
A felsőfokú oktatás minőségének és
hozzáférhetőségének együttes javı́tása a
Pannon Egyetemen

EFOP-3.4.3-16-2016-00009

Introduction to Numerical Analysis

Ferenc Hartung

H-8200 Veszpr Egyetem u.10.
H-8201 Veszpr Pf. 158.
Telefon: (+36 88) 624-848
Internet: www.uni-pannon.hu

2018

Table of contents

Table of contents . 3

1. Introduction . 5
1.1. The Main Objective and Notions of Numerical Analysis 5
1.2. Computer Representation of Integers and Reals 9
1.3. Error Analysis . 15
1.4. The Consequences of the Floating Point Arithmetic 18

2. Nonlinear algebraic equations and systems . 23
2.1. Review of Calculus . 23
2.2. Fixed-Point Iteration . 24
2.3. Bisection Method . 29
2.4. Method of False Position . 30
2.5. Newton’s Method . 33
2.6. Secant Method . 35
2.7. Order of Convergence . 38
2.8. Stopping Criteria of Iterations . 44
2.9. Review of Multivariable Calculus . 45
2.10. Vector and Matrix Norms and Convergence 47
2.11. Fixed-Point Iteration in n-dimension . 54
2.12. Newton’s Method in n-dimension . 58
2.13. Quasi-Newton Methods, Broyden’s Method . 59

3. Linear Systems . 65
3.1. Review of Linear Algebra . 65
3.2. Triangular Systems . 70
3.3. Gaussian Elimination, Pivoting Strategies . 71
3.4. Gauss–Jordan Elimination . 82
3.5. Tridiagonal Linear Systems . 84
3.6. Simultaneous Linear Systems . 85
3.7. Matrix Inversion and Determinants . 86

4. Iterative Techniques for Solving Linear Systems 89
4.1. Linear Fixed-Point Iteration . 89
4.2. Jacobi Iteration . 93
4.3. Gauss–Seidel Iteration . 96
4.4. Error Bounds and Iterative Refinement . 99
4.5. Perturbation of Linear Systems . 102

4 Table of contents

5. Matrix Factorization . 107
5.1. LU Factorization . 107
5.2. Cholesky Factorization . 110

6. Interpolation . 113
6.1. Lagrange Interpolation . 113
6.2. Divided Differences . 119
6.3. Newton’s Divided Difference Formula . 121
6.4. Hermite Interpolation . 125
6.5. Spline Interpolation . 130

7. Numerical Differentiation and Integration . 137
7.1. Numerical differentiation . 137
7.2. Richardson’s extrapolation . 144
7.3. Newton–Cotes Formulas . 146
7.4. Gaussian Quadrature . 153

8. Minimization of Functions . 159
8.1. Review of Calculus . 159
8.2. Golden Section Search Method . 160
8.3. Simplex Method . 163
8.4. Gradient Method . 167
8.5. Solving Linear Systems with Gradient Method 170
8.6. Newton’s Method for Minimization . 173
8.7. Quasi-Newton Method for Minimization . 174

9. Method of Least Squares . 183
9.1. Line Fitting . 184
9.2. Polynomial Curve Fitting . 186
9.3. Special Nonlinear Curve Fitting . 189

10. Ordinary Differential Equations . 193
10.1. Review of Differential Equations . 193
10.2. Euler’s Method . 195
10.3. Effect of Rounding in the Euler’s Method . 200
10.4. Taylor’s Method . 201
10.5. Runge–Kutta Method . 203

References . 209

Index . 211

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

Chapter 1

Introduction

In this chapter we discuss first the main objectives of numerical analysis and introduce
some basic notions. We investigate different sources of errors in scientific computation,
define the notion of stability of a mathematical problem or a numerical algorithm, the
time and memory resources needed to perform the algorithm. We study the computer
representation of integer and real numbers, and present some numerical problems due to
the finite-digit arithmetic.

1.1. The Main Objective and Notions of Numerical

Analysis

In scientific computations the first step is the mathematical modeling of the physical pro-
cess. This is the task of the particular scientific discipline (physics, chemistry, biology,
economics, etc.). The resulting model frequently contains parameters, constants, initial
data which are typically determined by observations or measurements. If the mathemat-
ical model and its parameters are given, then we can use it to answer some questions
related to the physical problem. We can ask qualitative questions (Does the problem
have a unique solution? Does the solution have a limit as the time goes to infinity? Is
the solution periodic? etc.), or we can ask quantitative questions (What is the value of
the physical variable at a certain time? What is the approximate solution of the model?).
The qualitative questions are discussed in the related mathematical discipline, but the
quantitative questions are the main topics of numerical analysis. The main objective of
numerical analysis is to give exact or approximate solutions of a mathematical problem
using arithmetic operations (addition, subtraction, multiplication and division). See Fig-
ure 1.1 below for the schematic steps of the scientific computation of physical processes.

The numerical value of a physical quantity computed by a process described in Fig-
ure 1.1 is, in general, not equal to the real value of the physical quantity. The sources of
error we get is divided into the following two main categories: inherited error and compu-
tational error. The mathematical modeling is frequently a simplification of the physical
reality, so we generate an inherited error when we replace the physical problem by a
mathematical model. This kind of error is called modeling error . An other subclass of
the inherited error is what we get when we determine the parameters of the mathematical
model by measurements, so we use an approximate parameter value instead of the true
one. This is called measurement error .

6 1. Introduction

physical problem

mathematical model
- parameters
- constants
- initial values

numerical solution

inherited error:
- modeling error
- measurement error

computational error:
- truncation error
- rounding error

Figure 1.1: Scientific computations

The computational error is divided into two classes: truncation error and rounding
error . We get a truncation error when we replace the exact value of a mathematical
expression with an approximate formula.

Example 1.1. Suppose we need to compute the value of the function f(x) = sinx at a certain
argument x. We can do it using arithmetic operations if instead of the function value f(x) we
compute, e.g., its Taylor-polynomial around 0 of degree 5: T5(x) = x − x3/3! + x5/5!. The
Taylor’s theorem (Theorem 2.5 below) says that if f(x) is replaced by T5(x), then the resulting

error has the form f (6)(ξ)
6! x6 = − sin ξ

6! x6, where ξ is a number between 0 and x. This is the
truncation error of the approximation, which is small if x is close to 0. □

The rounding error appears since real numbers can be stored in computers with fi-
nite digits accuracy. Therefore, we almost always generate a rounding error when we
store a real number in a computer. Also, after computing each arithmetic operations,
the computer rounds the result to a number which can be stored in the computer (see
Sections 1.2–1.4).

When we specify a numerical algorithm, the first thing we have to investigate is the
truncation error, since a numerical value is useful only if we know how large is the error
of the approximation. The next notion we discuss related to a numerical algorithm is
the stability . This notion is used in two meanings in numerics. We can talk about the
stability of a mathematical model or about the stability of a numerical method. First we
consider an example.

Example 1.2. Consider the linear system

8x+ 917y = 1794

7x+ 802y = 1569.

Its exact solution is x = −5 and y = 2. But if we change the coefficient of the variable x in the
second equation to 7.01, then the solution of the corresponding system

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

1.1. The Main Objective and Notions of Numerical Analysis 7

8x+ 917y = 1794

7.01x+ 802y = 1569

is x = −1.232562589 and y = 1.967132499 (up to 9 decimal digits precision). We observe that
0.14% change in the size of a single coefficient results in 75.3% and 1.6% changes in the solutions,
rspectively. □

We say that a mathematical problem is correct or stable or well-conditioned, if a
“small” change in the parameters of the problem results only in “small” change in the
solution of the problem. In the opposite case we say that the problem is incorrect or
ill-conditioned or unstable problem. The linear system in the previous example is an
incorrect mathematical problem.

We say that a numerical algorithm is stable with respect to rounding errors if the
rounding errors do not influence the result of the computation significantly. If the com-
puted result is significantly different from the true value, then we say that the algorithm
is unstable. Next we present an example of an an unstable algorithm.

Example 1.3. Consider the following three recursive sequences:

xn =
1

3
xn−1, x0 = 1,

yn = 2yn−1 −
5

9
yn−2, y0 = 1, y1 =

1

3
, (1.1)

zn =
13

3
zn−1 −

4

3
zn−2, z0 = 1, z1 =

1

3
.

It is easy to show that all the three recursions generate the same sequence xn = yn = zn = 1
3n ,

i.e., the three sequences are algebraically equivalent. But in practice, the numerical computations
of the three recursions give different results. In Table 1.1 the first 18 terms of the sequences are
displayed. The computations are performed using single precision floating point arithmetic in
order to enlarge the effect of the rounding errors. We observe that the sequence xn produce the
numerical values of 1/3n, but the numerical values of yn and zn are different from it due to the
accumulation of the rounding error. Both sequences has rounding error, but for the sequence zn
the error increases so rapidly, that in the 18th term it is of order 102. In this case the numerical
values of zn do not converge to 0. We experience that the sequence xn is a stable method, but
zn is an unstable method to compute the values of 1/3n.

To check that the errors we observed in the previous computation are the consequence of
the rounding errors, we repeated the generation of the three sequences but now using a double
precision floating point arithmetic. We present here the error of the 18th terms: |y18− 1/318| =
−2.5104e−13 and |z18−1/318| = 2.3804e−07. We can observe that the magnitude of the errors
are much smaller in this case. □

In case of an algorithm which terminates in a finite number of steps we are usually
interested in the time complexity or the cost of an algorithm. By this we mean the number
of steps, or more precisely, the number of arithmetic operations needed to perform the
algorithm. Consider first an example.

Example 1.4. Evaluate numerically the polynomial p(x) = 5x4−8x3+2x2+4x−10 at the point
x. Certainly, we can do it using the formula of p literally. It contains 4 additions/subtractions, 4

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

8 1. Introduction

Table 1.1:

n xn yn |yn − 1/3n| zn |zn − 1/3n|
2 0.111111 0.111111 2.2352e-08 0.111111 4.4703e-08
3 0.037037 0.037037 4.0978e-08 0.037037 1.8254e-07
4 0.012346 0.012346 6.9849e-08 0.012346 7.3109e-07
5 0.004115 0.004115 1.1688e-07 0.004118 2.9248e-06
6 0.001372 0.001372 1.9465e-07 0.001383 1.1699e-05
7 0.000457 0.000458 3.2442e-07 0.000504 4.6795e-05
8 0.000152 0.000153 5.4071e-07 0.000340 1.8718e-04
9 0.000051 0.000052 9.0117e-07 0.000800 7.4872e-04

10 0.000017 0.000018 1.5019e-06 0.003012 2.9949e-03
11 0.000006 0.000008 2.5032e-06 0.011985 1.1980e-02
12 0.000002 0.000006 4.1721e-06 0.047920 4.7918e-02
13 0.000001 0.000008 6.9535e-06 0.191674 1.9167e-01
14 0.000000 0.000012 1.1589e-05 0.766693 7.6669e-01
15 0.000000 0.000019 1.9315e-05 3.066773 3.0668e+00
16 0.000000 0.000032 3.2192e-05 12.267091 1.2267e+01
17 0.000000 0.000054 5.3653e-05 49.068363 4.9068e+01
18 0.000000 0.000089 8.9422e-05 196.273453 1.9627e+02

multiplications and 3 exponentials. The exponentials mean 3+2+1=6 number of multiplications,
i.e., altogether 10 multiplications are needed to apply the formula of p. But we can rewrite p as
follows:

p(x) = 5x4 − 8x3 + 2x2 + 4x− 10 = (((5x− 8)x+ 2)x+ 4)x− 10.

This form of the polynomial requires only 4 additions/subtractions and 4 multiplications. □

The previous method can be extended to polynomials of degree n:

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = ((· · · ((anx+ an−1)x+ an−2)x+ · · ·)x+ a1)x+ a0

This formula requires only n additions/subtractions and n multiplications. This way of
organizing a polynomial evaluation is called Horner’s method . The method can be defined
by the following algorithm.

Algorithm 1.5. Horner’s method

INPUT: n - degree of the polynomial
an, an−1, . . . , a0 - coefficients of the polynomial
x - argument

OUTPUT: y - function value of the polynomial at the argument x

y ← an
for i = n− 1, . . . , 0 do

y ← yx+ ai
end do
output(y)

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

1.2. Computer Representation of Integers and Reals 9

The execution of a multiplication or division requires more time than that of an ad-
dition or subtraction. Therefore, in numerical analysis, we count the number of multipli-
cations and divisions separately to the number of additions and subtractions.

It is also important to know the space complexity of an algorithm, which is the amount
of the memory storage needed in the worst case at any point in the algorithm. When we
work with an algorithm to solve a linear system with a 10 × 10 coefficient matrix, the
storage cannot be a problem. But the same with a 10000× 10000 dimensional matrix can
be problematic. In case of algorithms working with a big amount of data, we prefer a
method which requires less amount of memory space. For example, if in a matrix nonzero
elements appear only in the main diagonal and in some diagonals above and below, then
it is practical to use an algorithm which utilizes the special structure of the data, and
does not store the unnecessary zeros in the matrix during the computation. We will see
such methods in Section 3.5 below.

1.2. Computer Representation of Integers and Reals

Let I be a positive integer with a representation in base b number system with m number
of digits:

I = (am−1am−2 . . . a1a0)b, where ai ∈ {0, 1, . . . , b− 1}.
Its value is

I = am−1b
m−1 + am−2b

m−2 + · · ·+ a1b+ a0.

Therefore, the largest integer can be represented with m digits is Imax where all digits
equal to b− 1. Its numerical value is

Imax = (b− 1)(bm−1 + bm−2 + · · ·+ b+ 1) = bm − 1.

Hence on m digits we can represent (store) integers from 0 up to bm − 1, which is bm

number of different integers.
Suppose we use a base 2, other words, binary number system. Then on m bits we can

store 2m number of integers. We describe two methods to store negative integers. The
first method is the sign-magnitude representation. Here we allocate a sign bit (typically
the most significant bit, i.e., the left-most bit), which is 0 for positive integers and 1 for
negative integers. Then on the rest of the m − 1 bits we can store the magnitude or
absolute value of the number. Then Imax = 2m−1 − 1 is the largest, and Imin = −Imax is
the smallest integer which can be represented. In this system the integer 0 can be stored
as an identically 0 bit sequence or as 100 . . . 0.

Example 1.6. In Table 1.2 we listed all the integers which can be represented on m = 3 bits
using the sign-magnitude binary representation. □

In practice the two’s-complement representation is frequently used to store signed
integers. Let I be an integer which we would like to represent on m bits. Instead of I we
store the binary form of the number C defined by

C =

{︃
I, if 0 ≤ I ≤ 2m−1 − 1,
2m + I, if − 2m−1 ≤ I < 0.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

10 1. Introduction

Table 1.2: Sign-magnitude binary representation on m = 3 bits

I a binary code

0 000
1 001
2 010
3 011
0 100
-1 101
-2 110
-3 111

Here the largest and the smallest representable integer is Imax = 2m−1 − 1 and Imin =
−2m−1, respectively. Therefore, if 0 ≤ I ≤ 2m−1−1, then C < 2m−1, i.e., the first bit of C
is 0. On the other hand, if −2m−1 ≤ I < 0, then it is easy to see that 2m−1 ≤ C ≤ 2m−1,
i.e., the first bit of C is 1.

An important advantage of the two’s-complement representation is that the subtrac-
tion can be obtained as an addition (see Exercise 4).

Example 1.7. Table 1.3 contains all the integers which can be represented on m = 3 bits
using the two’s-complement binary representation. □

Table 1.3: Two’s-complement representation on m = 3 bits

I (in decimal) I (in binary) C, the stored binary

0 000 000
1 001 001
2 010 010
3 011 011
-1 -001 111
-2 -010 110
-3 -011 101
-4 -100 100

Next we discuss the representation of real numbers. We recall that the real number
in base b number system

x = (xm−1xm−2 · · ·x0.x−1x−2 · · ·)b, xi ∈ {0, 1, . . . , b− 1}

has the numerical value

x = xm−1b
m−1 + xm−2b

m−2 + · · ·x1b+ x0 +
x−1

b
+

x−2

b2
+ · · · =

m−1∑︂
i=−∞

xib
i.

Consider the real number 126.42. Different books define the normal form of this
number as 1.2642 · 102 or 0.12642 · 103. In this lecture notes we use the first form as the
normal form. Therefore, the normal form of a real number x ̸= 0 in a base b number
system is x = ±m · bk, where 1 ≤ m < b. The number m is called the mantissa, and k the
exponent of the number. In order to represent a real number, or in other words, a floating

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

1.2. Computer Representation of Integers and Reals 11

point number we write it in a normal form in a base b number system, and we would
like to store its signed mantissa and exponent. Computers use different number of bits to
store these numbers. Here we present an IEEE specification1 to represent floating point
numbers on 32 bits (the so-called single precision), and on 64 bits (the double precision)
using the binary number system. This representation is used in IBM PCs. Consider the
binary normal form x = (−1)sm · 2k, where s ∈ {0, 1} and m = (1.m1m2m3 . . .)2. The
value s is stored in the 1st bit. Instead of the exponent k, we store its shifted value, the
nonnegative integer e = k+ 127 on bits 2–9. In our definition of the binary normal form,
a nonzero x has a mantissa of the form m = (1.m1m2 . . .)2, i.e., it always starts with 1,
which we do not store, we store the fractional digits of the mantissa rounded to 23 bits.
These 23 bits are stored on bits 10–32 of the storage. This IEEE specification defines the
representation of the number 0, and introduces two special symbols, Inf (to store infinity
as a possible value) and NaN (not-a-number) in the following way:

number s e (bits 2–9) mantissa bits (bits 10–32)

+0 0 00000000 every mantissa bit=0
−0 1 00000000 every mantissa bit=0

+Inf 0 11111111 at least one mantissa bit=0
−Inf 1 11111111 at least one mantissa bit=0
+NaN 0 11111111 every mantissa bit=1
+NaN 1 11111111 every mantissa bit=1

The symbol Inf can be used in programs as a result of a mathematical operation with value
∞, and the symbol NaN can be a result of a mathematical operation which is undefined
(e.g., a division by 0 or a root of a negative number in real numbers). Both symbols can
be positive or negative. The definition yields that the exponent e = (11111111)2 = 255 is
used exclusively for the special symbols Inf and NaN. For finite reals the possible values
are 0 ≤ e ≤ 254, hence the possible values of the exponent k are −127 ≤ k ≤ 127.
Therefore, the smallest positive representable number corresponds to exponent k = −127
and mantissa (1.00 . . . 01)2. Hence its value is xmin = (1 + 1/223)2−127 ≈ 10−38. The
largest real can be stored is xmax = (1.11 . . . 1)22

127 = (2− 2−23)2127 ≈ 1038.

The representation on 64 bits is similar: the shifted exponent e = k + 1023 is stored
on bits 2–12, the fractional part of the mantissa is stored on bits 13–64. Then the range
of real numbers which can be stored in the computer is, approximately, from 10−308 to
10308.

Example 1.8. Suppose we would like to store reals on 4 bits using a binary normal form. For
example, we use the 1st bit as the sign bit, the shifted exponent e = k + 1 is stored on the 2nd
bit, and the fractional part of the mantissa is stored on bits 3–4. (The symbols Inf and NaN
are not defined now.) The nonnegative real numbers which can be represented by the above
method are listed in Table 1.4, and are illustrated in Figure 1.2.

□

We can see that, using any floating point representation, we can store only finitely
many reals on a computer. The reals which can be stored without an error in a certain
floating point representation are called machine numbers . The machine number which is

1IEEE Binary Floating Point Arithmetic Standard, 754-1985.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

12 1. Introduction

Table 1.4: Nonnegative reals on 4 bits.

s e m x

0 0 00 0

0 0 01 (1.01)2 · 2−1 = (1 + 1
4)

1
2 = 5

8

0 0 10 (1.10)2 · 2−1 = (1 + 1
2)

1
2 = 3

4 = 6
8

0 0 11 (1.11)2 · 2−1 = (1 + 1
2 + 1

4)
1
2 = 7

8

0 1 00 (1.00)2 · 20 = 1 = 8
8

0 1 01 (1.01)2 · 20 = 1 + 1
4 = 10

8

0 1 10 (1.10)2 · 20 = 1 + 1
2 = 12

8

0 1 11 (1.11)2 · 20 = 1 + 1
2 + 1

4 = 7
4 = 14

8

0 1
2

1 3
2

2

Figure 1.2: Nonnegative machine numbers on 4 bits.

stored in a computer instead of the real number x is denoted by fl(x). If |x| is smaller
than the smallest positive machine number, then, by definition, fl(x) = 0, and if |x| is
larger than the largest positive machine number, then we define fl(x) = Inf for x > 0 and
fl(x) = −Inf for x < 0. In the first case we talk about arithmetic underflow , and in the
second case, about arithmetic overflow . The definition of fl(x) in the intermediate cases
can be different in different computers. There are basically two methods: In the first
case we take the binary normal form of x, consider its mantissa m = (1.m1m2m3 . . .)2,
and we consider as many first several mantissa fractional bits as it is possible to store
in the particular representation. We store them, and omit the rest of the mantissa bits.
This method is called chopping of the mantissa. For example, using the single precision
representation defined above, we store the first 23 mantissa fractional bits.

