feasible, so it is optimal). But here
the optimal solutions are as follows: xB = (0, 1 |0, 1, 1, 4, 2). Since x1 = 0 and x2 = 1 are integer
values, this means that we got the optimal solution of the ILP, as well.
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Chapter 9

Summary

Capabilities of the GNU MathProg modeling language was presented, on various problems. Linear
equation system solution, the production and the diet problem and their common extensions, the
transportation problem, various cost functions in general, and integer programming techniques
through common optimization problems were involved.

Mathematical programming in general offers a simple practical solution for the class of problems
it is adequate for. MILP models can be used for a much wider range of cases than their pure LP
counterparts. Nevertheless both problem classes are useful on their own.

Using our expertise in GNU MathProg gives us a unique tool for hard optimization problems.
The solution speed is not necessarily the best available for a particular problem, but ease of im-
plementation, maintenance of code and adaptation to changes in the problem definition makes the
methodology valuable for both industrial and scientific purposes.

Usually, a single model file is developed, which addresses all problem instances implemented in
their own data files. The glpsol solver is capable of parsing the language and solving the model at
the same time, and user-defined output can also be obtained.

We also gave an insight into how LP models can be solved by the Simplex Method, and one
technique for integer programming problems, the Gomory cut. These are only an introduction to
how LP/MILP solver software work in the background. We are allowed to treat solvers as black
boxes, but basic knowledge about them can be useful for developing mathematical programming
models, improving them and better understanding their results.

Note that there are many approaches other than the main line shown in this Tutorial. We
mention a few as an ending.

• The language GNU MathProg and a parser/solver like glpsol can be used alone to develop
and solve models, but note that the GLPK software kit offers other features, notably a callable
library. Accessing linear programming tools from a programming language can be better in the
long term than using standalone GNU MathProg model files. For example, in GNU MathProg,
we cannot „change” the value of a parameter, which limits input data processing possibilities.

• Different configurations of the solver glpsol are only barely touched in this Tutorial. Appli-
cation of the appropriate heuristics or alternative solution methods can speed up the search.

• The solver glpsol is an easy-to-use tool, but probably not the fastest LP/MILP solver. Other
free solvers may be superior if performance is an issue, for example CBC [7] or lpsolve [8].
Commercial MILP solvers can be even much better. We can use alternative solvers with GNU
MathProg models, as glpsol supports exporting a model into well-known formats.

• GNU MathProg is not the only language for linear programming. There are dozens of other
languages, each having an own class of models, input/output formats and solvers to support.
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SUMMARY

• Not LP and MILP are the only mathematical programming problem classes having general
purpose solvers. If specific nonlinear objectives and constraints are needed to model a situation,
then we might try developing a Nonlinear or Mixed-Integer Nonlinear Programming (NLP or
MINLP) model in some adequate environment. Remember, more general tools can be much
more costly in terms of running time.

• Mathematical programming is a powerful tool, but some problems do have much more effective
algorithmic solutions. Sometimes developing an algorithm can yield better results, although
often for the cost of more coding.

• Throughout this Tutorial, we only solved models in a whole, resulting in a final answer. In
general, mathematical programming tools can be used as part of some algorithmic framework.
For example, a large problem can be decomposed into several different models that are solved
separately or one after the other. Or, an LP/MILP model can serve as a relaxation for a more
complex optimization problem, and as such, provide a bound for its objective.

We hope the reader will find this Tutorial helpful and motivating in solving real-life optimization
problems in the future.

176



Bibliography

[1] GNU MathProg (GMPL), reference manual, gusek.sourceforge.net/gmpl.pdf

[2] GNU Linear Programming Kit (GLPK), gnu.org/software/glpk

[3] GLPK Wikibooks, en.wikibooks.org/wiki/GLPK

[4] IMOLS by Máté Hegyháti, hegyhati.github.io/IMOLS

[5] Tankönyvtár homepage, dtk.tankonyvtar.hu/

[6] General Public License 3.0, gnu.org/licenses/gpl-3.0.en.html

[7] Coin-OR Branch and Cut (CBC), LP/MILP solver, projects.coin-or.org/Cbc

[8] lpsolve, LP/MILP solver, lpsolve.sourceforge.net/5.5

[9] GUSEK, Windows IDE for GLPK, gusek.sourceforge.net/gusek.html

[10] Gaussian elimination, en.wikipedia.org/wiki/Gaussian_elimination

[11] Solver tutorial, Product Mix,
solver.com/solver-tutorial-solver-model-using-product-mix-example

[12] LINGO tutorial, Product Mix, lindo.com/downloads/LINGO_text/Chapter6.pdf

[13] George J. Stigler, The Cost of Subsistence, Journal of Farm Economics (1945) 27(2), 303-314,
doi.org/10.2307/1231810

[14] Stigler Diet problem, en.wikipedia.org/wiki/Stigler_diet

[15] L. R. Ford, Jr. and D. R. Fulkerson, Solving the Transportation Problem, Management Science
(1956) 3(1) 24-32, jstor.org/stable/2627172

[16] Short tutorial on the transportation problem,
mathcs.emory.edu/~cheung/Courses/323/Syllabus/Transportation/intro.html

[17] Goal programming, en.wikipedia.org/wiki/Goal_programming

[18] Knapsack problem, en.wikipedia.org/wiki/Knapsack_problem

[19] Richard E. Korf, Multi-Way Number Partitioning Problem, Proceedings of the Twenty-First
International Joint Conference on Artificial Intelligence (IJCAI-09), ISBN 978-1-57735-426-0,
2009, ijcai.org/Proceedings/09/Papers/096.pdf