The other method, the rounding , is more frequently used to define the mantissa bits
of the machine number fl(x). Here the mantissa of fl(x) is defined so that fl(x) be the
nearest machine number to x. In case when x is exactly an average of two consecutive
machine numbers, we could round down or up. The IEEE specification for single precision
representation we defined above uses the following rule: Let the normal form of a positive
real x be x = m2k, where m = (1.m1m2 . . .m23m24 . . .)2. Let x′ = (1.m1m2 . . .m23)22

k

and x′′ =
(︁
(1.m1m2 . . .m23)2+2−23

)︁
2k. Then x′ and x′′ are consecutive machine numbers,

x′ ≤ x ≤ x′′ and x′′ − x′ = 2k−23. The specification defines

fl(x) =

⎧⎪⎪⎨⎪⎪⎩
x′, if |x− x′| < 1

2
|x′′ − x′|,

x′′, if |x− x′′| < 1
2
|x′′ − x′|,

x′, if |x− x′| = 1
2
|x′′ − x′| and m23 = 0,

x′′, if |x− x′| = 1
2
|x′′ − x′| and m23 = 1.

In the critical case, i.e., if |x− x′| = 1
2
|x′′ − x′|, approximately half of the cases we round

down and in the other cases we round up. An other reason for this definition is that in

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

1.2. Computer Representation of Integers and Reals 13

this critical case the last mantissa bit is always 0, so a division by 2 can be performed on
fl(x) without an error. Using the rounding, the error is

|x− fl(x)| ≤ 1

2
|x′′ − x′| = 1

2
2−232k.

If we compare it to the exact value we get

|x− fl(x)|
|x|

≤ |x− fl(x)|
(1.m1m2 . . .)2 · 2k

≤ 1

2
2−23.

We can see that the first machine number which is larger than 1 is 1 + 2−23 in the single
precision floating point arithmetic. Let εm denote the difference of the first machine
number right to 1 and the number 1. This number is called machine epsilon. Therefore,
εm is the smallest power of 2 (in a binary storage system) for which the computer evaluates
the inequality 1 + εm > 1 to be true. The following theorem can be proved similarly to
the consideration above for the single precision floating point representation.

Theorem 1.9. Let 0 < fl(x) < Inf, and suppose the floating point representation uses
rounding. Then

|x− fl(x)|
|x|

≤ 1

2
εm.

The proof of the next result is left for Exercise 5.

Theorem 1.10. Suppose we use a number system with base b, and let t be the number
of mantissa bits in the floating point representation. Then

εm =

{︃
2−t, if b = 2,
b1−t, if b ̸= 2.

Now we define the notion of the error of an approximation and other related notions.
Let x be a real number, and consider x̃ as its approximation. Then the absolute error or
just simply the error of the approximation is the number |x − x̃|. Frequently the error
without knowing the magnitude of the numbers does not mean too much. For example,
10000.1 can be considered as a good approximation of 10000, but in general, 1.1 is not
considered as a good approximation of 1, but in both cases the errors are the same, 0.1.
We may get more information if we compare the error to the exact value. The relative
error is defined by

|x− x̃|
|x|

(x ̸= 0).

We say that in a base b number system x̃ is exact in n digits if

|x− x̃|
|x|

≤ 1

2
b1−n.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

14 1. Introduction

We can see that the smaller is the relative error, the larger is the number of exact digits.
In a decimal number system (b = 10) we can formulate the relation between the relative
error and the number of exact digits in the following way: if the relative error decreases
by a factor of 1/10, then the number of exact digits increases by 1.

Example 1.11. Let x = 1657.3 and x̃ = 1656.2. Then the absolute error is |x− x̃| = 1.1, and
the relative error is |x − x̃|/x = 0.0006637 (with 7 decimal digits precision). Since |x − x̃|/x =
0.0006637 < 0.5 · 10−2, the approximation is exact in 3 digits. On the other hand, if x is
approximated by the value x̃ = 1656.9, then |x− x̃|/x = 0.0002413 < 0.5 · 10−3, and hence the
approximation is exact in 4 digits. □

The previous definition and Theorem 1.9 yield that the single precision floating point
arithmetic is exact in 24 binary digits. Usually, we are interested in the exact number of
digits in a decimal number system. In case of a single precision floating point arithmetic,
we get it if we find the largest integer n for which

1

2
2−23 ≤ 1

2
101−n.

It can be computed that n = 7 is the number of exact digits for a single precision floating
point arithmetic.

Example 1.12. Consider x = 12.4. First rewrite it in binary form: 12 = (1100)2. Find the
binary form of its fractional part:

0.4 = (0.x1x2x3 . . .)2 =
x1
2

+
x2
22

+
x3
23

+ · · · .

If we multiply 0.4 by 2, then its integer part gives x1. 0.4 · 2 = 0.8, hence x1 = 0. Consider
the fractional part of this product, 0.8, and we repeat the previous procedure. 0.8 · 2 = 1.6,
so x2 = 1. The fractional part of the product is 0.6, which gives: 0.6 · 2 = 1.2, and therefore,
x3 = 1. The fractional part of the product is 0.2. We have 0.2 · 2 = 0.4, hence x4 = 0, and we
continue with 0.4. We can see that the digits 0011 will be repeated periodically infinitely many
times, i.e., 0.4 = (0.011001100110011001100110011 . . .)2. The binary normal form of x is

x = 12.4 = (1.100011001100110011001100110011 . . .)2 · 23.

Rounding the mantissa to 23 bits (down) we get

fl(x) = (1.10001100110011001100110)2 · 23.

Its numerical value (in a decimal form) is fl(x) = 12.3999996185302734375. □

The arithmetic operations performed by a computer can be defined as

x⊕ y := fl(fl(x) + fl(y)),

x⊖ y := fl(fl(x)− fl(y)),

x⊙ y := fl(fl(x) · fl(y)),
x⊘ y := fl(fl(x)/ fl(y)).

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

1.3. Error Analysis 15

Here we always take the machine representation of each operands and also the result of
the arithmetic operation.

In later examples we will use the so-called 4-digit rounding arithmetic or simply 4-digit
arithmetic. By this we mean a floating point arithmetic using a decimal number system
with 4 stored mantissa digits (and suppose we can store any exponent). This means that,
in every step of a calculation, the result is rounded to the first 4 significant digits , i.e.,
from the first nonzero digits for 4 digits, and this rounded number is used in the next
arithmetic operation. We can enlarge the effect of rounding errors in such a way.

Example 1.13. Using a 4-digit arithmetic we get 1.043 + 32.25 = 33.29, and similarly,
1.043 · 32.25 = 33.64 (after rounding). But 1.043 + 20340 = 20340, since we rounded the exact
value 20341.043 to for significant digits. □

Exercises

1. Convert the following decimal numbers to binary form:

57, −243, 0.25, 35.27

2. Convert the binary numbers to decimal form:

(101101)2, (0.10011)2, (1010.01101)2

3. Show that the two’s-complement representation of a negative integer can be computed in
the following way: Take the binary form of the absolute value of the number. Change all
0’s to 1’s and all 1’s to 0’s, and add 1 to the resulting number.

4. Let I1 and I2 be two positive integers with m bits. Show that I1 − I2 can be computed if
we first consider the two’s-complements representation C2 of I2, add I1 to it, and finally,
take the last m bits of the result.

5. Prove Theorem 1.10.

6. Write a computer code which gives back the machine epsilon of the particular computer.

7. Compute the exact number of digits of a machine number in case of a double precision
floating point arithmetic.

8. Let x = (x0.x1x2 . . . xmxm+1xm+2 . . .) · 10k, x̃ = (x0.x1x2 . . . xmx̃m+1x̃m+2 . . .) · 10k, i.e.,
x and x̃ has the same order of magnitude, and its first m + 1 digits are the same. Show
that, in this case, x̃ is an approximation of x with at least m number of exact digits.

1.3. Error Analysis

Let x and y be positive real numbers, and consider the numbers x̃ and ỹ as an approx-
imation of x and y. Let |x − x̃| ≤ ∆x and |y − ỹ| ≤ ∆y be the error bounds of the
approximation. The relative error bounds are denoted by δx := ∆x/x and δy := ∆y/y,
respectively. In this section we examine the following question: We would like to per-
form an arithmetic operation (addition, subtraction, multiplication or division) on the
real numbers x and y, but instead of it, we perform the operation on the numbers x̃ and ỹ

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

16 1. Introduction

(suppose without an error). We will consider this latter number as an “approximation” of
the original one. We will examine the error and the relative error of this “approximation”.

Consider first the addition. We are looking for error bounds ∆x+y and δx+y such that

|x+ y − (x̃+ ỹ)| ≤ ∆x+y and
|x+ y − (x̃+ ỹ)|

x+ y
≤ δx+y.

Theorem 1.14. The numbers

∆x+y := ∆x +∆y and δx+y := max{δx, δy}

are absolute and relative error bounds of the addition, respectively.

Proof. Using the triangle inequality and the definitions of ∆x and ∆y, we get

|x+ y − (x̃+ ỹ)| ≤ |x− x̃|+ |y − ỹ| ≤ ∆x +∆y.

This means that ∆x +∆y is an upper bound of the error of the addition.
Using the above relation, we obtain

|x+ y − (x̃+ ỹ)|
x+ y

≤ ∆x +∆y

x+ y

=
x

x+ y
δx +

y

x+ y
δy

≤ max{δx, δy}.

Therefore, max{δx, δy} is a relative error bound of the addition. □

Clearly, the above theorem can be generalized for addition of several numbers: the
error bounds will be added, and the relative error bound is the maximum value of the
relative error bounds. We can reformulate this result as follows: the number of exact
digits of the approximation of the sum is at least the smallest of the number of exact
digits of the approximations of the operands. Certainly, the theorem gives the worst case
estimate. In practice the errors can balance each other. For example, let x = 1, y = 2,
x̃ = 1.1 and ỹ = 1.8. Then x+ y = 3 and x̃+ ỹ = 2.9. Therefore, the error of the sum is
only 0.1, smaller than the sum of the error of the terms, 0.3.

Theorem 1.15. Let x > y > 0. The numbers

∆x−y := ∆x +∆y and δx−y :=
x

x− y
δx +

y

x− y
δy

are absolute and relative error bounds of the subtraction.

Proof. The inequalities

|x− y − (x̃− ỹ)| ≤ |x− x̃|+ |y − ỹ| ≤ ∆x +∆y

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

1.3. Error Analysis 17

imply the first statement. Consider

|x− y − (x̃− ỹ)|
x− y

≤ ∆x +∆y

x− y
=

x

x− y
δx +

y

x− y
δy,

which gives the second statement. □

We can observe that if we subtract two nearly equal numbers, then the relative error
can be magnified compared to the relative error of the terms. In other words, the number
of exact digits can be significantly less that in the original numbers. This phenomenon is
called loss of significance.

Example 1.16. Let x = 12.47531, x̃ = 12.47534, y = 12.47326 and ỹ = 12.47325. Then
δx = 2.4 · 10−6 and δy = 8 · 10−7. On the other hand, x − y = 0.00205, x̃ − ỹ = 0.00209, and
so δx−y = 0.0195. We can check that x̃ and ỹ are exact in 6 digits, but x̃− ỹ is exact only in 2
digits. □

Theorem 1.17. Let x, y > 0. The numbers

∆x·y := x∆y + y∆x +∆x∆y, and δx·y := δx + δy + δxδy

are absolute and relative error bounds of the multiplication, respectively.

Proof. The triangle-inequality and simple algebraic manipulations yield

|xy − x̃ỹ| = |xy − xỹ + xỹ − x̃ỹ|
≤ x|y − ỹ|+ |ỹ||x− x̃|
≤ x∆y + |ỹ|∆x

= x∆y + |y + ỹ − y|∆x

≤ x∆y + y∆x +∆x∆y,

hence the first statement is proved. Therefore, we get

|xy − x̃ỹ|
xy

≤ x∆y + y∆x +∆x∆y

xy
= δx + δy + δxδy,

which implies the second statement. □

Since, in general, ∆x and ∆y are much smaller than x and y, and so ∆x∆y is much
smaller than x∆y and y∆x, we have that x∆y + y∆x is a good approximation of the
absolute error of the multiplication. Similarly, δx + δy is a good approximation of the
relative error of the multiplication. Both results mean that the errors do not propagate
rapidly in multiplication.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

18 1. Introduction

Theorem 1.18. Suppose x, y > 0 and δy < 1. Then the numbers

∆x/y :=
x∆y + y∆x

y(y −∆y)
and δx/y :=

δx + δy
1− δy

are absolute and relative error bounds of the division, respectively.

Proof. Elementary manipulations give⃓⃓⃓⃓
x

y
− x̃

ỹ

⃓⃓⃓⃓
=
|xỹ − xy + xy − x̃y|

y|ỹ|
≤ x∆y + y∆x

y|ỹ|
=

x∆y + y∆x

y|y − (y − ỹ)|
.

Assumption δy < 1 implies |y− ỹ| ≤ ∆y < y, hence |y−(y− ỹ)| ≥ y−|y− ỹ| ≥ y−∆y > 0
proves the first statement.

For the second part, consider⃓⃓⃓
x
y
− x̃

ỹ

⃓⃓⃓
x
y

=
|x(ỹ − y)− y(x̃− x)|

x|ỹ|
=

⃓⃓⃓
ỹ−y
y
− x̃−x

x

⃓⃓⃓
⃓⃓⃓
1− y−ỹ

y

⃓⃓⃓ ≤ δx + δy
1− δy

.

□

If δy is small, then the relative error bound of the division can be approximated well by
δx+δy. Similarly, if ∆y is much smaller than y, then 1

y
∆x+

x
y2
∆y is a good approximation

of ∆x/y. If y is much smaller than x, or if y is close to 0, then ∆y or ∆x can be significantly
magnified, so the absolute error can be much larger than the absolute error of the terms.

Exercises

1. Let x = 3.50, y = 10.00, x̃ = 3.47, ỹ = 10.02. Estimate the absolute and relative error of

3x+ 7y,
1

y
, x2, y3,

4xy

x+ y

(without evaluating the expressions) assuming we replace x and y by x̃ and ỹ. Then
compute the expressions numerically and compute the absolute and relative errors exactly.
Compare them with the estimates.

2. Let x̃ be an approximation of x, and |x − x̃| ≤ ∆x. Let f : R → R be a differentiable
function satisfying |f ′(x)| ≤ M for all x ∈ R. Let y = f(x) and consider ỹ = f(x̃) as an
approximation of y. Estimate the absolute error of the approximation. (Hint: Use the
Lagrange’s Mean Value Theorem.)

1.4. The Consequences of the Floating Point Arith-

metic

Example 1.19. Solve the equation

x2 − 83.5x+ 1.5 = 0

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

1.4. The Consequences of the Floating Point Arithmetic 19

using 4-digit arithmetic in the computations.
Using the quadratic formula and the 4-digit arithmetic we get the numerical values

x̃ =
83.5±

√
83.52 − 4 · 1.5
2

=
83.5±

√
6972− 6.000

2
=

83.5± 83.46

2
,

hence

x̃1 =
167.0

2
= 83.50, and x̃2 =

0.040

2
= 0.020.

We can check that the exact solutions (up to several digits precision) are x1 = 83.482032 and
x2 = 0.0179679. Using the relative error bounds for each roots we get δ1 = 0.0002152 and
δ2 = 0.113096. The first root is exact in 4 digits, but the second is only in 1 digits. So there is
a significant difference between the order of the magnitudes of the relative errors. What is the
reason of it? In the computation of the second root, we subtracted two close numbers. This is
the point where we significantly lost the accuracy. □

Consider the second root of ax2 + bx+ c = 0:

x2 =
−b−

√
b2 − 4ac

2a
. (1.2)

When b is negative and 4ac is much smaller than b2, then we subtract two nearly equal
numbers, and we observe the loss of significance. (This happened for the second root in
Example 1.19.) To avoid this problem, consider

x2 =
b2 − (b2 − 4ac)

2a(−b+
√
b2 − 4ac)

=
2c

−b+
√
b2 − 4ac

. (1.3)

This formula is algebraically equivalent to formula (1.2). But the difference is that here
we do not subtract two close numbers (in the denominator we add two positive numbers).
If b is positive, then for the first root we get

x1 =
2c

−b−
√
b2 − 4ac

. (1.4)

Example 1.20. Compute the second root of the equation of Example 1.20 using 4-digit
arithmetic and formula (1.3).

x̃2 =
2 · 1.5

83.5 +
√
83.52 − 4 · 1.5

=
3

83.5 + 83.46
=

3

167.0
= 0.01796.

The relative error of x2 is now δ2 = 0.00044, hence the exact number of digits is 4. □

Example 1.21. Suppose we need to evaluate the expression cos2 x− sin2 x. If x = π
4 , then the

exact value of this expression is 0, hence if x is close to π
4 , then in the expression we need to

subtract to nearly equal numbers, so we can face loss of significance. We can avoid it if, instead
of the original formula, we evaluate its equivalent form, cos 2x. □

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

20 1. Introduction

In the previous examples we used algebraic manipulations to avoid the loss of signifi-
cance. Now we show different techniques.

Example 1.22. Consider the function f(x) = ex − 1. In the neighborhood of x = 0 we again
need to subtract two nearly equal numbers, but here we cannot use an algebraic identity to
avoid it. But here we can consider the Taylor series of the exponential function, and we get

f(x) = x+
x

2
+

x3

3!
+ · · ·+ xn

n!
+ · · · .

It is worth to take a finite approximation of this infinite series, and use it as an approximation
of the function value f(x). □

The next example shows a different problem.

Example 1.23. Evaluate the number y = 2050/50!. The problem is the following: If we
compute the numerator and the denominator separately first, then we run into the problem of
overflowing the calculation if we use single precision floating point arithmetic. On the other
hand, we know that an/n!→ 0 as n→∞, so the result must be a small number. We rearrange
the computation as follows:

2050

50!
=

20

50
· 20
49
· 20
48
· · · 20

1
.

Here in each steps the expressions we need to evaluate belong to the range which can be stored
in the computer. This formula can be computed with a simple for cycle:

y ← 20
for i = 2, . . . , 50 do

y ← y · 20i
end do
output(y)

The result is 3.701902 (with 7-digits precision). □

Example 1.24. Compute the sum

A = 10.00 + 0.002 + 0.002 + · · ·+ 0.002 = 10.00 +
10∑︂
i=1

0.002

using a 4-digit arithmetic. We perform the additions from left to right, so first we need to
compute 10.00+0.002. But with a 4-digit arithmetic the result is 10.00+0.002 = 10.002 = 10.00
after the rounding. Adding the next number to it, because of the rounding to 4 digits, we get
again 10.00 + 0.002 + 0.002 = 10.00. Hence we get the numerical result A = 10.00.

Consider the same sum, but in another order:

B = 0.002 + 0.002 + · · ·+ 0.002 + 10.00 =
10∑︂
i=1

0.002 + 10.00.

First we need to compute 0.002 + 0.002 = 0.004. The result is exact even if we use 4-digit
arithmetic. Then we can continue: 0.002+ 0.002+ 0.002 = 0.006 etc., and finally,

∑︁10
i=1 0.002 =

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

1.4. The Consequences of the Floating Point Arithmetic 21

0.02. Therefore, the numerical result will be B = 10.02. Here we have not observed any rounding
error, since we could compute the result in each step exactly.

This example demonstrates that the addition using a floating point arithmetic is not a
commutative operation numerically. □

A conclusion of the previous example is that in computing sums with several terms, it
is advantageous to do the computation in an increasing order of the terms, since in that
case we have a better chance for that the terms have similar order of magnitude, so the
loss of significance has less chance.

Exercises

1. Investigate that in the next example what are the cases when we can observe the loss of
significance. How can we avoid it?

(a) lnx− 1,

(b)
√
x+ 4− 2,

(c) sinx− x,

(d) 1− cosx,

(e) (1− cosx)/ sinx,

(f) (cosx− e−x)/x,

2. Compute the next expression using a 4-digit arithmetic 2.274+ 12.04+ 0.4233+ 0.1202+
0.2204, and then sort the terms in an increasing way, and repeat the calculation.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

Chapter 2

Nonlinear Algebraic Equations and Systems

In this chapter we investigate numerical solution of scalar nonlinear algebraic equations
and systems of nonlinear algebraic equations. We discuss the methods of bisection, false
position, secant, Newton and quasi-Newton. We introduce the basic theory of fixed points,
the notion of the speed of convergence, stopping criteria of iteration methods. We define
the notion of vector and matrix norms, and discuss convergence of vector sequences.

2.1. Review of Calculus

In this section we summarize some basic results and notions from Calculus which will be
needed in our later sections.

C[a, b] will denote the set of continuous real valued functions defined on the interval
[a, b]. Cm[a, b] will denote the set of continuous real valued functions f : [a, b]→ R, which
are m-times continuously differentiable on the open interval (a, b).

Theorem 2.1. Let f ∈ C[a, b]. Then f has its maximum and minimum on the interval
[a, b], i.e., there exist c, d ∈ [a, b], such that

f(c) = max
x∈[a,b]

f(x) and f(d) = min
x∈[a,b]

f(x).

The open interval spanned by the numbers a and b is denoted by ⟨a, b⟩, i.e., ⟨a, b⟩ :=
(min{a, b},max{a, b}). In general, ⟨a1, a2, . . . , an⟩ denotes the open interval spanned by
the numbers a1, a2, . . ., an, i.e.,

⟨a1, a2, . . . , an⟩ := (min{a1, a2, . . . , an},max{a1, a2, . . . , an}).

The next result, the so-called Intermediate Value Theorem, states that a continuous
function takes any value in between two function values.

Theorem 2.2 (Intermediate Value Theorem). Let f ∈ C[a, b], f(a) ̸= f(b), and let
d ∈ ⟨f(a), f(b)⟩. Then there exists c ∈ (a, b) such that f(c) = d.

Theorem 2.3 (Rolle’s Theorem). Let f ∈ C1[a, b] and f(a) = f(b). Then there exists
ξ ∈ (a, b) such that f ′(ξ) = 0.

24 2. Nonlinear algebraic equations and systems

Theorem 2.4 (Lagrange’s Mean Value Theorem). Let f ∈ C1[a, b]. Then there
exists ξ ∈ (a, b) such that f(b)− f(a) = f ′(ξ)(b− a).

Theorem 2.5 (Taylor’s Theorem). Let f ∈ Cn+1[a, b], and let x0 ∈ (a, b). Then for
every x ∈ (a, b) there exists ξ = ξ(x) ∈ ⟨x, x0⟩ such that

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n

+
f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1.

The next result is called the Mean Value Theorem for integrals.

Theorem 2.6. Let f ∈ C[a, b], g : [a, b]→ R is integrable which has no sign change on
[a, b] (i.e., g(x) ≥ 0 or g(x) ≤ 0 holds for all x ∈ [a, b]). Then there exists ξ ∈ (a, b) such
that ∫︂ b

a

f(x)g(x) dx = f(ξ)

∫︂ b

a

g(x) dx.

The next result is called Cantor’s Intersection Theorem.

Theorem 2.7. Let [an, bn] (n = 1, 2, . . .) be a sequence of closed and bounded intervals,
for which [an+1, bn+1] ⊂ [an, bn] holds for all n and (bn − an)→ 0 as n→∞. Then there
exists a c ∈ [a1, b1] such that an → c and bn → c as n→∞.

Theorem 2.8. A monotone and bounded real sequence has a finite limit.

We close this section with a result from algebra, which we state in the following form.

Theorem 2.9 (Fundamental Theorem of Algebra). Any nth-degree polynomial

p(x) = anx
n + · · · a1x+ a0, aj ∈ C (j = 0, . . . , n), an ̸= 0

has exactly n complex roots with counting multiplicities.

We will use the following consequence of the previous result. If a polynomial of the
form p(x) = anx

n + · · ·+ a1x+ a0 has n+ 1 different roots, then p(x) = 0 for all x ∈ R.

2.2. Fixed-Point Iteration

Many numerical methods generate an infinite sequence whose limit gives the exact solution
of the investigated problem. The sequence is frequently defined by a recursion or iteration.
A recursion of the form pk+1 = h(pk, pk−1, . . . , pk−m+1) (k ≥ m − 1) is called m-order

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

2.2. Fixed-Point Iteration 25

recursion or m-step iteration. An m-step iteration is well-defined if m number of initial
values p0, p1, . . ., pm−1 are given.

In this section we study the one-step iteration, the so-called fixed-point iteration. Given
a function g : I → R, where I ⊂ R. The recursive sequence pk+1 = g(pk) which corre-
sponds to an initial value p0 ∈ I is called a fixed-point iteration.

Example 2.10. Consider the function g(x) = −1
8x

3 + x + 1. In Table 2.1 we computed the
first few terms of the fixed-point iteration starting from the value p0 = 0.4. We illustrate the
sequence in Figure 2.1. Such picture is called stair step diagram or Cobweb diagram. From the
starting point (p0, 0) we draw a vertical line segment to the graph of g. The second coordinate
of the intersection gives p1. From the point (p0, p1) we draw a horizontal line segment to the
point (p1, p1) on the line y = x. Now we get the value p2 = g(p1) as the second coordinate of
the intersection of the vertical line starting from this point and the graph of g. Continuing this
procedure we get the figure displayed in Figure 2.1. The line segments spiral and get closer and
closer to the intersection of the graphs of the line y = x and the function g. The coordinates of
the intersection is (2, 2). From Table 2.1 it can be seen that the sequence pk converges to 2. □

Table 2.1: Fixed-point iteration, g(x) = −1
8
x3 + x+ 1

k pk
0 0.40000000
1 1.39200000
2 2.05484646
3 1.97030004
4 2.01419169
5 1.99275275
6 2.00358428
7 1.99819822
8 2.00089846
9 1.99955017
10 2.00022477
11 1.99988758
12 2.00005620
13 1.99997190
14 2.00001405
15 1.99999297

In the previous example we observed that the fixed-point iteration converged to the
first coordinate of the intersection of the graphs of the line y = x and the function
y = g(x). The first (and also the second) coordinate of this point satisfies the equation
g(x) = x. The number p is called the fixed point of the function g if it satisfies

g(p) = p.

Using this terminology in the previous example the fixed-point iteration converged to the
fixed point of the function g. The next result shows that this is true for all convergent
fixed-point iterations if the function g is continuous.

Theorem 2.11. Let g : [a, b]→ [a, b] (or R→ R) be a continuous function, p0 ∈ [a, b] be
fixed, and consider the fixed-point iteration pk+1 = g(pk). If pk is convergent and pk → p,
then p = g(p).

Proof. Since pk+1 = g(pk) and pk+1 → p by the assumptions, the continuity of g yields
g(pk)→ g(p) as k →∞, hence the statement follows. □

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

26 2. Nonlinear algebraic equations and systems

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Figure 2.1: Fixed-point iteration

A fixed-point iteration is not always convergent, or the limit is not necessary finite.
To see that it is enough to consider the function g(x) = 2x and the initial value p0 = 1.
Then pk = 2k, and it converges to infinity. And if we consider g(x) = −x and p0 = 1,
then the corresponding fixed-point sequence is pk = (−1)k, which is not convergent.

The next theorem gives sufficient conditions for the existence and uniqueness of the
fixed point.

Theorem 2.12. Let g : [a, b] → [a, b] be continuous. Then g has a fixed point in
the interval [a, b]. Moreover, if g is differentiable on (a, b), and there exists a constant
0 ≤ c < 1 such that |g′(x)| ≤ c for all x ∈ (a, b), then this fixed point is unique.

Proof. Consider the function f(x) = g(x)− x. If f(a) = 0 or f(b) = 0, then a or b is a
fixed point of g. Otherwise, f(a) > 0 and f(b) < 0. But then the continuity of f and the
Intermediate Value Theorem imply that there exists a p ∈ (a, b), such that f(p) = 0, i.e.,
p = g(p).

For the proof of the uniqueness, suppose that g has two fixed points p and q. Then it
follows from the Lagrange’s Mean Value Theorem that there exists a ξ ∈ (a, b) such that

|p− q| = |g(p)− g(q)| = |g′(ξ)||p− q| ≤ c|p− q|.

But this yields that p = q, i.e., the fixed point is unique. □

Theorem 2.13 (fixed-point theorem). Let g : [a, b]→ [a, b] be continuous, g is differ-
entiable on (a, b), and suppose that there exists a constant 0 ≤ c < 1 such that |g′(x)| ≤ c
for all x ∈ (a, b). Let p0 ∈ [a, b] arbitrary, and pk+1 = g(pk) (k ≥ 0). Then the sequence
pk converges to the unique fixed point p of the function g,

|pk − p| ≤ ck|p0 − p|, (2.1)

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

2.2. Fixed-Point Iteration 27

and

|pk − p| ≤ ck

1− c
|p1 − p0|. (2.2)

Proof. Theorem 2.12 implies that g has a unique fixed point p. Since 0 ≤ c < 1 by our
assumptions, the convergence pk → p follows from (2.1). To show (2.1), we have from the
assumptions and the Lagrange’s Mean Value Theorem that

|pk − p| = |g(pk−1)− g(p)| = |g′(ξ)||pk−1 − p| ≤ c|pk−1 − p|.

Now mathematical induction gives relation (2.1) easily.
To prove (2.2), let m > k be arbitrary. Then the triangle inequality, the Mean Value

Theorem and our assumptions imply

|pk − pm| ≤ |pk − pk+1|+ |pk+1 − pk+2|+ · · ·+ |pm−1 − pm|
≤ |g(pk−1)− g(pk)|+ |g(pk)− g(pk+1)|+ · · ·+ |g(pm−2)− g(pm−1)|
≤ c|pk−1 − pk|+ c|pk − pk+1|+ · · ·+ c|pm−2 − pm−1|
≤ (ck + ck+1 + · · ·+ cm−1)|p0 − p1|
= ck(1 + c+ · · ·+ cm−k−1)|p1 − p0|

≤ ck
∞∑︂
i=0

ci|p1 − p0|.

Hence |pk − pm| ≤ ck

1−c
|p1 − p0| holds for all m > k. Keeping k fixed and tending with m

to ∞, we get (2.2). □

We remark that in the proof of the previous two theorems, the differentiability of g
and the boundedness of the derivative is used only to get the estimate

|g(x)− g(y)| ≤ c|x− y|. (2.3)

We say that the function g : I → R is Lipschitz continuous on the interval I, or in other
words, it has the Lipschitz property if there exists a constant c ≥ 0 such that (2.3) holds
for all x, y ∈ I. The constant c in (2.3) is called the Lipschitz constant of the function g.

Clearly, if g is Lipschitz continuous on I, then it is also continuous on I. From the
Lagrange’s Mean Value Theorem we get that if g ∈ C1[a, b], then g is Lipschitz continuous
on [a, b] with the Lipschitz constant c := max{|g′(x)| : x ∈ [a, b]}. g is also Lipschitz
continuous if it is only piecewise continuously differentiable. One example is the function
g(x) = |x|. If g is Lipschitz continuous with a Lipschitz constant 0 ≤ c < 1, then g is
called a contraction. Theorem 2.13 can be stated in the following more general form.

Theorem 2.14 (contraction principle). Let the function g : [a, b]→ [a, b] be a contrac-
tion, p0 ∈ [a, b] be arbitrary, and pk+1 = g(pk) (k ≥ 0). Then the sequence pk converges
to the unique fixed point p of the function g, and relations (2.1) and (2.2) are satisfied.

In numerics we frequently encounter with iterative methods which converge assuming
the initial value is close enough to the exact solution of the problem, i.e., to the limit

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

28 2. Nonlinear algebraic equations and systems

of the sequence. We introduce the following notion. We say that the iteration pk+1 =
h(pk, pk−1, . . . , pk−m+1) converges locally to p if there exists a constant δ > 0, such that for
every initial value p0, p1, . . . , pm−1 ∈ (p−δ, p+δ) the corresponding sequence pk converges
to p. If the iteration pk converges to p for every initial value, then this iteration method
is called globally convergent .

Theorem 2.15. Let g ∈ C1[a, b], and let p ∈ (a, b) be a fixed point of g. Suppose also
that |g′(p)| < 1. Then the fixed-point iteration converges locally to p, i.e., there exists a
δ > 0 such that pk+1 = g(pk) converges to p for all p0 ∈ (p− δ, p+ δ).

Proof. Since g′ is continuous and |g′(p)| < 1, there exists a δ > 0 such that [p−δ, p+δ] ⊂
(a, b) and |g′(x)| < 1 for x ∈ [p− δ, p+ δ]. Let c := max{|g′(x)| : x ∈ [p− δ, p+ δ]}. Then
0 ≤ c < 1.

We show that g maps the interval [p− δ, p+ δ] into itself. Let p0 ∈ [p− δ, p+ δ]. The
Lagrange’s Mean Value Theorem and the definition of c yield

|g(p0)− p| = |g(p0)− g(p)| ≤ c|p0 − p| < |p0 − p| < δ,

i.e., g(p0) ∈ [p − δ, p + δ]. Therefore, Theorem 2.13 can be applied for the function g
restricting it to the interval [p− δ, p+ δ], which proves the result. □

Exercises

1. Let g(x) = mx, where m ∈ R. Draw the stair step diagram of the fixed-point it-
eration corresponding to g and to any non-zero initial value for the parameter values
m = 0.5, 1, 1.5,−0.5,−1,−1.5.

2. Rewrite the following equation as a fixed-point equation, and approximate its solution by
a fixed-point iteration with a 4-digit accuracy.

(a) (x− 2)3 = x+ 1, (b) cosx
x = 2,

(c) x3 + x− 1 = 0, (d) 2x sinx = 4− 3x.

3. Consider the equation x3 + x2 + 3x − 5 = 0. Show that the left hand side is monotone
increasing, and has a root on the interval [0, 2]. (It is easy to see that the exact root is
x = 1.) Verify that the equation is equivalent to all of the following fixed-point problems.

(a) x = x3 + x2 + 4x− 5, (b) x = 3
√
5− x2 − 3x,

(c) x = 5
x2+x+3

, (d) x = 5−x3

x+3 ,

(e) x = 2x3+x2+5
3x2+2x+3

, (f) x = 5+7x−x2−x3

10 .

Compute the first several terms of the associated fixed-point iteration using the starting
value p0 = 0.5, and determine if we get a convergent sequence from this starting value.
Compare the speed of the convergence of the sequences.

4. Prove that the recursion pk = 1
2pk−1 +

1
pk−1

converges to
√
2, if p0 >

√
2. What do we get

if 0 < p0 <
√
2, or if p0 < 0?

5. Prove that the sequence pk = 1
2pk−1 +

A
2pk−1

converges to
√
A, if p0 > 0. What happens if

p0 < 0?

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

2.3. Bisection Method 29

6. Let g ∈ C1(a, b), and let p ∈ (a, b) be a fixed point of g, and |g′(p)| > 1. Show that the
fixed-point iteration does not converge to p, if p0 ̸= p.

7. Consider g(x) =
√
1 + x2. Show that |g′(x)| < 1 for all x ∈ R, but the fixed-point does

not converge for any starting value p0.

8. Let f : [a, b] → R be continuous, and let a = x0 < x1 < · · · < xn = b be mesh points
such that f is linear on each interval [xi, xi+1] (i = 0, . . . , n− 1). Show that f is Lipschitz
continuous.

2.3. Bisection Method

In this and in the next several sections we study the numerical solution of the scalar
nonlinear algebraic equation f(x) = 0. One of the simplest algorithm to approximate its
solution is the bisection method .

We suppose that f : [a, b] → R is a continuous function of opposite sign at the end
of the interval, i.e., f(a)f(b) < 0. Then the Intermediate Value Theorem yields that f
has at least one root inside the interval [a, b]. We define a sequence of intervals: Let
[a0, b0] = [a, b], and let p0 be the midpoint of the interval, i.e., p0 = (a0 + b0)/2. Then
either f(p0) = 0, or one of the intervals [a0, p0] or [p0, b0] has the property that the function
f takes opposite sign at the end points of the interval. If f changes sign on the interval
[a0, p0], then we define [a1, b1] = [a0, p0], otherwise let [a1, b1] = [p0, b0]. Continuing this
procedure, either after finitely many steps, pk is a root of the function f , or we define an
infinite sequence of nested closed bounded intervals, so that a root of f is contained in
each of the intervals. We have that the length of the kth interval (b− a)/2k tends to 0 as
k →∞. But then the Cantors’s nested intervals theorem shows that there exists p ∈ [a, b]
such that ak → p and bk → p as k →∞, and p is the only common point of the intervals.
So, in particular, the sequence of midpoints, pk also tends to p.

Suppose, e.g., that f(a) < 0 and f(b) > 0 (the other case can be treated similarly).
Then for all k we have f(ak) < 0 and f(bk) > 0. Since ak → p and bk → p, the continuity
of f implies f(p) ≤ 0 and f(p) ≥ 0, hence f(p) = 0. Since ak ≤ p ≤ bk is satisfied for all
k, we get |pk − p| ≤ (bk − ak)/2 = (b− a)/2k+1. We have proved the following result.

Theorem 2.16. Let f ∈ C[a, b] and f(a)f(b) < 0. Then the bisection sequence pk
converges to a root p of the function f , and

|pk − p| ≤ b− a

2k+1
. (2.4)

It follows from the estimate (2.4) that if we predefine a tolerance (error bound) ε > 0,
then pk is an approximation of p within this tolerance if its index k satisfies

k ≥ log2
b− a

ε
− 1. (2.5)

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

30 2. Nonlinear algebraic equations and systems

Example 2.17. Consider the function f(x) = ex − 2 cosx. Then we have f(0) = −1 and
f(1) > 0, therefore f has a root in the interval [0, 1], and the bisection method is applicable. (It
is easy to check that f is strictly monotone increasing on [0, 1], so it has a unique root inside the
interval. Table 2.2 contains the result of the bisection method using tolerance value ε = 10−5.
Formula (2.5) yields that k ≥ log2 10

5 − 1 ≈ 15.61 steps are needed to obtain this accuracy. □

Table 2.2: bisection method, f(x) = ex − 2 cosx, [0, 1], ε = 10−5

k ak bk pk f(pk)

0 0.00000000 1.00000000 0.50000000 -1.0644e-01
1 0.50000000 1.00000000 0.75000000 6.5362e-01
2 0.50000000 0.75000000 0.62500000 2.4632e-01
3 0.50000000 0.62500000 0.56250000 6.3206e-02
4 0.50000000 0.56250000 0.53125000 -2.3292e-02
5 0.53125000 0.56250000 0.54687500 1.9538e-02
6 0.53125000 0.54687500 0.53906250 -1.9818e-03
7 0.53906250 0.54687500 0.54296875 8.7517e-03
8 0.53906250 0.54296875 0.54101563 3.3784e-03
9 0.53906250 0.54101563 0.54003906 6.9670e-04
10 0.53906250 0.54003906 0.53955078 -6.4294e-04
11 0.53955078 0.54003906 0.53979492 2.6780e-05
12 0.53955078 0.53979492 0.53967285 -3.0810e-04
13 0.53967285 0.53979492 0.53973389 -1.4067e-04
14 0.53973389 0.53979492 0.53976440 -5.6946e-05
15 0.53976440 0.53979492 0.53977966 -1.5083e-05
16 0.53977966 0.53979492 0.53978729 5.8483e-06

Exercises

1. Show that the equation

(a) x3 − 6x− 1 = 0, [a, b] = [−1, 1], (b) x = e−2x, [a, b] = [−1, 2],

(c) tanx = x+ 1, [a, b] = [−1, 1.5], (d) e− sinx = x2 − 1, [a, b] = [0, 2]

has a root in the interval [a, b]. Using the bisection method give an approximate solution
within the tolerance ε = 10−5.

2. Apply the bisection method for the function f(x) = 1
x on the interval [−0.5, 3]. What do

you observe?

2.4. Method of False Position

The advantage of the bisection method is that it is easy to determine the number of steps
needed to reach a given accuracy. But its weakness is that it does not take into account
the shape of the functions when the next interval is selected in the sequence. This is the
idea of the method of false position (also called Regula Falsi).

We assume the same conditions as in the bisection method. We suppose f : [a, b]→ R
is a continuous function which has opposite sign at the end points of the interval, i.e.,

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

2.4. Method of False Position 31

f(a)f(b) < 0. We define a sequence of nested intervals [ak, bk] with a help of an inner
point pk, but it is no longer the midpoint of the intervals. First define [a0, b0] = [a, b]. At
the kth step, let pk be the intersection of the secant line of f corresponding to the points
ak and bk (the line segment through the points (ak, f(ak)) and (bk, f(bk))) and the x-axis.
Little calculation gives that

pk = ak − f(ak)
ak − bk

f(ak)− f(bk)
. (2.6)

The next interval [ak+1, bk+1] will be either [ak, pk] or [pk, bk] where the function has a sign
change. The method is defined in Algorithm 2.18.