[20] Bin packing problem, en.wikipedia.org/wiki/Bin_packing_problem

[21] Assignment problem, en.wikipedia.org/wiki/Assignment_problem

177

http://gusek.sourceforge.net/gmpl.pdf
https://www.gnu.org/software/glpk
https://en.wikibooks.org/wiki/GLPK
https://hegyhati.github.io/IMOLS
https://dtk.tankonyvtar.hu/
https://www.gnu.org/licenses/gpl-3.0.en.html
https://projects.coin-or.org/Cbc
http://lpsolve.sourceforge.net/5.5
http://gusek.sourceforge.net/gusek.html
https://en.wikipedia.org/wiki/Gaussian_elimination
https://solver.com/solver-tutorial-solver-model-using-product-mix-example
https://lindo.com/downloads/LINGO_text/Chapter6.pdf
https://doi.org/10.2307/1231810
https://en.wikipedia.org/wiki/Stigler_diet
https://www.jstor.org/stable/2627172
http://www.mathcs.emory.edu/~cheung/Courses/323/Syllabus/Transportation/intro.html
https://en.wikipedia.org/wiki/Goal_programming
https://en.wikipedia.org/wiki/Knapsack_problem
https://www.ijcai.org/Proceedings/09/Papers/096.pdf
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Assignment_problem


BIBLIOGRAPHY BIBLIOGRAPHY

[22] Harold W. Kuhn, The Hungarian Method for the assignment problem, Naval Research Logistics
Quarterly (1955) 2, 83–97, doi.org/10.1002/nav.3800020109

[23] John Adrian Bondy, Uppaluri Siva Ramachandra Murty, Graph Theory with Applications,
Macmillan, 1976, ISBN 0333177916

[24] Shortest path problem, en.wikipedia.org/wiki/Shortest_path_problem

[25] Minimum weight spanning tree problem, en.wikipedia.org/wiki/Minimum_spanning_tree

[26] Dijkstra’s algorithm explained,
math.mit.edu/~rothvoss/18.304.3PM/Presentations/1-Melissa.pdf

[27] Kruskal’s algorithm explained, tutorialspoint.com/data_structures_algorithms/
kruskals_spanning_tree_algorithm.htm

[28] Travelling salesman problem, en.wikipedia.org/wiki/Travelling_salesman_problem

[29] Scalable Vector Graphics (SVG) 2, w3.org/TR/SVG2

[30] Manual SVG output by GLPK, en.wikibooks.org/wiki/GLPK/Scalable_Vector_Graphics

[31] Wayne L. Winston, Operations Research, Applications and algorithms, Duxbury Press, Bel-
mont, California, 1991 (second Edition), ISBN 0-534-92495-6

[32] István Maros, Computational Techniques of the Simplex Method, Series Title: International
Series in Operations Research & Management Science, Series Volume: 61, 325 pages, Hardcover
ISBN 978-1-4020-7332-8, 2003

[33] G. B. Dantzig, Maximization of linear functions of variables subject to linear inequalities, in:
Activity Analysis of Production and Allocation, ed. T. C. Koopmans, John Wiley and Sons,
Inc., New York, 1951.

[34] Terlaky, T. & Zhang, Pivot rules for linear programming: A survey on recent theoretical
developments, Ann Oper Res (1993) 46(1), 203-233, doi.org/10.1007/BF02096264

[35] OR tutorial (Hungarian), math.bme.hu/~hujter/mmopsztl.pdf

[36] Gomory cuts example (Hungarian), math.bme.hu/~hujter/gomory.pdf

178

https://doi.org/10.1002/nav.3800020109
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Minimum_spanning_tree
https://math.mit.edu/~rothvoss/18.304.3PM/Presentations/1-Melissa.pdf
https://www.tutorialspoint.com/data_structures_algorithms/kruskals_spanning_tree_algorithm.htm
https://www.tutorialspoint.com/data_structures_algorithms/kruskals_spanning_tree_algorithm.htm
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://www.w3.org/TR/SVG2
https://en.wikibooks.org/wiki/GLPK/Scalable_Vector_Graphics
https://doi.org/10.1007/BF02096264
http://math.bme.hu/~hujter/mmopsztl.pdf
http://math.bme.hu/~hujter/gomory.pdf

	Introduction
	Optimization
	Equations
	Finding the ,,Best'' solution
	Main concepts
	Mathematical programming

	GNU MathProg
	Prerequisites for programming
	,,Hello World!'' program

	Equation systems
	Example system
	Modifications in code
	Parameters
	Data blocks
	Indexing
	Other options for data
	General columns
	Minimizing error
	Equation systems – Summary

	Production problem
	Basic production problem
	Introducing limits
	Maximizing minimum production
	Raw material costs and profit
	Diet problem
	Arbitrary recipes
	Order fulfillment
	Production problem – Summary

	Transportation problem
	Basic transportation problem
	Connections as index set
	Increasing unit costs
	Economy of scale
	Fixed costs
	Flexible demands
	Adding a middle level
	Transportation problem – Summary

	MILP models
	Knapsack problem
	Tiling the grid
	Assignment problem
	Graphs and optimization
	Travelling salesman problem
	MILP models – Summary

	Solution algorithms
	The Primal Simplex Method
	The Two-phase (Primal) Simplex Method
	The Dual Simplex Method
	The Gomory Cut

	Summary