Algorithm 2.18. method of false position

INPUT: f - is a function,
[a, b] - is an interval, where f(a)f(b) < 0
TOL - is the tolerance,
MAXIT - is the maximal iteration step,

OUTPUT: p - is the approximating root.

i← 1 (step counter)
q ← a
while i < MAXIT do

p← a− f(a)(a− b)/(f(a)− f(b))
if |p− q| < TOL do

output(p)
stop

end do
if f(p)f(b) < 0 do

a← p
else if f(a)f(p) < 0 do

b← p
else

output(p)
stop

end do
i← i+ 1
q ← p

end do
output(Maximal iteration step is exceeded.)

When we implement the Algorithm 2.18 in a computer program, it is important to
test whether f(a) is equal to f(b), since otherwise we divide by 0, and the program fails.
Such technical details are not included in the algorithms we present in this lecture note,
but those are important when we implement the algorithms.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

32 2. Nonlinear algebraic equations and systems

We show the convergence of the method of false position under the condition when
the function f is convex or concave.

Theorem 2.19. Suppose the continuous function f ∈ C[a, b] is convex or concave on
[a, b] and f(a)f(b) < 0. Then the method of false position converges to the unique root p
of f .

Proof. Suppose, e.g., that f is convex and f(a) > 0, f(b) < 0. The other cases can
be argued similarly. Then the left subinterval contains the root p of f at each step, i.e.,
ak+1 = a and bk+1 = pk for all k. Since the sequence pk is monotone decreasing and a is a
lower bound of the sequence, it converges to a limit p ≥ a. We have f(pk) < 0 for all k,
therefore f(p) ≤ 0. Since f(a) > 0, we get p > a. Taking the limit of Equation (2.6) as
k →∞ we obtain

p = a− f(a)
a− p

f(a)− f(p)
,

which implies that f(p) = 0. □

Example 2.20. Applying the method of false position to the problem of Example 2.17, we
get the numerical values presented in Table 2.3. As in Example 2.17, we use the interval [0, 1]
and TOL = 10−5. We can observe that for this equation and using the given initial interval the
method of false position converges much faster than the bisection method. □

Table 2.3: Method of false position, f(x) = ex − 2 cosx, [0, 1], TOL = 10−5

k ak bk pk f(pk)

0 0.00000000 1.00000000 0.37912145 -3.9698e-01
1 0.37912145 1.00000000 0.50026042 -1.0576e-01
2 0.50026042 1.00000000 0.53057677 -2.5118e-02
3 0.53057677 1.00000000 0.53766789 -5.8011e-03
4 0.53766789 1.00000000 0.53929982 -1.3311e-03
5 0.53929982 1.00000000 0.53967399 -3.0499e-04
6 0.53967399 1.00000000 0.53975970 -6.9856e-05
7 0.53975970 1.00000000 0.53977933 -1.5999e-05
8 0.53977933 1.00000000 0.53978383 -3.6640e-06

Example 2.21. We apply again the method of false position for the equation of Example 2.17
but now on the initial interval [0, 4]. The numerical results are displayed in Table 2.4. (Only the
first and last several steps are presented.) Now, the speed of the convergence is far slower than
that of observed in the previous example. (And it becomes even slower if we further increase
the right end point of the interval.) On the other hand, (2.5) yields that the bisection method
with the initial interval [0, 4] has this accuracy in 18 steps, which is only two steps longer than
in Example 2.17. □

Exercises

1. Apply the method of false position for the equations presented in Exercise 1 of Section 2.3.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

2.5. Newton’s Method 33

Table 2.4: Method of false position, f(x) = ex − 2 cosx, [0, 4], TOL = 10−5

k ak bk pk f(pk)

0 0.00000000 4.00000000 0.07029205 -9.2224e-01
1 0.07029205 4.00000000 0.13406612 -8.3858e-01
2 0.13406612 4.00000000 0.19119837 -7.5285e-01
3 0.19119837 4.00000000 0.24180834 -6.6826e-01
4 0.24180834 4.00000000 0.28620106 -5.8729e-01
...

...
...

...
...

47 0.53966897 4.00000000 0.53968870 -2.6464e-04
48 0.53968870 4.00000000 0.53970508 -2.1970e-04
49 0.53970508 4.00000000 0.53971868 -1.8240e-04
50 0.53971868 4.00000000 0.53972996 -1.5143e-04
51 0.53972996 4.00000000 0.53973934 -1.2572e-04

2. Let

f(x) =

{︃
δ, x ≤ 0.5
4(1 + δ)(x− x2)− 1, x ≥ 0.5

Apply the bisection method and the method of false position on the interval [0, 1] to
approximate the root of f if

(a) δ = 2, (b) δ = 0.5, (c) δ = 0.09.

3. Work out the details of the proof of Theorem 2.19 for all the other cases.

2.5. Newton’s Method

One general approach in numerical analysis is that we replace the problem by a “simpler”
one which is “close” to the original problem, and we hope that the solution of the simpler
problem approximate that of the original problem. Here our goal is to find the solution
of the scalar equation f(x) = 0. We replace the function f by its first-order Taylor
polynomial approximation, and we solve the resulting linear equation. Geometrically this
means that the intersection of the tangent line with the x-axis gives an approximation of
the root of the original nonlinear equation. The equation of the tangent line to the graph
of f at p0 is y = f(p0)+f ′(p0)(x−p0), so its intersection with the x-axis is the solution of
the linear equation f(p0)+f ′(p0)(x−p0) = 0, hence it is x = p0−f(p0)/f

′(p0) (assuming,
of course, that f ′(p0) ̸= 0). This number is denoted by p1, and we repeat the procedure
from this point. Then we get the recursive sequence defined by

pk+1 = pk −
f(pk)

f ′(pk)
. (2.7)

The iterative method (2.7) is called Newton–Raphson method or shortly Newton’s method
or Newton iteration.

Example 2.22. We applied the Newton’s method for the problem of Example 2.17, and we
got the numerical results presented in Table 2.5. We observe that the sequence converges very
fast to the root of the function. □

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

34 2. Nonlinear algebraic equations and systems

Table 2.5: Newton’s method, f(x) = ex − 2 cosx, p0 = 0, TOL = 10−5

k pk f(pk)

0 0.1000000000 -8.8484e-01
1 0.7781206411 7.5291e-01
2 0.5678850726 7.8450e-02
3 0.5402639121 1.3139e-03
4 0.5397853041 3.9302e-07
5 0.5397851608 3.5207e-14

The Newton’s method is a one-step iteration with the function

g(x) := x− f(x)

f ′(x)
. (2.8)

Computing the derivative of g we get

g′(x) = 1− (f ′(x))2 − f(x)f ′′(x)

(f ′(x))2
=

f(x)f ′′(x)

(f ′(x))2
. (2.9)

Let p be a root f satisfying f ′(p) ̸= 0. Then g′(p) = 0, so Theorem 2.15 yields immediately
the following result.

Theorem 2.23. Let f ∈ C2[a, b], and let p ∈ (a, b) be such that f(p) = 0 and f ′(p) ̸= 0.
Then the Newton’s method converges locally to p.

Example 2.24. Consider the function f(x) = 0.5 arctanx. It’s only root is p = 0. We have
that f ′(0) = 0.5, so the Newton’s method converges locally to p = 0, i.e., if p0 is close enough to
0, then the Newton-iteration converges to 0. In Table 2.6 we present the first several terms of
this sequence starting from p0 = 1.4. (In the 15th step the program terminated with an error,
since f ′(p14) = 0 on the computer.) We can see that the sequence pk does not converge to 0 in
this case. □

Exercises

1. Apply the Newton’s method for the equations presented in Exercise 1 of Section 2.3.

2. Let f(x) = 0.5 arctanx. Then f has the unique root x = 0. Let pk be the Newton’s
iteration sequence. Show that there exists a number p∗ such that

(a) if |p0| < p∗, then pk → 0,

(b) if |p0| = p∗, then the sequence pk repeats p0 and −p0, and hence it is not convergent,

(c) if |p0| > p∗, then pk alternates (i.e., pkpk+1 < 0 for all k), and |pk| → ∞.

3. Give an iteration to approximate k
√
a.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

2.6. Secant Method 35

Table 2.6: Newton’s method, f(x) = 0.5 arctanx, p0 = 1.4

k pk f(pk)

0 1.4000000e+00 0.4752734
1 -1.4136186e+00 -0.4775591
2 1.4501293e+00 0.4835443
3 -1.5506260e+00 -0.4990071
4 1.8470541e+00 0.5372889
5 -2.8935624e+00 -0.6190257
6 8.7103258e+00 0.7282453
7 -1.0324977e+02 -0.7805557
8 1.6540564e+04 0.7853679
9 -4.2972148e+08 -0.7853982
10 2.9006412e+17 0.7853982
11 -1.3216239e+35 -0.7853982
12 2.7436939e+70 0.7853982
13 -1.1824729e+141 -0.7853982
14 2.1963537e+282 0.7853982

2.6. Secant Method

The Newton’s method requires the computation (and hence the existence) of the derivative
of f . But in practice, f ′ is not always known, (it is possible that f is not defined by a
formula, it may be an output of an other numerical procedure which computes the value
of f with a good precision). Or the computation of f ′ requires too much calculation, so
we prefer not to evaluate it. The secant method does not require the computation of the
derivative f ′.

Let p0 and p1 be two different initial values of the sequence. Consider the secant line of
f corresponding to the points p0 and p1, i.e., the line which connects the points (p0, f(p0))
and (p1, f(p1)). Its equation is

y = f(p1) +
f(p1)− f(p0)

p1 − p0
(x− p1).

The secant line intersects the x-axis at x = p1 − p1−p0
f(p1)−f(p0)

f(p1). p2 will denote this
number. Then we consider the secant line corresponding to p1 and p2, and its intersection
with the x-axis is denoted by p3. Repeating this procedure we define the sequence pk by
the recursion

pk+1 = pk −
pk − pk−1

f(pk)− f(pk−1)
f(pk). (2.10)

This is a two-step iteration, which defines the secant method.

Example 2.25. We used the secant method for the problem of Example 2.17. The numerical
results can be seen in Table 2.7. Comparing it with the Table 2.5, we observe that the secant
method converges to its limit slower than the Newton’s method. □

For the proof of the secant method we need the following theorem.

Theorem 2.26. Let f ∈ C2[a, b], and let p ∈ (a, b) be such that f(p) = 0 and f ′(p) ̸= 0.
Let pk be the sequence defined by the secant method. Then for every k there exist ξk ∈

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

36 2. Nonlinear algebraic equations and systems

Table 2.7: secant method, f(x) = ex − 2 cosx, p0 = 0, p1 = 1, TOL = 10−5

k pk f(pk)

0 0.0000000000 -1.0000e+00
1 1.0000000000 1.6377e+00
2 0.3791214458 -3.9698e-01
3 0.5002604213 -1.0576e-01
4 0.5442561500 1.2301e-02
5 0.5396724494 -3.0921e-04
6 0.5397848464 -8.6246e-07
7 0.5397851608 6.0793e-11

⟨pk, pk−1, p⟩ and ηk ∈ ⟨pk, pk−1⟩ such that

pk+1 − p =
1

2

f ′′(ξk)

f ′(ηk)
(pk − p)(pk−1 − p). (2.11)

Proof. Algebraic manipulations give

pk+1 − p = pk − p− pk − pk−1

f(pk)− f(pk−1)
f(pk)

=
(pk−1 − p)f(pk)− (pk − p)f(pk−1)

f(pk)− f(pk−1)

=
(pk − p)(pk−1 − p)

f(pk)− f(pk−1)

(︃
f(pk)

pk − p
− f(pk−1)

pk−1 − p

)︃
= (pk − p)(pk−1 − p)

pk − pk−1

f(pk)− f(pk−1)

f(pk)−f(p)
pk−p

− f(pk−1)−f(p)

pk−1−p

pk − pk−1

.

Then the Lagrange Mean Value Theorem implies the existence of ηk ∈ ⟨pk, pk−1⟩ such
that

f(pk)− f(pk−1)

pk − pk−1

= f ′(ηk).

Now we have to show that there exists a ξk ∈ ⟨pk, pk−1, p⟩ such that

f(pk)−f(p)
pk−p

− f(pk−1)−f(p)

pk−1−p

pk − pk−1

=
f ′′(ξk)

2
. (2.12)

Its direct proof is left to Exercise 2. Here we prove relation (2.12) using a result and a
notion will be discussed in Chapter 6. The left hand side of (2.12) is a second divided differ-
ence f [pk−1, p, pk] of f corresponding to the points pk−1, p and pk (see Section 6.2). Corol-
lary 6.17 yields that there exists a ξk ∈ ⟨pk, pk−1, p⟩ such that f [pk−1, p, pk] = f ′′(ξk)/2.□

Theorem 2.27. Let f ∈ C2[a, b], and let p ∈ (a, b) be such that f(p) = 0 and f ′(p) ̸= 0.
Then the secant method converges locally to p.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

2.7. Order of Convergence 37

Proof. Let δ∗ be such that f ′(x) ̸= 0 for x ∈ [p − δ∗, p + δ∗]. Such δ∗ exists, since
f ′(p) ̸= 0 and f ′ is continuous. Let

M :=
max{|f ′′(x)| : x ∈ [p− δ∗, p+ δ∗]}
2min{|f ′(x)| : x ∈ [p− δ∗, p+ δ∗]}

.

Select δ such that δ < min{δ∗, 1
M
}, and let ε := Mδ. Then, by our conditions, 0 < ε < 1.

Let p0, p1 ∈ (p−δ, p+δ) arbitrary but different numbers. Relation (2.11) and the definition
of M yield that |pk+1 − p| ≤M |pk − p||pk−1 − p|, and hence

M |pk+1 − p| ≤M |pk − p|M |pk−1 − p| (2.13)

for all k. With k = 1 we get M |p2 − p| ≤ M |p1 − p|M |p0 − p| ≤ (Mδ)2 = ε2 < ε.
Therefore |p2 − p| ≤ ε/M = δ, and hence p2 ∈ (p− δ, p+ δ). Similarly we can show that
pk ∈ (p− δ, p+ δ) for all k.

The definition of ε implies M |p0−p| < ε and M |p1−p| < ε. Now we select a sequence
qk which satisfies M |pk− p| ≤ εqk for all k. We can define q0 = 1 and q1 = 1. Suppose the
first k terms of the sequence qk is already defined. Inequality (2.13) yields that relation
M |pk+1 − p| ≤ εqkεqk−1 must be satisfied. Hence M |pk+1 − p| ≤ εqk+1 holds, if qk+1 is
defined by

qk+1 = qk + qk−1, k ≥ 1, q0 = 1, q1 = 1. (2.14)

The sequence defined by (2.14) is the so-called Fibonacci sequence. We can show (see
Exercise 3) that the general formula of qk is

qk =
1√
5
(rk+1

0 − rk+1
1), k ≥ 0, (2.15)

where

r0 =
1 +
√
5

2
≈ 1.618, and r1 =

1−
√
5

2
≈ −0.618.

But then qk →∞ as k →∞. Now we get pk → p, since

|pk − p| ≤ 1

M
εqk → 0, as k →∞.

□

Exercises

1. Apply the secant method for the equations presented in Exercise 1 of Section 2.3.

2. Prove relation (2.12). (Hint: show that the expression

f [a, b, c] :=

f(c)−f(b)
c−b − f(b)−f(a)

b−a

c− a

is independent from the order of the numbers a, b, c. Therefore, we can assume that
a < b < c. Take the first-order Taylor approximation of f around b together with the
second-order error term. Then express the numerator of the right hand side. Finally, use
Theorem 2.2 to show that f [a, b, c] = f ′′(ξ)/2 for some ξ ∈ (a, c).)

3. Prove formula (2.15).

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

38 2. Nonlinear algebraic equations and systems

2.7. Order of Convergence

In the previous sections we observed that some sequence converges to a limit faster than
other sequences. In this section we define the notion of order of convergence which can
characterize the speed of the convergence.

Let pk be a convergent sequence with limit p. We say that the order of convergence
of the sequence pk is α if α ≥ 1 and there exists a constant c ≥ 0 such that

|pk+1 − p| ≤ c|pk − p|α for all k ≥ 0, (2.16)

and if α = 1, then we also assume that c < 1.
If we want to be more precise, then in case when (2.16) holds, we could say that the

order of convergence is at least α, since it is possible that (2.16) can be satisfied with an
exponent bigger than α, too. For simplicity, we will omit “at least” in the sequel, but
the notion should always be understood in this sense. If we want to emphasize that pk
satisfies (2.16) with some α, but it does not satisfy it with any exponent bigger than α,
then we say that the order of convergence is exactly α.

If the order of convergence of a sequence is α = 1, then we say that the convergence
is linear , and if α = 2, then we say that the convergence is quadratic.

Suppose pk converges to p linearly. Then it is easy to see that

|pk − p| ≤ ck|p0 − p| (2.17)

holds. For some cases, it is not easy to show a linear convergence of a numerical method
using the definition (2.16). So we extend the previous definition in such a way that if a
sequence satisfies relation (2.17) with a constant 0 ≤ c < 1, then we also say that the
convergence is linear.

Suppose pk → p with order α. If the finite limit

λ = lim
k→∞

pk+1 − p

(pk − p)α
(2.18)

exists, then we call λ as the asymptotic error constant . It can be proved easily that if
the limit (2.18) exists and it is finite, then pk is convergent and its order of convergence
is α. If pk converges linearly and its asymptotic error constant is 0, then we speak about
superlinear convergence.

Theorem 2.28. Suppose pk converges to p of order α with the asymptotic error constant
λ ̸= 0. Then

(i) lim
k→∞

pk+1 − p

(pk − p)β
= 0 for all β < α, and

(ii) lim
k→∞

|pk+1 − p|
|pk − p|β

=∞ for all β > α.

Proof. The statements follow from relation

|pk+1 − p|
|pk − p|β

=
|pk+1 − p|
|pk − p|α

1

|pk − p|β−α
.

□

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

2.7. Order of Convergence 39

It follows from the above theorem, that if a sequence pk converges to p of order α, and
the asymptotic error constant λ ̸= 0, then the order of convergence is exaclty α.

Example 2.29. Consider again the Newton iteration of Example 2.22. In Table 2.8 we have
listed in the last three columns the numerical values of the formula |pk+1 − p|/|pk − p|α for
α = 1, 2 and 3 using the value p = 0.5397851608092811. We can observe that for α = 1 the
sequence goes to 0. For α = 2 the sequence remains bounded but it does not converge to 0, for
α = 3 it converges to ∞. (Certainly from the first 5 terms of a sequence we should not make
conclusions about a limit of a sequence, but generation of more terms will confirm the above
observations.) Therefore, the numerical evidence suggests that the order of convergence of this
sequence is 2. □

Table 2.8: Order of convergence of the Newton iteration, f(x) = ex − 2 cosx

|pk − p|/|pk−1 − p|α
k pk f(pk) α = 1 α = 2 α = 3

0 0.0000000000 -1.0000e+00
1 1.0000000000 1.6377e+00 8.5259e-01 1.5795e+00 2.9262e+00
2 0.6279041258 2.5516e-01 1.9147e-01 4.1605e-01 9.0404e-01
3 0.5442066314 1.2164e-02 5.0176e-02 5.6941e-01 6.4619e+00
4 0.5397973257 3.3375e-05 2.7513e-03 6.2226e-01 1.4074e+02
5 0.5397851609 2.5388e-10 7.6071e-06 6.2533e-01 5.1404e+04

Theorem 2.30. Suppose a sequence pk satisfies inequality (2.16) with some c ≥ 0 and
α > 1. Then pk converges locally to p, and for every k

|pk − p| ≤ c
αk−1
α−1 |p0 − p|αk

. (2.19)

Proof. Relation (2.19) can be easily proved with mathematical induction. Then it implies

|pk − p| ≤ c
1

1−α

(︂
c

1
α−1 |p0 − p|

)︂αk

.

Hence if p0 is such that c
1

α−1 |p0 − p| < 1, then pk → p, i.e., pk converges locally to p. □

Example 2.31. Suppose pk → p and qk → q linearly and quadratically, respectively, which
satisfy (2.17) and (2.16) with c = 1/2, respectively. Moreover, we suppose |p0 − p| < 1 and

|q0−q| < 1. Then relations (2.17) and (2.19) yield that |pk−p| ≤ (1/2)k and |qk−q| ≤ (1/2)2
k−1.

In Table 2.9 we listed these error bounds for k = 1, 2, . . . , 5. We can see that the error decreases
much faster in the quadratic case. □

Theorem 2.32. Let g ∈ Cm[a, b], p ∈ (a, b) and p = g(p). Consider the fixed-point
iteration pk+1 = g(pk).

(i) If |g′(p)| < 1, then the fixed-point iteration converges locally and linearly to p.

(ii) If g′(p) = g′′(p) = . . . = g(m−1)(p) = 0, then the fixed-point iteration converges
locally to p of order m with the asymptotic error constant g(m)(p)/m!.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

40 2. Nonlinear algebraic equations and systems

Table 2.9:

k (1/2)k (1/2)2
k−1

1 5.0000 · 10−1 5.0000 · 10−1

2 2.5000 · 10−1 1.2500 · 10−1

3 1.2500 · 10−1 7.8125 · 10−3

4 6.2500 · 10−2 3.0518 · 10−5

5 3.1250 · 10−2 4.6566 · 10−10

6 1.5625 · 10−2 1.0842 · 10−19

Proof. Statement (i) follows from the proof of Theorem 2.15.
For the proof of statement (ii), we consider the Taylor approximation of g around p

of degree (m− 1):

g(pk) = g(p) + g′(p)(pk − p) + · · ·+ g(m−1)(p)

(m− 1)!
(pk − p)m−1 +

g(m)(ξk)

m!
(pk − p)m,

where ξk ∈ ⟨pk, p⟩. Using that the first m− 1 derivatives are equal to 0 at p, g(p) = p and
g(pk) = pk+1, we get

|pk+1 − p| = |g
(m)(ξk)|
m!

|pk − p|m ≤ c|pk − p|m. (2.20)

In the last estimate we used that g ∈ Cm[a, b], i.e., g(m) is continuous, and therefore, it
is bounded in a neighborhood of p. The limit (2.18) follows from these, since ξk → p as
k →∞ by relation |ξk − p| ≤ |pk − p|. Therefore we obtain

lim
k→∞

pk+1 − p

(pk − p)m
= lim

k→∞

g(m)(ξk)

m!
=

g(m)(p)

m!
.

□

It follows from the above theorem that the order of convergence of a fixed-point itera-
tion is always a positive integer assuming that g is smooth enough. Theorem 2.36 below
shows that it is not true, in general, in the case of multistep iterations.

We will need the notion of a multiple root. We say that p ∈ (a, b) is a root of
multiplicity m of f ∈ C[a, b] if there exists a function q ∈ C[a, b] such that q(p) ̸= 0 and

f(x) = (x− p)mq(x), x ∈ (a, b). (2.21)

We can prove the next result easily.

Theorem 2.33. Let f ∈ Cm[a, b], p ∈ (a, b).

(i) Let p be a root of multiplicity m of f , and the function q in (2.21) is m times
differentiable. Then

f(p) = f ′(p) = f ′′(p) = . . . = f (m−1)(p) = 0, and f (m)(p) ̸= 0. (2.22)

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

2.7. Order of Convergence 41

(ii) If (2.22) holds, then p is a root of multiplicity m of f .

(iii) Suppose f is infinitely many times differentiable, f is expandable in a Taylor-series
around p, and f satisfies relations (2.22). Then p is a root of order m of f , and the
function q in (2.21) is also infinitely many times differentiable, and q is expandable
in a Taylor-series around p.

The next theorem shows that if p is a simple root of f , then the Newton iteration is
locally and quadratically convergent, and if p is a multiple root of f , then the order of
convergence is linear.

Theorem 2.34. Let f ∈ C2[a, b].

(i) If f(p) = 0 and f ′(p) ̸= 0, then the Newton iteration converges locally to p, and the
order of convergence is quadratic.

(ii) If f(x) = (x − p)mq(x), where q ∈ C2[a, b], q(p) ̸= 0, m > 1, then the Newton
iteration converges locally to p, and the order of convergence is linear.

Proof. Statement (i) follows form part (ii) of Theorem 2.32, since the Newton iteration
is a fixed-point iteration with the function g defined in (2.8), and g′(p) = 0 by relation
(2.9).

Since the function

g(x) :=

{︃
x− f(x)

f ′(x)
, x ̸= p,

p x = p

satisfies

g(x) = x− (x− p)q(x)

mq(x) + (x− p)q′(x)
,

it is continuously differentiable at p, and g′(p) = 1 − 1
m
. Therefore, part (ii) of Theo-

rem 2.32 yields that the order of convergence is linear. □

Example 2.35. Find the root of f(x) = x3 + x2 − 8x − 12 by the Newton–Raphson method
from the initial value p0 = 0 and using tolerance 10−5. It is easy to see that x = −2 is a double
root, and x = 3 is a simple root of the polynomial. In Table 2.10 we can see the numerical
values of the iteration corresponding to p0 = 0, and in Table 2.11 corresponding to p0 = 2. In
the first case the sequence converges to −2, and in the second case it converges to 3. We can
observe that in the first case the convergence is linear, but in the second case it is quadratic.□

Theorem 2.36. If p is a simple root of f , then the secant method converges locally to p
of order α = (1 +

√
5)/2 ≈ 1.618.

Proof. We use the notations and results introduced in the proof of Theorem 2.27. By
inequality (2.13) we have

|pk+1 − p| ≤M |pk − p||pk−1 − p|.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

42 2. Nonlinear algebraic equations and systems

Table 2.10: Newton iteration, f(x) = x3 + x2 − 8x− 12

|pk − p|/|pk−1 − p|α
k pk f(pk) α = 1 α = 2

0 0.0000000000 -1.2000e+01
1 -1.5000000000 -1.1250e+00 2.5000e-01 1.2500e-01
2 -1.7647058824 -2.6379e-01 4.7059e-01 9.4118e-01
3 -1.8853313477 -6.4237e-02 4.8734e-01 2.0712e+00
4 -1.9433465411 -1.5866e-02 4.9406e-01 4.3086e+00
5 -1.9718365260 -3.9436e-03 4.9712e-01 8.7747e+00
6 -1.9859582600 -9.8308e-04 4.9858e-01 1.7703e+01
7 -1.9929890302 -2.4542e-04 4.9929e-01 3.5558e+01
8 -1.9964969780 -6.1313e-05 4.9965e-01 7.1267e+01
9 -1.9982491032 -1.5323e-05 4.9982e-01 1.4268e+02
10 -1.9991247050 -3.8300e-06 4.9991e-01 2.8552e+02
11 -1.9995623908 -9.5743e-07 4.9996e-01 5.7119e+02
12 -1.9997812050 -2.3935e-07 4.9998e-01 1.1425e+03
13 -1.9998906049 -5.9835e-08 4.9999e-01 2.2852e+03
14 -1.9999453030 -1.4959e-08 4.9999e-01 4.5705e+03
15 -1.9999726517 -3.7396e-09 5.0000e-01 9.1412e+03
16 -1.9999863259 -9.3491e-10 5.0000e-01 1.8283e+04
17 -1.9999931629 -2.3373e-10 5.0000e-01 3.6565e+04

Table 2.11: Newton iteration, f(x) = x3 + x2 − 8x− 12

|pk − p|/|pk−1 − p|α
k pk f(pk) α = 1 α = 2

0 2.0000000000 -1.6000e+01
1 4.0000000000 3.6000e+01 1.0000e+00 1.0000e+00
2 3.2500000000 6.8906e+00 2.5000e-01 2.5000e-01
3 3.0217391304 5.4821e-01 8.6957e-02 3.4783e-01
4 3.0001866020 4.6654e-03 8.5837e-03 3.9485e-01
5 3.0000000139 3.4816e-07 7.4632e-05 3.9996e-01
6 3.0000000000 1.9400e-15 5.5721e-09 4.0011e-01

Then, applying estimate |pk − p| ≤ 1
M
εqk , we get

|pk+1 − p| ≤ |pk − p|r0M |pk − p|1−r0|pk−1 − p|

≤ |pk − p|r0M
(︃

1

M
εqk
)︃1−r0 1

M
εqk−1

= |pk − p|r0M r0−1εqk+qk−1−r0qk

= |pk − p|r0M r0−1εqk+1−r0qk

= |pk − p|r0M r0−1εr
k+1
1 .

Note that the last step follows from (2.15) (with some calculations). Since rk+1
1 → 0 as

k →∞, we get that there exists a constant c such that |pk+1− p| ≤ c|pk− p|r0 , and hence

the order of convergence is r0 =
1+

√
5

2
. □

We have seen that the Newton iteration is only linearly convergent in the case of a
multiple root. It is possible to prove that the same holds for the secant method. Next we
discuss how to accelerate the speed of the convergence in this case.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

2.7. Order of Convergence 43

Let f ∈ C3[a, b], suppose p ∈ (a, b) is a multiple root of f . More precisely, we assume
that f(x) = (x− p)mq(x) with m > 1 and q ∈ C3[a, b]. We define the function

µ(x) =

{︃
f(x)
f ′(x)

, if x ̸= p,
0, if x = p.

We can see that

µ(x) =
(x− p)q(x)

mq(x) + (x− p)q′(x)
,

and hence µ ∈ C2[a, b]. Moreover, µ′(p) = 1
m
, and so p is only a simple root of µ.

Therefore if we use the Newton iteration for the function µ instead of f , we get a quadratic
convergence. Then we get the sequence

pk+1 = pk −
µ(pk)

µ′(pk)
= pk −

f(pk)f
′(pk)

(f ′(pk))2 − f(pk)f ′′(pk)
. (2.23)

Exercises

1. Show that the bisection method is linearly convergent.

2. Prove inequality (2.19).

3. Let a > 0. Show that

pk+1 =
pk(p

2
k + 3a)

3p2k + a

is a locally convergent sequence of order 3 to approximate
√
a.

4. Find the order of convergence of the sequence pk = 1
k . What is the order of convergence

of pk = 1
kn ?

5. Show that pk = 10−2k goes to 0 quadratically.

6. Show that x = 0 is a double root of the function sin2 x.

7. Prove Theorem 2.33.

8. Consider the following iterations:

(a) (Halley iteration) pk+1 = pk −
1

ak
, where ak =

f ′(pk)

f(pk)
− 1

2

f ′′(pk)

f ′(pk)
,

(b) (Olver iteration) pk+1 = pk −
f(pk)

f ′(pk)
− 1

2

f ′′(pk)

f ′(pk)

(︃
f(pk)

f ′(pk)

)︃2

,

Determine the order of convergence of the methods. Apply these methods to the problems
in Exercise 1 of Section 2.3.

9. Find the root of f(x) = (x2− 5)3 using Newton iteration, secant method, iteration (2.23),
and iteration

pk+1 = pk −m
f(pk)

f ′(pk)
,

where m the multiplicity of the root. Compare the order of convergence of the sequences.
What is the order of convergence of the last iteration?

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

44 2. Nonlinear algebraic equations and systems

10. Suppose we already determined a root x1 of the function f . Then if we apply a numerical
method to find a root of the function g(x) = f(x)/(x − x1), then we get another root of
f (or x1 again, if x1 is a multiple root). This is the so-called deflation method . With this
method determine all roots of the polynomials together with their multiplicities (using
any approximation technique):

(a) f(x) = x3 − 3x2 + 4, (b) f(x) = x4 − 5x3 + 9x2 − 7x+ 2

2.8. Stopping Criteria of Iterations

In this chapter the numerical methods we discussed generate an infinite sequence pk to
find a root of the function f , and the limit p of the sequence is the exact value of the
root. We approximate the limit of the sequence p by a term of the sequence pk, where k
is “large enough”. So the question is how we determine the number of steps k for which
pk gives us a good approximation of p. Here we introduce three popular strategies. We
predefine three tolerances ε1 > 0, ε2 > 0 and ε3 > 0. We consider the kth term pk as an
appropriate approximation of p if

(i) |pk − pk−1| < ε1, (ii)
|pk − pk−1|
|pk|

< ε2, or (iii) |f(pk)| < ε3. (2.24)

Condition (i) is a numerical analogue of the absolute error |pk−p| of the approximation.
It assumes that if a new term of the sequence is closer to the previous one than the
tolerance, then it is because both terms are already close to the limit. So we terminate
the generation of the sequence.

Condition (ii) is the numerical analogue of the relative error |pk−p|/|p| of the approx-
imation. As in the previous case, we examine the distance between consecutive terms but
we take into account the order of magnitude of the terms.

Condition (iii) tests whether the function value at pk is close to 0. If it is satisfied, we
assume that it is because the term is close to a root of f , and we terminate the sequence.

In a computer code it is always recommended to count the number of iteration and
stop computing the sequence if it is too large, i.e., larger than a predefined maximal
iteration number. This way we avoid a possible infinite loop of the program, and also, we
do not allow a convergence which is too slow.

The first two conditions can be applied for any iteration, but the third one is formulated
for the problem of finding a root of a single variable function f . We remark that for other
type of problems it is likely that we can formulate a similar condition which tests how
well the approximate solution satisfies the investigated mathematical problem (see, e.g.,
Section 4.4 below).

We remark that the above reasoning is heuristic. We can find examples when a
stopping condition (i), (ii) or (iii) in (2.24) holds, but the kth term of the sequence
is not close to a root. Therefore, in practice, we usually use combination of stopping
criteria.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

2.9. Review of Multivariable Calculus 45

Exercises

1. Suppose an iteration method generates the sequence pk =
∑︁k

i=1
1
i , and suppose we use

only the stopping criterion (i) defined in (2.24). What do we observe? Does the sequence
converge? What do we get if we use stopping criterion (ii)?

2. Let f(x) = x8, and suppose an iteration generates pk = 1/k to approximate the root of
f . Suppose we use stopping condition (i) in (2.24) with ε1 = 10−8. What do we get as an
approximate root? What do we get if we use only stopping condition (ii), and what if we
use only condition (iii) with tolerances ε2 = 10−8 or ε3 = 10−8, respectively?

2.9. Review of Multivariable Calculus

In this section we review those notions, notations and results from multivariable calculus
which we use in the rest of this chapter.

Theorem 2.37. Let E ⊂ Rn be a closed and bounded set, f : E → R be continuous.
Then f has a maximum and a minimum on E, i.e., there exist c,d ∈ E such that

f(c) = max
x∈E

f(x) and f(d) = min
x∈E

f(x).

Let E ⊂ Rn, and consider the function f : E → R of n variables. The partial
derivatives of the function f = f(x) = f(x1, . . . , xn) with respect to the variable xi is
denoted by ∂f

∂xi
. If all the partial derivatives of f up to order m exist and are continuous,

then we say that f is m times continuously partially differentiable, and we will denote it
by f ∈ Cm. If f ∈ C1, then f ′ denotes the gradient vector or shortly, the gradient of f ,
i.e.,

f ′(x) :=

(︃
∂f(x)

∂x1

, . . . ,
∂f(x)

∂xn

)︃T

.

If f ∈ C2, then f ′′(x) is the so-called the Hessian matrix or shortly the Hessian defined
by

f ′′(x) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2f

∂x2
1

(x)
∂2f

∂x1 ∂x2

(x) · · · ∂2f

∂x1 ∂xn

(x)

∂2f

∂x2 ∂x1

(x)
∂2f

∂x2
2

(x) · · · ∂2f

∂x2 ∂xn

(x)

...
...

...
∂2f

∂xn ∂x1

(x)
∂2f

∂xn ∂x2

(x) · · · ∂2f

∂x2
n

(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
We will need the multivariable Taylor’s formula later.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

46 2. Nonlinear algebraic equations and systems

Theorem 2.38 (Taylor’s formula). Let E ⊂ Rn be an open set, f : E → R, f ∈ Cm+1,
and let a ∈ E. Then for every x ∈ E there exists a ξ = ξ(x) ∈ E such that ξ = x+t(a−x)
for some t ∈ (0, 1) (i.e., ξ lies on the line segment connecting a and x), and

f(x1, . . . , xn) = f(a1, . . . , an) +
n∑︂

i=1

∂f(a1, . . . , an)

∂xi

(xi − ai)

+
1

2

n∑︂
i=1

n∑︂
j=1

∂2f(a1, . . . , an)

∂xi ∂xj

(xi − ai)(xj − aj)

+ · · ·+ 1

m!

n∑︂
i1=1

· · ·
n∑︂

im=1

∂mf(a1, . . . , an)

∂xi1 · · · ∂xim

(xi1 − ai1) · · · (xim − aim)

+
1

(m+ 1)!

n∑︂
i1=1

· · ·
n∑︂

im+1=1

∂m+1f(ξ1, . . . , ξn)

∂xi1 · · · ∂xim+1

(xi1 − ai1) · · · (xim+1 − aim+1).

We will use the above Taylor’s formula for the cases m = 1 or m = 2, hence we will
approximate a function by a first-order or a second-order Taylor polynomial. We can
easily check that using the notation of the gradient and the Hessian that for f ∈ C3 the
second-order Taylor approximation can be written as

f(x) ≈ f(a) + f ′(a)T (x− a) +
1

2
(x− a)Tf ′′(a)(x− a).

This justifies the notations f ′ and f ′′ for the gradient and the Hessian. On the other
hand, we know from calculus that for a C2 function f ′ and f ′′ are the Fret derivative of
the functions f and f ′, respectively. We do not need the formal definition of the Fret
derivative, so we can use f ′ and f ′′ as the notations of the gradient and the Hessian.

Let I ⊂ R, g : I → Rn, and we denote the component functions of g by gi, i.e., we
use the notation g(t) = (g1(t), . . . , gn(t))

T . We say that such g is differentiable if all its
component functions are differentiable, and its derivative is

g′ : I → Rn, g′(t) := (g′1(t), . . . , g
′
n(t))

T .

We say that g is continuously differentiable if its each component function is continuously
differentiable.

We have the follow result.

Theorem 2.39 (chain rule). Let f : Rn → R, f ∈ C1 and g : R → Rn be contin-
uously differentiable. Then the composite function f ◦ g : R → R is also continuously
differentiable, and

d

dt
f(g(t)) = f ′(g(t))Tg′(t).

We can get the following generalization of the Lagrange’s Mean Value Theorem for
multivariable functions from the chain rule.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

2.10. Vector and Matrix Norms and Convergence 47

Theorem 2.40 (Lagrange’s Mean Value Theorem). Let E ⊂ Rn be an open and
convex set, f : E → R be continuously differentiable with respect to all variables. Then
for every x,y ∈ E there exists ξ ∈ (0, 1) such that

f(x)− f(y) = f ′(y + ξ(x− y))T (x− y).

Proof. We define the single variable function g(t) = f(y+ t(x−y)) for t ∈ [0, 1]. Using
the Lagrange’s Mean Value Theorem of single variable functions and the chain rule, we
get

f(x)− f(y) = g(1)− g(0) = g′(ξ) = f ′(x+ ξ(y − x))T (x− y).

□

Let E ⊂ Rn and f : E → Rn. The component functions of f are denoted by fi, i.e.,

f(x) = (f1(x), . . . , fn(x))
T .

We say that f is m times continuously partially differentiable if its every component
function is m times continuously differentiable, and it will be denoted by f ∈ Cm. The
Jacobian matrix or shortly, the Jacobian of the function f ∈ C1 is the n×n matrix defined
by

f ′(x) :=

⎛⎜⎝
∂f1
∂x1

(x) · · · ∂f1
∂xn

(x)
...

...
∂fn
∂x1

(x) · · · ∂fn
∂xn

(x)

⎞⎟⎠ .

Let a ∈ Rn be fixed. If we approximate the component functions of f by its first-order
Taylor polynomial around a, then we get

f(x) =

⎛⎝ f1(x)
...

fn(x)

⎞⎠ ≈
⎛⎝ f1(a) + f ′

1(a)
T (x− a)

...
fn(a) + f ′

n(a)
T (x− a)

⎞⎠ = f(a) + f ′(a)(x− a).

The expression f(a) + f ′(a)(x− a) is called the linear approximation of f around a.

2.10. Vector and Matrix Norms and Convergence

The components of the vector x ∈ Rn are denoted by x = (x1, x2, . . . , xn)
T . The function

∥ · ∥ : Rn → R is called vector norm if

1. ∥x∥ ≥ 0 for all x ∈ Rn, and ∥x∥ = 0 if and only if x = 0,

2. ∥cx∥ = |c|∥x∥ for all c ∈ R and x ∈ Rn,

3. (triangle inequality:) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x,y ∈ Rn.

Theorem 2.41. For any vector norm ∥ · ∥ it follows that

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

48 2. Nonlinear algebraic equations and systems

(i)
⃓⃓⃓
∥x∥ − ∥y∥

⃓⃓⃓
≤ ∥x− y∥,

(ii) ∥ · ∥ is a continuous function on Rn.

Proof. The triangle inequality yields ∥x∥ = ∥x − y + y∥ ≤ ∥x − y∥ + ∥y∥. Hence we
get ∥x∥ − ∥y∥ ≤ ∥x− y∥. Similarly, ∥y∥ − ∥x∥ ≤ ∥x− y∥ holds too, so part (i) follows.
The continuity of ∥ · ∥ follows from part (i). □

Let p ≥ 1, and define the so-called p-norm:

∥x∥p :=

(︄
n∑︂

i=1

|xi|p
)︄1/p

.

It can be shown that ∥ · ∥p satisfies all the three requirements of the definition of a norm
for all p ≥ 1. The norm corresponding to p = 2, i.e., ∥ · ∥2 is called Euclidean norm.
Another special case is the 1-norm:

∥x∥1 :=
n∑︂

i=1

|xi|.

We will also use the following vector norm, the so-called infinity norm or maximum norm

∥x∥∞ := max
i=1,...,n

|xi|.

It is left for the reader to show that ∥ · ∥1 and ∥ · ∥∞ satisfy the norm properties
(Exercise 1). The Euclidean norm is clearly satisfies the 1st and 2nd norm properties, but
for the proof of the triangle inequality we need the following estimate, which is important
in its own right.

Theorem 2.42 (Cauchy–Bunyakovsky–Schwarz inequality). For every x1, . . . , xn,
y1, . . . , yn ∈ R it follows (︄

n∑︂
i=1

xiyi

)︄2

≤
n∑︂

i=1

x2
i

n∑︂
i=1

y2i ,

where equality holds if and only if there exists λ ∈ R such that yi = λxi for every i =
1, 2, . . . , n.

Proof. Consider the second-order polynomial p(t) := t2
∑︁n

i=1 x
2
i−2t

∑︁n
i=1 xiyi+

∑︁n
i=1 y

2
i .

Then p(t) =
∑︁n

i=1(txi− yi)
2 ≥ 0 holds for all t, so p may not have two distinct real roots,

i.e., its discriminant may not be positive:

4

(︄
n∑︂

i=1

xiyi

)︄2

− 4
n∑︂

i=1

x2
i

n∑︂
i=1

y2i ≤ 0.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

2.10. Vector and Matrix Norms and Convergence 49

This yields the Cauchy-Bunyakovsky-Schwarz inequality. p has one real root if and only if
its discriminant is 0, i.e., the inequality holds with equality. On the other hand, p(t) = 0
holds for some t = λ if and only if yi = λxi for all i = 1, 2, . . . , n. □

Taking a square root for both sides of the Cauchy–Bunyakovsky–Schwarz inequality
and using vector notation we get:

Corollary 2.43. For all x,y ∈ Rn it follows

|xTy| ≤ ∥x∥2∥y∥2,

where the equality is satisfied if and only if there exists λ ∈ R such that y = λx.

Using the Cauchy–Bunyakovsky–Schwarz inequality we get

∥x+ y∥22 =
n∑︂

i=1

(xi + yi)
2

=
n∑︂

i=1

x2
i + 2

n∑︂
i=1

xiyi +
n∑︂

i=1

y2i

≤
n∑︂

i=1

x2
i + 2

⌜⃓⃓⎷ n∑︂
i=1

x2
i

⌜⃓⃓⎷ n∑︂
i=1

y2i +
n∑︂

i=1

y2i

=

⎛⎝⌜⃓⃓⎷ n∑︂
i=1

x2
i +

⌜⃓⃓⎷ n∑︂
i=1

y2i

⎞⎠2

= (∥x∥2 + ∥y∥2)2,

which shows that the Euclidean norm satisfies the triangle inequality.

With the application of the norm we can define the length of a vector, distance between
two vectors and the notion of convergence of vector sequences. The expression ∥x∥ is called
the length of the vector, which is the distance between x and 0. The distance between
the vectors x and y is defined as the real number ∥x − y∥. Let p(k) be a sequence of
n-dimensional vectors, and let ∥ · ∥ be a vector norm on Rn. We say that the sequence
p(k) converges to p if

lim
k→∞
∥p(k) − p∥ = 0.

It can be proved that the notion of the convergence of a vector sequence is independent
of the selection of the vector norm, i.e., if a vector sequence is convergent in a norm, it is
convergent to the same limit in any other norm. This property is called in mathematical
analysis as the vector norms are equivalent in Rn.

Theorem 2.44. Let | · | and ∥ · ∥ be two vector norms, and p(k) be a sequence in Rn.
Then limk→∞ |p(k) − p| = 0 if and only if limk→∞ ∥p(k) − p∥ = 0.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

50 2. Nonlinear algebraic equations and systems

Proof. It is enough to show that for any fixed vector norm ∥ · ∥, ∥p(k) − p∥ → 0 if and
only if ∥p(k)−p∥1 → 0. It holds if we show that there exist nonnegative constants m and
M such that

m∥p(k) − p∥1 ≤ ∥p(k) − p∥ ≤M∥p(k) − p∥1. (2.25)

Let E := {x ∈ Rn : ∥x∥1 = 1}. Then E is a bounded and closed subset of Rn, therefore
Theorems 2.37 and 2.41 yield that the continuous function ∥ · ∥ takes its maximum and
minimum on E. Let denote them byM andm, respectively. Let x = (p(k)−p)/∥p(k)−p∥1.
Then x ∈ E, and hence m ≤ ∥x∥ ≤ M , which yields (2.25) after multiplication by
∥p(k) − p∥1. □

Theorem 2.45. Let p
(k)
i and pi denote the ith components of the vectors p(k) and

p, respectively. Then the sequence p(k) converges to p if and only if p
(k)
i → pi for all

i = 1, 2, . . . , n as k →∞.

Proof. Theorem 2.44 yields that ∥p(k)−p∥ → 0 if and only if ∥p(k)−p∥1 =
∑︁n

i=1 |p
(k)
i −

pi| → 0, which is satisfied exactly when p
(k)
i → pi for all i = 1, 2, . . . , n. □

The set of n × n-dimensional real matrices is denoted by Rn×n. Let ∥ · ∥ be a vector
norm on Rn. The function ∥ · ∥ : Rn×n → R defined by the formula

∥A∥ := sup
x ̸=0

∥Ax∥
∥x∥

is called the matrix norm generated by the vector norm ∥ · ∥. We note that both the
vector and the matrix norms are denoted by the same symbol. It is possible to show that
in the definition of the matrix norm sup can be replaced by max, i.e., there exists a vector
x such that ∥A∥ = ∥Ax∥

∥x∥ . The following properties of the matrix norm can be proved
easily:

Theorem 2.46. For every A,B ∈ Rn×n it follows

(i) ∥A∥ ≥ 0, and ∥A∥ = 0 if and only if A = 0,

(ii) ∥cA∥ = |c|∥A∥ for all c ∈ R,

(iii) (triangle inequality:) ∥A+B∥ ≤ ∥A∥+ ∥B∥,

(iv) ∥Ax∥ ≤ ∥A∥∥x∥, for all x ∈ Rn-re,

(v) ∥AB∥ ≤ ∥A∥∥B∥,

(vi) ∥A∥ = sup{∥Ay∥ : ∥y∥ = 1}.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

2.10. Vector and Matrix Norms and Convergence 51

Proof. The proof of statements (i), (ii) and (iii) are left for the reader. Part (iv) follows
from

∥Ax∥
∥x∥

≤ sup
y ̸=0

∥Ay∥
∥y∥

= ∥A∥.

Using (iv) we get
∥ABx∥
∥x∥

≤ ∥A∥∥Bx∥
∥x∥

≤ ∥A∥∥B∥,

hence

∥AB∥ = sup
x ̸=0

∥ABx∥
∥x∥

≤ ∥A∥∥B∥.

Finally, (vi) follows from
∥Ax∥
∥x∥

=

⃦⃦⃦⃦
A

x

∥x∥

⃦⃦⃦⃦
.

□

We note that the matrix norm could be defined in a more general way: a function
∥ · ∥ : Rn×n → R which satisfies parts (i)–(iii) of Theorem 2.46. Then there are matrix
norms which are not generated by a vector norm. In this lecture note we will use only
matrix norms generated by vector norms, so we use this notion in this restrictive sense.

We will need the notion of limits of matrix sequences later. We say that a matrix
sequence A(k) converges to a limit A if limk→∞ ∥A(k) −A∥ = 0, where ∥ · ∥ is a matrix
norm. The next theorem states that the limit of a matrix sequence is independentof the
selection of the matrix norm, i.e., any matrix norms are equivalent.

Theorem 2.47. Let | · | and ∥ · ∥ be two vector norms on Rn, and we consider the corre-
sponding matrix norms on Rn×n. Let A(k) be a sequence in Rn×n. Then limk→∞ |A(k) −
A| = 0 if and only if limk→∞ ∥A(k) −A∥ = 0.

Proof. As in the proof of Theorem 2.44, it is enough to show that there exist nonnegative
constants l and L such that

l|B| ≤ ∥B∥ ≤ L|B|, B ∈ Rn×n.

From the proof of Theorem 2.44 we know that there exist positive constants m and M
such that

m|x| ≤ ∥x∥ ≤M |x|, x ∈ Rn.

Then
m

M
|B| = sup

x ̸=0

m|Bx|
M |x|

≤ ∥B∥ = sup
x ̸=0

∥Bx∥
∥x∥

≤ sup
x ̸=0

M |Bx|
m|x|

=
M

m
|B|,

which completes the proof. □

For matrix norms we most frequently use the norms generated by the ∥ · ∥1 and ∥ · ∥∞
vector norms. We have the following result for the computation of the corresponding
matrix norms.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

52 2. Nonlinear algebraic equations and systems

Theorem 2.48. Let A = (aij) ∈ Rn×n. Then the matrix norms generated by the ∥ · ∥1
and ∥ · ∥∞ vector norms satisfy

∥A∥1 = max
j=1,...,n

n∑︂
i=1

|aij|,

and

∥A∥∞ = max
i=1,...,n

n∑︂
j=1

|aij|.

Proof. We prove the first formula. The second formula is asked to be proved by the
reader. Using the definition of the ∥ · ∥1 vector norm and the triangle inequality we get

∥Ax∥1 =
n∑︂

i=1

⃓⃓⃓⃓
⃓

n∑︂
j=1

aijxj

⃓⃓⃓⃓
⃓

≤
n∑︂

i=1

n∑︂
j=1

|aijxj|

=
n∑︂

j=1

|xj|
n∑︂

i=1

|aij|

≤

(︄
max

j=1,...,n

n∑︂
i=1

|aij|

)︄
n∑︂

j=1

|xj|

=

(︄
max

j=1,...,n

n∑︂
i=1

|aij|

)︄
∥x∥1,

hence ∥A∥1 ≤maxj=1,...,n

∑︁n
i=1 |aij|. Suppose maxj=1,...,n

∑︁n
i=1 |aij| =

∑︁n
i=1 |aik|. We get

the statement by multiplying A and e(k) = (0, . . . , 0, 1, 0, . . . , 0)T , where e
(k)
i = 0 if i ̸= k

and e
(k)
k = 1. Indeed, Ae(k) = (a1k, a2k, . . . , ank)

T , therefore ∥Ae(k)∥1 =
∑︁n

i=1 |aik|. □

The following results generalize the properties of the convergence for the vector case.
We formulate the statements without proofs.

Theorem 2.49.

1. If the vector sequence p(k) is convergent, then its limit is unique.

2. If p(k) → p and q(k) → q, α, β ∈ R, then the sequence αp(k) + βq(k) is also
convergent, and αp(k) + βq(k) → αp+ βq.

3. If ck → c a real sequence and p(k) → p, then ckp
(k) → cp.

4. If p(k) → p, then Ap(k) → Ap for all A ∈ Rn×n.

5. (Cauchy’s criterion for convergence) p(k) is a convergent sequence if and only if
it is a Cauchy sequence, i.e., for every ε > 0 there exists a k0 > 0 such that
∥p(k) − p(m)∥ < ε for all k,m > k0.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

2.10. Vector and Matrix Norms and Convergence 53

We can also generalize Theorems 2.44, 2.45 and 2.49 for matrices. Using vector and
matrix norms we can extend the Lagrange’s Mean Value Theorem for vector valued func-
tions.

Theorem 2.50 (Lagrange’s Mean Value Theorem). Let ∥ · ∥ be a fixed vector norm
on Rn, and consider the generated matrix norm. Let E ⊂ Rn be an open and convex set,
f : E → Rn be continuously partially differentiable, x,y ∈ E. Then

∥f(x)− f(y)∥ ≤ max
t∈[0,1]

∥f ′(y + t(x− y))∥ · ∥x− y∥.

Proof. We prove the statement only for the Euclidean norm ∥ · ∥ = ∥ · ∥2. Clearly, we
can assume that f(x) ̸= f(y). Let

h :=
f(x)− f(y)

∥f(x)− f(y)∥2
.

Then ∥h∥2 = 1. Let f(x) = (f1(x), . . . , fn(x))
T , h = (h1, . . . , hn)

T . We define the real
function

g(t) := hT f(y + t(x− y)) =
n∑︂

i=1

hifi(y + t(x− y)).

Then, using the Langrange’s Mean Value Theorem for single variable functions and the
chain rule, we get

hT (f(x)− f(y)) = g(1)− g(0)

= g′(ξ)

=
n∑︂

i=1

hif
′
i(y + ξ(x− y))T (x− y)

= hT f ′(y + ξ(x− y))(x− y)

for some ξ ∈ (0, 1). Therefore the definition of h, the vector form of the Cauchy-
Bunyakovsky-Schwarz inequality, ∥h∥2 = 1 and part (v) of Theorem 2.46 yield

∥f(x)− f(y)∥2 = hT (f(x)− f(y))

= hT f ′(y + ξ(x− y))(x− y)

≤ ∥h∥2∥f ′(y + ξ(x− y))(x− y)∥2
≤ ∥f ′(y + ξ(x− y))∥2∥x− y∥2,

which concludes the proof. □

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

54 2. Nonlinear algebraic equations and systems

Exercises

1. Show that ∥ · ∥1 and ∥ · ∥∞ satisfy the properties of the norms.

2. Compute ∥x∥1, ∥x∥2 and ∥x∥∞, and ∥A∥1 and ∥A∥∞ for

(a) x = (3,−1, 0, 5)T , (b) x = (−3,−2,−1, 4,−1)T ,
and

(c) A =

(︄
−1 3 −2
2 −4 0
0 3 2

)︄
, (d) A =

(︄
−1 2 4
2 −3 5
7 −2 3

)︄
.

3. Draw the graphs of the curves defined by

(a) {x ∈ R2 : ∥x∥1 = 1}, (b) {x ∈ R2 : ∥x∥∞ = 1}.

4. Prove parts (i)–(iii) of Theorem 2.46.

5. Prove part (ii) of Theorem 2.48.

6. Prove Theorem 2.49.

2.11. Fixed-Point Iteration in n-dimension

We can generalize the notion of the fixed point and the fixed-point iteration for multi-
variable functions.

Example 2.51. Consider the system

4x1 − ex1x2 − 3 = 0
x1 − x22 − 3x2 − 1 = 0.

(2.26)

It is easy to check that x1 = 1 and x2 = 0 is a solution of the system. We rearrange (2.26) in
the following way. We express x1 from the first, and x2 from the second equation:

x1 = 1
4(e

x1x2 + 3)

x2 = 1
3(x1 − x22 − 1)

(2.27)

We can denote system (2.27) shorty as x = g(x), where x = (x1, x2)
T and

g(x) = g(x1, x2) =

(︃ 1
4(e

x1x2 + 3)
1
3(x1 − x22 − 1)

)︃
. (2.28)

We define an iteration to approximate the solutions of (2.27) as in the single variable case for
k = 0, 1, 2, . . . by

p
(k+1)
1 = 1

4(e
p
(k)
1 p

(k)
2 + 3)

p
(k+1)
2 = 1

3

(︂
p
(k)
1 − (p

(k)
2)2 − 1

)︂
.

(2.29)

We have listed the first several terms of the sequences p
(k)
1 and p

(k)
2 starting from the initial

value p
(0)
1 = −2 and p

(0)
2 = −2. in Table 2.12. We can observe that the sequences converge to 1

and 0, respectively.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

2.11. Fixed-Point Iteration in n-dimension 55

Table 2.12: Fixed-point iteration

k p
(k)
1 p

(k)
2

0 -2.000000000 -2.000000000
1 14.399537510 -2.333333333
2 0.750000000 2.651697690
3 2.576641266 -2.427166879
4 0.750480717 -1.438165931
5 0.834956989 -0.772613509
6 0.881152644 -0.253991549
7 0.949867689 -0.061119687
8 0.985899367 -0.017955976
9 0.995613247 -0.004807684
10 0.998806211 -0.001469956
11 0.999633219 -0.000398650
12 0.999900394 -0.000122313

Defining the vector sequence p(k) = (p
(k)
1 , p

(k)
2)T , iteration (2.29) can be written shortly as

p(k+1) = g(p(k)). □

Let E ⊂ Rn, and consider a function g : E → Rn. Similarly to the single variable
case, we say that a vector p ∈ E is a fixed point of the function g if p = g(p).

A function g : E → Rn is called a contraction on the set E using the vector norm ∥ · ∥
if there exists a constant 0 ≤ c < 1 such that ∥g(x)− g(y)∥ ≤ c∥x− y∥ for all x,y ∈ E.
Note that a contraction is always a continuous function.

Theorem 2.52 (fixed-point theorem). Let E ⊂ Rn be a closed set, g : E → E, and
let g be a contraction on E using a vector norm ∥ · ∥. Then g has a unique fixed point
p ∈ E, and the fixed-point iteration p(k+1) = g(p(k)) converges to p for all p(0) ∈ E. The
order of convergence is (at least) linear.

Proof. First we show that p(k) is a Cauchy sequence. Let c be the Lipschitz constant of
the function g, and let k > m. Similarly to the single variable case, the definition of the
sequence and the contraction property yield

∥p(k) − p(m)∥
≤ ∥p(k) − p(k−1)∥+ ∥p(k−1) − p(k−2)∥+ · · ·+ ∥p(m+1) − p(m)∥
= ∥g(p(k−1))− g(p(k−2))∥+ ∥g(p(k−2))− g(p(k−3))∥

+ · · ·+ ∥g(p(m))− g(p(m−1))∥
≤ c(∥p(k−1) − p(k−2)∥+ ∥p(k−2) − p(k−3)∥+ · · ·+ ∥p(m) − p(m−1)∥)
≤ (ck−1 + ck−2 + · · ·+ cm)∥p(1) − p(0)∥
= cm(ck−m−1 + ck−m−2 + · · ·+ 1)∥p(1) − p(0)∥

≤ cm
∞∑︂
i=0

ci∥p(1) − p(0)∥.

Therefore we get ∥p(k) − p(m)∥ → 0 as m → ∞, hence p(k) is a Cauchy sequence. Part
(v) of Theorem 2.49 implies that p(k) converges to a vector p. Using the continuity of g
we get p(k+1) = g(p(k))→ g(p), and so p = g(p), i.e., p is a fixed-point of g.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

56 2. Nonlinear algebraic equations and systems

The order of convergence is at least linear, since

∥p(k+1) − p∥ = ∥g(p(k))− g(p)∥ ≤ c∥p(k) − p∥.

Suppose that p and p̄ both are fixed points of g. Using the contraction property of g
we have ∥p− p̄∥ = ∥g(p)− g(p̄)∥ ≤ c∥p− p̄∥, and therefore, p = p̄ follows. □

Theorem 2.53. Let E ⊂ Rn be an open set, g : E → Rn, g ∈ C1, and let p be a fixed
point of g. If ∥g′(p)∥ < 1 in a matrix norm generated by a vector norm ∥ · ∥, then the
fixed-point iteration p(k+1) = g(p(k)) converges locally to p.

Proof. Since E is an open set, there exists a radius δ̄ > 0 such that {x : ∥x − p∥ <
δ̄} ⊂ E. Fix a c such that ∥g′(p)∥ < c < 1. The function g′ is continuous at p, therefore
there exists 0 < δ ≤ δ̄ such that ∥g′(x)∥ ≤ c for all x ∈ V := {x : ∥x − p∥ ≤ δ}. The
Lagrange’s Mean Value Theorem (Theorem 2.50) yields

∥g(x)− g(y)∥ ≤ max
t∈(0,1)

∥g′(x+ t(y − x))∥ · ∥x− y∥ ≤ c∥x− y∥,

i.e., g is a contraction.
Now we show that the function g maps the set V into itself. Let x ∈ V . The

contraction property of g implies ∥g(x) − p∥ = ∥g(x) − g(p)∥ ≤ c∥x − p∥ < δ, hence
g(x) ∈ V . If we restrict g to the set V , then this function satisfies the conditions of
Theorem 2.52, therefore any fixed-point iteration with initial value from V converges to
p. □

Example 2.54. Compute the Jacobian matrix of the function g defined by (2.28) in Exam-
ple 2.51:

g′(x) =

(︃
1
4x2e

x1x2 1
4x1e

x1x2

1
3 −2

3x2

)︃
.

Its value at the fixed point of g, i.e., at the point (1, 0)T is

g′(1, 0) =

(︃
0 1

4
1
3 0

)︃
.

Its 1-norm is ∥g′(1, 0)∥1 = 1
3 < 1, hence Theorem 2.53 yields that the fixed-point iteration

converges locally to (1, 0)T . □

Theorem 2.55. Let E ⊂ Rn, g : E → Rn, g ∈ C2, g(p) = p, and g′(p) = 0. Then
there exists a δ > 0 such that the fixed-point iteration p(k+1) = g(p(k)) converges to p
if ∥p(0) − p∥∞ < δ. Moreover, there exists a constant c such that for all k it follows
∥p(k+1) − p∥∞ ≤ c∥p(k) − p∥2∞, i.e., the iteration converges locally quadratically to p.

Proof. By the assumptions, 0 = ∥g′(p)∥ < 1, therefore, Theorem 2.53 yields that the
fixed-point iteration is locally convergent.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

2.12. Newton’s Method in n-dimension 57

Now we show that the order of convergence is quadratic. Consider the second-order
Taylor approximation of the ith component function of g around p = (p1, . . . , pn)

T :

gi(x1, . . . , xn) = gi(p1, . . . , pn) +
n∑︂

j=1

∂gi(p1, . . . , pn)

∂xj

(xj − pj)

+
1

2

n∑︂
j=1

n∑︂
l=1

∂2gi(ξ1, . . . , ξn)

∂xj ∂xl

(xj − pj)(xl − pl).

Applying this relation for (x1, . . . , xn)
T = (p

(k)
1 , · · · , p(k)n)T , and using that pi = gi(p) and

p
(k+1)
i = gi(p

(k)), we get

p
(k+1)
i − pi =

1

2

n∑︂
j=1

n∑︂
l=1

∂2gi(ξ1, . . . , ξn)

∂xj ∂xl

(p
(k)
j − pj)(p

(k)
l − pl).

Let M be such that
⃓⃓⃓
∂2gi(x1,...,xn)

∂xj ∂xl

⃓⃓⃓
≤ M for all i, j, l = 1, . . . , n in a neighborhood of p

which contains all p(k). The definition of M implies

|p(k+1)
i − pi| ≤

1

2

n∑︂
j=1

n∑︂
l=1

M |p(k)j − pj||p(k)l − pl| ≤
n2

2
M∥p(k) − p∥2∞.

Since this holds for all i = 1, . . . , n, we get

∥p(k+1) − p∥∞ ≤
n2

2
M∥p(k) − p∥2∞,

i.e., the order of convergence is quadratic. □

Exercises

1. Rewrite the following system as a fixed-point problem, and find an approximate solution
by using the fixed-point iteration from the starting value (0, 0)T :

(a)
−2x2 + 6x− y2 = 4

x2 + y3 − 5y = 3 (b)
8x+ cosx− y3 = −7

x2 + 4y = 8

(c)
x2 + 7x+ y2 − 4y = 3

2x+ y3 + 4y = −5 (d)
cosx− 5y = 3

x2 − 6x+ y2 − 2y = 4

2. Compute the Jacobian matrix of the fixed-point functions we get in the problem men-
tioned above, and evaluate the norm of the Jacobian matrix at the fixed point obtained
numerically.

3. Show that under the conditions of Theorem 2.55, the sequence p(k) converges locally
quadratically in any vector norm.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

58 2. Nonlinear algebraic equations and systems

2.12. Newton’s Method in n-dimension

Let U ⊂ Rn be an open set, f : U → Rn, and consider the nonlinear system

f(x) = 0.

Fix a vector p(k) ∈ U . As in the scalar case, we approximate f by its linear part f(p(k))+
f ′(p(k))(x − p(k)). Its root is x̄ = p(k) − (f ′(p(k)))−1f(p(k)), assuming that f ′(p(k)) is
invertible. Therefore we define the Newton’s method by the iteration

p(k+1) = p(k) −
(︁
f ′(p(k))

)︁−1
f(p(k)). (2.30)

Theorem 2.56. Let f ∈ C2, f(p) = 0 and suppose the matrix f ′(p) is invertible. Then
the Newton’s iteration (2.30) converges locally quadratically to p.

Proof. The Newton’s method is a fixed-point iteration with the iteration function

g(x) = x− (f ′(x))−1f(x).

Let (f ′(x))−1 = (bij(x))n×n. Then

n∑︂
j=1

bij(x)
∂fj(x)

∂xl

= δil :=
{︂

1, i = l,
0, i ̸= l. (2.31)

Consider the ith component of g:

gi(x) = xi −
n∑︂

j=1

bij(x)fj(x).

Taking its partial derivative with respect to xl we get

∂gi(x)

∂xl

= δil −
n∑︂

j=1

(︃
∂bij(x)

∂xl

fj(x) + bij(x)
∂fj(x)

∂xl

)︃
.

At the point x = p we get, using relations fj(p) = 0 and (2.31), that

∂gi(p)

∂xl

= δil −
n∑︂

j=1

bij(p)
∂fj(p)

∂xl

= 0.

Therefore, g′(p) = 0, and hence Theorem 2.55 yields that the iteration is locally quadrat-
ically convergent. □

Applying formula (2.30) we need to compute the inverse of a matrix. Instead of it, in
practice, we do the following: Introduce the notation s(k) := p(k+1) − p(k), and rearrange
equation (2.30) into the form

f ′(p(k))s(k) = −f(p(k)).

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

2.13. Quasi-Newton Methods, Broyden’s Method 59

Table 2.13: Newton’s method

k p(k) ∥p(k) − p∥∞
0 (-1.50000000000,-1.50000000000)T 2.500000e+00
1 (-1.25000000000,-0.52120413480)T 2.250000e+00
2 (0.53188386800,-0.10035922100)T 4.681161e-01
3 (0.98873605300,-0.00042581408)T 1.126395e-02
4 (0.99999868610,-0.00000037764)T 1.313900e-06

We solve it for s(k), and let p(k+1) = p(k) + s(k).

Example 2.57. Consider the system (2.26) of Example 2.51. We apply the Newton’s method
for this system starting from the initial value (−1.5,−1.5)T . Table 2.13 lists the numerical result.
We observe quick convergence to the true solution p = (1, 0)T . □

Exercises

1. Apply the Newton’s method to solve the equations in Exercise 1 of Section 2.11.

2.13. Quasi-Newton Methods, Broyden’s Method

The advantage of Newton’s method is its fast speed of (local) convergence, but its dis-
advantage is that the computation of the Jacobian matrix is, in general, requires many
arithmetic operations. Also, it requires matrix inversion or solution of a linear equation
which is also computationally expensive. To avoid or reduce these problems we introduce
quasi-Newton methods which are defined by

p(k+1) = p(k) −
(︁
A(k)

)︁−1
f(p(k)). (2.32)

Here the matrix A(k) is an approximation of the Jacobian f ′(p(k)). Using different ap-
proximations, we get different classes of quasi-Newton methods.

One typical approach is to approximate the Jacobian matrix numerically. Let e(j) =
(0, . . . , 0, 1, 0, . . . , 0)T be the jth standard unit vector, h > 0 be a small discretization
constant, and define the components of A(k) by the expressions

a
(k)
ij =

fi(p
(k) + he(j))− fi(p

(k))

h
, i, j = 1, . . . , n. (2.33)

The resulting quasi-Newton method is a straightforward generalization of the secant
method for the vector case.

Next we introduce an other popular selection of the matrices A(k). This method is
called Broyden’s method . This is a different generalization of the secant method for the
vector case.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

60 2. Nonlinear algebraic equations and systems

For scalar equations the secan method replaces the nonlinear equation f(x) = 0 by a
linear equation

f(pk) + ak(x− pk) = 0,

where ak = (f(pk) − f(pk−1))/(pk − pk−1). We replace k by k + 1, and we rewrite the
equation, we get that ak+1 solves the equation

ak+1(pk+1 − pk) = f(pk+1)− f(pk). (2.34)

We will generalize this formula for the vector case.
Select an initial vector p(0) and an initial matrix A(0). For the selection of A(0) we can

use different strategies: it is possible to use the exact value A(0) = f ′(p(0)), or using the
formula (2.33) we can compute an approximate derivative matrix at p(0), or just select
any invertible matrix A(0).

Suppose p(k) and A(k) are already defined. Then we define p(k+1) by formula (2.32).
Similarly to equation (2.34), we require that A(k+1) satisfies the so-called secant equation

A(k+1)(p(k+1) − p(k)) = f(p(k+1))− f(p(k)). (2.35)

We introduce the following notations

y(k) := f(p(k+1))− f(p(k)) and s(k) := p(k+1) − p(k).

Using these notations, equations (2.32) and (2.35) are equivalent to

A(k)s(k) = −f(p(k)), (2.36)

and
A(k+1)s(k) = y(k), (2.37)

respectively. First we solve (2.36) for s(k) (assuming thatA(k) is invertible), so the problem
is reduced to the selection of a matrix A(k+1) which satisfies equation (2.37). Unfortu-
nately, this equation does not determine the matrix A(k+1) uniquely, since this equation
is equivalent to n number of scalar equations, but A(k+1) is determined by n2 number of
components. Equation (2.37) requires that the linear operator A(k+1) is defined on the
one dimensional space spanned by the vector s(k). But in the n− 1 directions orthogonal
to the vector s(k) the linear map is undetermined. Since in the k + 1-th step we “do not
have new information” about the next linear operator, i.e., the next matrix, we define
A(k+1) so that its effect on this subspace be the same as the matrix A(k). Therefore, in
addition to equation (2.37), we require

A(k+1)z = A(k)z, for all z ⊥ s(k). (2.38)

Equations (2.37) and (2.38) together determine the matrix A(k+1) uniquely. It can be
checked easily (see Exercise 2) that the matrix

A(k+1) = A(k) +
(y(k) −A(k)s(k))(s(k))T

∥s(k)∥22
(2.39)

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

2.13. Quasi-Newton Methods, Broyden’s Method 61

satisfies both (2.37) and (2.38).
The recursion (2.32) requires the computation of (A(k))−1. The next result is an

efficient way to compute it.

Theorem 2.58 (Sherman–Morrison–Woodbury). Let u,v ∈ Rn, u,v ̸= 0 and
A ∈ Rn×n be inverible. Then the matrix A+uvT is inverible if and only if 1+vTA−1u ̸= 0,
and then

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u

holds.

Proof. Let γ ∈ R, and consider

(A+ uvT)(A−1 − γA−1uvTA−1) = I+ uvTA−1 − γuvTA−1 − γuvTA−1uvTA−1.

Since vTA−1u is a scalar, we can rewrite the above relation as

(A+ uvT)(A−1 − γA−1uvTA−1) = I+ (1− γ − γvTA−1u)uvTA−1,

which proves the statement. □

A little computation and Theorem 2.58 give from (2.39)

(A(k+1))−1 =

(︃
A(k) +

(y(k) −A(k)s(k))(s(k))T

∥s(k)∥22

)︃−1

= (A(k))−1 −
(A(k))−1

(︂
y(k)−A(k)s(k)

∥s(k)∥22

)︂
(s(k))T (A(k))−1

1 + (s(k))T (A(k))−1 y
(k)−A(k)s(k)

∥s(k)∥22

= (A(k))−1 −
(︁
(A(k))−1y(k) − s(k)

)︁
(s(k))T (A(k))−1

(s(k))T (A(k))−1y(k)
. (2.40)

Using iteration (2.40), if (A(k))−1 is known, then only matrix multiplication is needed to
compute (A(k+1))−1, so n2 number of arithmetic operation is enough to generate the next
matrix. On the other hand, in the next chapter we will show that the matrix inversion
needs n3 number of operation, so here we have an efficient computational method.

It can be shown that the Broyden’s method converges locally to a root p of f if A(0)

is close enough to f ′(p), and the order of convergence is superlinear, i.e.,

lim
k→∞

∥p(k+1) − p∥
∥p(k) − p∥

= 0.

We do not prove this result here. A possible definition of the Broyden’s method is formu-
lated in the next algorithm.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

62 2. Nonlinear algebraic equations and systems

Algorithm 2.59. Broyden’s method

INPUT: f - function,
p(0) - initial value,
h - step size for the approximation of A(0),
∥ · ∥ - vector norm,
TOL - tolerance,
MAXIT - maximal iteration number,

OUTPUT:p - approximate root.

(computation of A = (aij) = A(0))
for i = 1, . . . , n do

for j = 1, . . . , n do
aij ← (fi(p

(0) + he(j))− fi(p
(0)))/h

end do
end do
A← A−1

q← p(0)

k ← 1 (step size)
while k < MAXIT do

s← −Af(q)
p← q+ s
if ∥s∥ < TOL do

output(p)
stop

end do
y← f(p)− f(q)

A← A− (Ay − s)sTA

sTAy
q← p
k ← k + 1

end do
output(Maximal iteration is exceeded.)

Example 2.60. Consider again the system (2.26) examined in Examples 2.51 and 2.57. The
numerical results of Algorithm 2.59 with h = 0.001 and TOL = 10−5 is shown in Table 2.14. We
observe that the convergence of this sequence is slower than that for the Newton’s method in
Example 2.57. The last column indicates that the speed of the convergence here is superlinear.

□

Exercises

1. Apply Broyden’s method to the systems listed in Exercise 1 of Section 2.11.

2. Show that the matrix A(k+1) defined by (2.39) satisfies equations (2.37) and (2.38).

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

2.13. Quasi-Newton Methods, Broyden’s Method 63

Table 2.14: Broyden’s method

k p(k) ∥p(k) − p∥∞ ∥p(k)−p∥∞
∥p(k−1)−p∥∞

0 (-1.5000000000, -1.5000000000)T 2.5000000000
1 (-1.2490215360, -0.5215363883)T 2.2490215360 0.8996086144
2 (-0.4968297655, -0.9366983828)T 1.4968297660 0.6655471022
3 (-0.3045368940, -0.3621731989)T 1.3045368940 0.8715332389
4 (0.5414891937, -0.0587408442)T 0.4585108063 0.3514740046
5 (0.9527177435, -0.0515250779)T 0.0515250779 0.1123748387
6 (1.0003263340, 0.0319681269)T 0.0319681269 0.6204382061
7 (1.0000051000, -0.0040567750)T 0.0040567750 0.1269006155
8 (1.0000069210, -0.0000347010)T 0.0000347010 0.0085538489
9 (1.0000001100, 0.0000012682)T 0.0000012682 0.0365458110
10 (1.0000000050, 0.0000000576)T 0.0000000576 0.0453865979

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

Chapter 3

Linear Systems

In this chapter we discuss solution techniques of linear algebraic systems using direct
methods and related problems of linear algebra. We introduce the Gaussian and Gauss-
Jordan eliminations and their variants, and its application for the matrix inversion.

3.1. Review of Linear Algebra

In this section we review some notations, notions and statements of linear algebra. In the
sequel, if we do not say otherwise, A = (aij) is an n × n matrix, x is an n-dimensional
column vector. The set of all real n×n dimensional matrices is denoted by Rn×n. Similarly,
Cn×n is the set of all n×n matrices with complex entries. The determinant of the matrix
A is denoted by det(A), the n × n dimensional identity matrix is I. The transpose of a
matrix A or a vector x is denoted by AT and xT , respectively. The diagonal matrix with
elements a1, a2, . . . , an in the main diagonal is denoted by diag(a1, a2, . . . , an).

The n×nmatrixA−1 is called the inverse of the n×nmatrixA ifAA−1 = A−1A = I.
A square matrix is invertible or nonsingular if its inverse exists. A square matrix A is
called singular if it has no inverse.

The next theorem summarizes the basic properties of the determinant.

Theorem 3.1. Let A,B be n× n matrices. Then

1. det(A) = 0 if each element of a row (or column) in A is equal to 0;

2. det(A) = 0 if two rows (columns) of A are equal;

3. det(AB) = det(A) det(B);

4. det(AT) = det(A).

5. If A is invertible, then det(A−1) = 1/ det(A).

6. If B is obtained from A by multiplying one of its row (column) by a constant c,
then det(B) = c det(A).

7. If B is obtained from A by swapping two rows (columns), then det(B) = − det(A).

8. If B is obtained from A by multiplying one of its row (column) by a constant c, and
adding the result to another row (column), then det(B) = det(A).

66 3. Linear Systems

9. Let Aij denote the (n− 1)× (n− 1) matrix which we get from A by omitting its ith
row and jth column. Then we have

det(A) =
n∑︂

j=1

(−1)i+jaij det(Aij),

and

det(A) =
n∑︂

i=1

(−1)i+jaij det(Aij).

Theorem 3.2. Let A ∈ Rn×n, b ∈ Rn. The following statements are equivalent:

1. det(A) ̸= 0,

2. the matrix A is invertible,

3. the linear system Ax = b has a unique solution for any vector b.

Theorem 3.3. The linear system Ax = 0 has nontrivial (nonzero) solution if and only
if A is singular, i.e., det(A) = 0.

Theorem 3.4. If A,B ∈ Rn×n are both invertible, then AB is also invertible, and
(AB)−1=B−1A−1.

The square matrix A is upper (lower) triangular if aij = 0 for all i > j (i < j), i.e.,
all elements below (above) the main diagonal are 0.

Theorem 3.5. For a triangular matrix A ∈ Rn×n it follows det(A) = a11a22 · · · ann.

Theorem 3.6. The product of lower (upper) triangular matrices is lower (upper) trian-
gular. The inverse of a lower (upper) triangular matrix is lower (upper) triangular.

A square matrix P is called permutation matrix if it is obtained from the identity
matrix by interchanging its rows (or columns). Other words, in a permutation matrix each
row and column contains exactly one 1, all the other elements are 0. The next theorem
claims that the multiplication by a permutation matrix is equivalent to interchanging
rows or columns of a matrix.

Theorem 3.7. Let k1, . . . , kn be a permutation of the integers 1, . . . , n, and let P ∈ Rn×n

be the permutation matrix which we get from the identity matrix by moving its 1st row
to the k1-th row, . . ., the nth row to its kn-th row. Let A ∈ Rn×n. Then the matrix PA
(AP) can be obtained from A so that its 1st row (columns) is moved to the k1-th row
(column), . . ., its nth row (columns) is moved to the kn-th row (column).

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

3.1. Review of Linear Algebra 67

A square matrix A ∈ Rn×n is called row diagonally dominant or simply diagonally
dominant if

|aii| >
n∑︂

j=1
j ̸=i

|aij|, i = 1, . . . , n.

Similarly, the matrixA is called column diagonally dominant ifAT is diagonally dominant,
i.e.,

|ajj| >
n∑︂

i=1
i ̸=j

|aij|, j = 1, . . . , n.

Theorem 3.8. If A ∈ Rn×n is diagonally dominant, then A is invertible.

Proof. Suppose that A is not invertible. Then the linear system Ax = 0 has a nontrivial
solution x ̸= 0. Let k be such that |xk| = max{|xi| : i = 1, . . . , n}. Then xk ̸= 0. Since∑︁n

j=1 aijxj = 0 for all i = 1, . . . , n, we get akkxk = −
∑︁n

j=1,j ̸=k akjxj. Then the triangle-
inequality yields |akkxk| ≤

∑︁n
j=1,j ̸=k |akjxj|, and so

|akk| ≤
n∑︂

j=1
j ̸=k

|akj|
|xj|
|xk|
≤

n∑︂
j=1
j ̸=k

|akj|,

which is a contradiction. □

The square matrix A is called positive definite (negative definite) if A is symmetric
and xTAx > 0 (xTAx < 0, respectively) for all x ̸= 0. The matrix A is called positive
semi-definite (negative semi-definite) if A is symmetric and xTAx ≥ 0 (xTAx ≤ 0,
respectively) for all x.

Theorem 3.9. If the square matrix A is positive definite, then

1. A is invertible,

2. aii > 0 for i = 1, . . . , n.

Theorem 3.10. The symmetric matrix A is positive definite if and only if all of its
upper left minors, the so-called principal minors are positive, i.e.,

det

⎛⎝ a11 · · · a1i
...

...
ai1 · · · aii

⎞⎠ > 0, i = 1, 2, . . . , n.

A square matrix A is orthogonal if AAT = ATA = I, i.e., A is invertible and
A−1 = AT .

Theorem 3.11. The product of orthogonal matrices is orthogonal.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

68 3. Linear Systems

The complex number λ ∈ C is an eigenvalue of the square matrix A if the linear
system

Ax = λx

has a nontrivial (x ̸= 0) solution. Its nontrivial solution x is called the eigenvector of the
matrix A corresponding to the eigenvalue λ.

Theorem 3.12. The n × n matrix A has n eigenvalues, which are solutions of the
nth-degree algebraic equation

det(A− λI) = 0,

the so-called characteristic equation.

Theorem 3.13. Let λ1, λ2, . . . , λn be the eigenvalues of the n× n matrix A. Then

1. det(A) = λ1λ2 · · ·λn;

2. A is invertible if and only if λi ̸= 0 for all i = 1, 2, . . . , n;

3. if A is invertible, then the eigenvalues of A−1 are 1/λ1, 1/λ2, . . . , 1/λn;

4. the eigenvalues of the matrix Ak are the numbers λk
1, λ

k
2, . . . , λ

k
n.

Theorem 3.14. The eigenvalues of a triangular matrix A are the diagonal elements
a11, a22, . . ., ann.

Let A and B be square matrices of the same dimension. We say that A and B are
similar if there exists an invertible matrix P such that A = P−1BP. We comment that
then B = PAP−1, so the similarity is a symmetric property. The linear map defined by
A ↦→ P−1AP is called similarity transformation.

Theorem 3.15. Eigenvalues of similar matrices are identical.

Proof. Let A = P−1BP. Then the properties of the determinant yield

det(A− λI) = det(P−1BP− λI) = det(P−1) det(B− λI) det(P) = det(B− λI),

which implies the statement. □

The number ρ(A) := max{|λ| : λ is an eigenvalue of A} is called the spectral radius
of A.

Theorem 3.16. Let k be a positive integer, and let ∥ · ∥ be a matrix norm. Then

1. ρ(Ak) = (ρ(A))k,

2. ρ(A) ≤ ∥A∥.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

3.1. Review of Linear Algebra 69

Theorem 3.17. For every square matrix A and a positive real ε > 0 there exists a
matrix norm ∥ · ∥ such that ∥A∥ ≤ ρ(A) + ε.

Theorem 3.18. For any square matrix A it follows ∥A∥2 =
√︁
ρ(ATA). If A is

symmetric, then ∥A∥2 = ρ(A).

Let a1, . . . , an be complex numbers. The determinant

det

⎛⎜⎜⎝
1 a1 a21 · · · an−1

1

1 a2 a22 · · · an−1
2

...
...

...
...

1 an a2n · · · an−1
n

⎞⎟⎟⎠ (3.1)

is called Vandermonde determinant.

Theorem 3.19. The Vandermonde determinant (3.1) is nonzero if and only if the
numbers a1, . . . , an are pairwise distinct.

Exercises

1. Determine the possible values of the parameters α and β so that the matrix

A =

(︄
α 1 0
β 2 1
0 1 2

)︄
be

(a) singular,

(b) diagonally dominant,

(c) symmetric,

(d) positive definite.

2. Prove that if A and B are n× n positive definite matrices, then

(a) AT ,

(b) A+B,

(c) A2

are also positive definite.

3. Prove Theorem 3.6.

4. Prove Theorem 3.7.

5. Prove Theorem 3.9.

6. Prove Theorem 3.11.

7. Prove Theorem 3.12.

8. Prove Theorem 3.14.

9. Prove Theorem 3.19. (Hint: In the determinant (3.1) substitute a1 by x. Show that the
resulting determinant is a polynomial of degree n − 1 of x. Find n − 1 distinct roots of
this polynomial.)

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

70 3. Linear Systems

10. Show that the value of the Vandermonde determinant (3.1) is∏︂
i>j

(ai − aj).

(hint: Consider the proof of the previous problem.)

3.2. Triangular Systems

Example 3.20. Solve the linear system

2x1 − x2 + 3x3 + x4 = 3
3x2 − x3 + 2x4 = 13

2x3 − x4 = −2
3x4 = 12

Solving the fourth equation for x4 we get x4 = 4. Substituting it to the third equation we get
x3 = (−2 + x4)/2 = 1. Then the second equation yields x2 = (13 + x3 − 2x4)/3 = 2. Finally,
from the first equation we have x1 = (3 + x2 − 3x3 − x4)/2 = −1. □

We can generalize the method used in the previous example to solve the upper trian-
gular n-dimensional linear system Ax = b, i.e., a linear system of the form

a11x1 + a12x2 + . . . + a1nxn = b1
a22x2 + . . . + a2nxn = b2

. . .
...

...
annxn = bn.

(3.2)

We formulate the method of backward substitution in the following algorithm.

Algorithm 3.21. Backward substitution to solve a triangular system

INPUT: aij, (i = 1, . . . , n, j = 1, . . . , n), bi, (i = 1, . . . , n)
OUTPUT:x1, . . ., xn

xn ← bn/ann
for i = n− 1, . . . , 1 do

xi ← (bi −
n∑︂

j=i+1

aijxj)/aii

end do
output(x1, x2, . . . , xn)

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

3.3. Gaussian Elimination, Pivoting Strategies 71

The method of backward substitution can be performed if an only if aii ̸= 0 for all
i = 1, . . . , n. Since det(A) = a11a22 · · · ann, it follows that it can be performed if and only
if the system (3.2) has a unique solution, i.e., det(A) ̸= 0.

In order to determine the time complexity of the algorithm we count the number of
arithmetic operations:

multiplication/division addition/subtraction
step 1: 1 0
step 2: 2 1

...
...

...
step n: n n− 1

Therefore, 1+2+ · · ·+n = n(n+1)/2 multiplications and divisions, and 1+2+ · · ·+
n− 1 = (n− 1)n/2 additions and subtractions are needed to perform the algorithm. We
introduce the notation O(nk) for a polynomial of order at most k. With this notation
we have that the number of multiplications/divisions is n2/2 + O(n), and similarly, the
number of additions/subtractions are needed for the algorithm is n2/2 + O(n). This
notation “hides” the lower order terms, which is useful, since the leading term determines
the magnitude of the formula for large n.

Exercises

1. Solve the following triangular systems:

(a)
3x1 + x2 − x3 + 2x4 = −4

4x2 − 2x3 + x4 = 5
6x3 − 2x4 = −7

2x4 = 4

(b)
1.2x1 + 2.1x2 − 3.2x3 + 2.0x4 + 1.4x5 = 81.5

2.5x2 − 1.1x3 + 6.1x4 − 3.0x5 = 159.7
2.6x3 − 1.1x4 = 12.8

2.2x4 + 4.1x5 = 46.9
1.3x5 = 6.5

3.3. Gaussian Elimination, Pivoting Strategies

Example 3.22. Consider the linear system

x1 − 2x2 − 2x3 − 2x4 = −11
2x1 − x2 + 2x3 + 4x4 = −8
−x1 + 2x2 + 3x3 − 4x4 = 27
2x1 + x2 + 4x3 − 2x4 = 28

(3.3)

With the help of the first equation, the variable x1 can be eliminated from the second, third
and fourth equations. We multiply the first equation by 2, −1 and 2, respectively, and subtract
it from the second, third and fourth equations, respectively:

x1 − 2x2 − 2x3 − 2x4 = −11
3x2 + 6x3 + 8x4 = 14

x3 − 6x4 = 16
− 3x2 − 6x4 = 6

(3.4)

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

72 3. Linear Systems

The resulting system is equivalent to (3.3).
We associate the 4× 5 dimensional matrix⎛⎝ 1 −2 −2 −2 −11

2 −1 2 4 −8
−1 2 3 −4 27
−2 1 4 −2 28

⎞⎠ (3.5)

to the system (3.3). Here we augmented the 4× 4 coefficient matrix with a fifth column which
contains the elements from the right hand side of the system. We will call this matrix as the
augmented matrix. In the augmented matrix we can do the above elimination by multiplying
the first row by 2, −1 and 2, respectively, and we subtract it from the second, third and fourth
row, respectively. Then we get ⎛⎝ 1 −2 −2 −2 −11

0 3 6 8 14
0 0 1 −6 16
0 −3 0 −6 6.

⎞⎠ . (3.6)

The variable x2 is missing in the equation representing the third row, and we eliminate x2 from
the fourth row too with the help of the second row. We multiply the second row by −1, and
subtract the result from the fourth row:⎛⎝ 1 −2 −2 −2 −11

0 3 6 8 14
0 0 1 −6 16
0 0 6 2 20

⎞⎠ . (3.7)

Finally, we multiply the third row by 6, and subtract it from the third row:⎛⎝ 1 −2 −2 −2 −11
0 3 6 8 14
0 0 1 −6 16
0 0 0 38 −76

⎞⎠ . (3.8)

This augmented matrix describes the triangular system

x1 − 2x2 − 2x3 − 2x4 = −11
3x2 + 6x3 + 8x4 = 14

x3 − 6x4 = 16
38x4 = −76

Solving it with the backward substitution we get x1 = −3, x2 = 2, x3 = 4 and x4 = −2. The
above elimination process is written shortly as⎛⎝ 1 −2 −2 −2 −11

2 −1 2 4 −8
−1 2 3 −4 27
−2 1 4 −2 28

⎞⎠ ∼
⎛⎝ 1 −2 −2 −2 −11

0 3 6 8 14
0 0 1 −6 16
0 −3 0 −6 6.

⎞⎠ ∼
⎛⎝ 1 −2 −2 −2 −11

0 3 6 8 14
0 0 1 −6 16
0 0 6 2 20

⎞⎠ ∼
⎛⎝ 1 −2 −2 −2 −11

0 3 6 8 14
0 0 1 −6 16
0 0 0 38 −76

⎞⎠ .

□

Using the above method for the general n-dimensional linear system

a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2nxn = b2
...

...
...

...
an1x1 + an2x2 + . . . + annxn = bn

(3.9)

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

3.3. Gaussian Elimination, Pivoting Strategies 73

we get the Gaussian elimination with backward substitution. We put the coefficients and
the right hand sides to the augmented matrix :

Ã(0) = (A,b) =

⎛⎜⎝ a11 a12 . . . a1n a1,n+1
a21 a22 . . . a2n a2,n+1
...

...
...

...
an1 an2 . . . ann an,n+1

⎞⎟⎠ ,

where ai,n+1 := bi, (i = 1, . . . , n). Starting from the matrix Ã(0) we obtain the sequence
of matrices Ã(1), Ã(2), . . ., Ã(n−1) describing equivalent linear systems in the following
way. Let

Ã(1) =

⎛⎜⎜⎜⎝
a11 a12 . . . a1n a1,n+1

0 a
(1)
22 . . . a

(1)
2n a

(1)
2,n+1

...
...

...
...

0 a
(1)
n2 . . . a

(1)
nn a

(1)
n,n+1

⎞⎟⎟⎟⎠ ,

where a
(1)
ij := aij − li1a1j, li1 := ai1

a11
, i = 2, . . . , n, j = 2, . . . , n + 1, (assuming

a11 ̸= 0). If the matrices Ã(1), . . . , Ã(k−1) are defined for some k ≤ n− 1, then let

Ã(k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1,k a1,k+1 · · · a1,n a1,n+1

0 a
(1)
22 · · · a

(1)
2,k a

(1)
2,k+1 · · · a

(1)
2,n a

(1)
2,n+1

. . .

0 0 · · · a
(k−1)
k,k a

(k−1)
k,k+1 · · · a

(k−1)
k,n a

(k−1)
k,n+1

0 0 · · · 0 a
(k)
k+1,k+1 · · · a

(k)
k+1,n a

(k)
k+1,n+1

...
...

...
...

...
...

0 0 · · · 0 a
(k)
n,k+1 · · · a

(k)
n,n a

(k)
n,n+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where a
(k)
ij := a

(k−1)
ij − lika

(k−1)
kj , lik :=

a
(k−1)
ik

a
(k−1)
kk

, i = k + 1, . . . , n, j = k + 1, . . . , n + 1.

We perform these elimination steps for k = 1, . . . , n− 1. Finally, we solve the triangular
system corresponding to the matrix Ã(n−1) using the backward substitution method. The
elements a11, a

(1)
22 , . . ., a

(n−1)
nn in the main diagonal of the last matrix of the Gaussian

elimination are called pivot elements. Clearly, we can perform the Gaussian elimination
if and only if all the pivot elements are nonzero.

If we perform the steps of the Gaussian elimination only on the coefficient matrix, the
resulting matrices will be denoted by A(0) := A, A(1), . . ., A(n−1).

Algorithm 3.23. Gaussian elimination

INPUT: aij, (i = 1, . . . , n, j = 1, . . . , n+ 1) - augmented matrix
OUTPUT:x1, . . ., xn

(elimination:)
for k = 1, . . . , n− 1 do

for i = k + 1, . . . , n do
lik ← aik/akk

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

74 3. Linear Systems

for j = k + 1, . . . , n+ 1 do
aij ← aij − likakj

end do
end do

end do
(backward substitution:)
xn ← an,n+1/ann
for i = n− 1, . . . , 1 do

xi ← (ai,n+1 −
n∑︂

j=i+1

aijxj)/aii

end do
output(x1, x2, . . . , xn)

The above algorithm is formulated so that in each step the new value of an element
overwrites the same element of the previous matrix. We note that the zeros in the matrix
are not computed and even they are not stored. Therefore, after the last elimination
steps the elements under the main diagonal have no meaning. They can be filled by zero
directly if the whole matrix is needed.

Next we compute the number of arithmetic operations of the Gaussian elimination:

multiplication/division addition/subtraction
step 1 (n− 1)(n+ 1) (n− 1)n
step 2 (n− 2)n (n− 2)(n− 1)

...
...

...
step n− 1 1 · 3 1 · 2

total:
n−1∑︂
i=1

i(i+ 2)
n−1∑︂
i=1

i(i+ 1)

Using the identity 12 +22 + · · ·+ n2 = 1
6
n(n+1)(2n+1) we can easily check that the

total number of multiplications and divisions needed for the elimination steps is n3/3 +
n2/2−5n/6, and the number of additions and subtractions is (n3−n)/3. Together with the
backward substitution, n3/3+n2/2−5n/6+n2/2+n/2 = n3/3+n2−n/3 = n3/3+O(n2)
number of multiplications and divisions, and (n3−n)/3+n2/2−n/2 = n3/3+n2/2−5n/6 =
n3/3 +O(n2) number of additions and subtractions are needed to perform the Gaussian
elimination. Shortly we say that the time complexity of the Gaussian elimination is n3/3
number of operations.

Example 3.24. Solve the system

2x1 − x2 − 3x4 = 8
2x1 − x2 + x3 + 5x4 = 2
−3x1 + x2 + x3 − 2x4 = −5
2x1 + 4x2 − x4 = 21

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

3.3. Gaussian Elimination, Pivoting Strategies 75

by Gaussian elimination. After performing the first step of the elimination we get⎛⎝ 2 −1 0 −3 8
2 −1 1 5 2
−3 1 1 −2 −5
2 4 0 −1 21

⎞⎠ ∼
⎛⎝ 2 −1 0 −3 8

0 0 1 8 −6
0 −1/2 1 −13/2 7
0 5 0 2 13

⎞⎠ .

Since the pivot element of the second row is 0, the Algorithm 3.23 cannot be continued. On the
other hand, the system has a unique solution: x1 = 4, x2 = 3, x3 = 2 and x4 = −1. But if we
change the second and third rows of the previous augmented matrix, the corresponding linear
system is the same, and the elimination can be continued:⎛⎝ 2 −1 0 −3 8

0 0 1 8 −6
0 −1/2 1 −13/2 7
0 5 0 2 13

⎞⎠ ∼
⎛⎝ 2 −1 0 −3 8

0 −1/2 1 −13/2 7
0 0 1 8 −6
0 5 0 2 13

⎞⎠ ∼
⎛⎝ 2 −1 0 −3 8

0 −1/2 1 −13/2 7
0 0 1 8 −6
0 0 10 −63 83

⎞⎠ ∼
⎛⎝ 2 −1 0 −3 8

0 −1/2 1 −13/2 7
0 0 1 8 −6
0 0 0 −143 143

⎞⎠ ,

which yields the solution. □

Example 3.25. Solve the linear system

0.0002x1 − 30.5x2 = −60.99
5.060x1 − 1.05x2 = 250.9

using Gaussian elimination and 4-digit arithmetic. Following Algorithm 3.23, first we compute
the factor l21 = 5.060/0.0002 = 25300 (rounding to 4 significant digits). Then by multiplying
the first equation by l21 and subtracting it from the second row we get(︂

0.0002 −30.5 −60.99
5.06 −1.05 250.9

)︂
∼
(︂

0.0002 −30.5 −60.99
0 771700 1543000

)︂
.

We note that we do not compute the first element of the second row by Algorithm 3.23, it
will be 0 without any calculation.) Solving it we get the numerical solutions x̃1 = −100.0 and
x̃2 = 1.999. We can check that the exact solution of the system is x1 = 50 and x2 = 2. Therefore,
the relative errors of the numerical solutions are 300% and 0.05%, respectively. Note that the
relative error of the first variable is huge.

Repeat the calculation for the system where we interchange the two equations:(︂
5.06 −1.05 250.9

0.0002 −30.5 −60.99
)︂
∼
(︂

5.06 −1.05 250.9
0 −30.5 −61.0

)︂
.

This gives the numerical values x1 = 50.00 and x2 = 2.000, which are identical to the exact
solutions.

What is the difference in between the two computations? In the first case, in order to
compute l21 we needed to divide by a small number (0.0002), which gave us the increase of the
rounding error. In the second case we performed the division by 5.06 in the computation of l21,
and we did not observe any error in the final result. □

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

76 3. Linear Systems

Partial Pivoting

The last two examples show that sometimes it is necessary, and in many cases it is
useful to modify Algorithm 3.23. One of the most popular modification is the Gaussian
elimination with partial pivoting (or maximal column pivoting). Here, before the kth step
of the elimination, we select the element with the largest magnitude in the kth column in
and under the main diagonal, i.e., let

|alk| = max{|aik| : i = k, . . . , n}.

(An element with the largest magnitude is in the lth row. If there are several elements with
the same largest magnitude, then l denotes the first possible row index.) We interchange
the kth and lth rows, and then continue with the elimination. This will get around the
problems of Examples 3.24 and 3.25. Indeed, if a

(k−1)
kk = 0, then after the row change a

nonzero element is moved into this position (if there is a nonzero element below a
(k−1)
kk).

Furthermore, the row change guarantees that the division will be performed by the element
with a largest magnitude which helps to reduce the rounding error in the computation.

Theorem 3.26. The next statements are equivalent:

(i) the linear system Ax = b can be solved by Gaussian elimination with partial pivot-
ing,

(ii) det(A) ̸= 0,

(iii) the matrix A is invertible,

(iv) the linear system Ax = b has a unique solution for all b.

Proof. It is known from linear algebra that statements (ii), (iii) and (iv) are equivalent
(see Theorem 3.2). Now we show that (i) and (ii) are equivalent.

Suppose first that (i) holds. Let A(0) := A, and let A(k) be the coefficient ma-
trix in the Gaussian elimination after the kth step. The properties of the determinants
yield that det(A(k)) = det(A(k−1)) if there was no row change in the kth step, and
det(A(k)) = − det(A(k−1)) if there was a row change. Since the Gaussian elimination can
be performed by the assumption, the triangular system corresponding to the coefficient
matrix A(n−1) of the last step is solvable, therefore, det(A(n−1)) ̸= 0. But this implies
det(A) = ± det(A(n−1)) ̸= 0.

We show that if the Gaussian elimination with partial pivoting terminates before the
kth step, then det(A) = 0. The kth step cannot be performed if and only if a

(k−1)
ik = 0

for all i = k, . . . , n, i.e.,

A(k−1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1,k−1 a1k ak,k+1 · · · a1n
0 a

(1)
22 · · · a

(1)
2,k−1 a

(1)
2k a

(1)
2,k+1 · · · a

(1)
2n

. . .

0 0 · · · a
(k−2)
k−1,k−1 a

(k−2)
k−1,k a

(k−2)
k−1,k+1 · · · a

(k−2)
k−1,n

0 0 · · · 0 0 a
(k−1)
k,k+1 · · · a

(k−1)
kn

...
...

...
...

...
...

0 0 · · · 0 0 a
(k−1)
n,k+1 · · · a

(k−1)
nn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

3.3. Gaussian Elimination, Pivoting Strategies 77

Hence

det(A(k−1)) = a11a
(1)
22 · · · a

(k−2)
k−1,k−1 det

⎛⎜⎝ 0 a
(k−1)
k,k+1 · · · a

(k−1)
kn

...
...

...

0 a
(k−1)
n,k+1 · · · a

(k−1)
nn

⎞⎟⎠ = 0,

and so det(A) = ± det(A(k−1)) = 0. □

Example 3.27. Consider again the system examined in Example 3.24, and solve it using
Gaussian elimination with partial pivoting. We get the following sequence of the augmented
matrices:⎛⎝ 2 −1 0 −3 8

2 −1 1 5 2
−3 1 1 −2 −5
2 4 0 −1 21

⎞⎠ ∼
⎛⎝ −3 1 1 −2 −5

2 −1 1 5 2
2 −1 0 −3 8
2 4 0 −1 21

⎞⎠ ∼
⎛⎜⎝ −3 1 1 −2 −5

0 −1/3 5/3 11/3 −4/3
0 −1/3 2/3 −13/3 14/3
0 14/3 2/3 −7/3 53/3

⎞⎟⎠ ∼
⎛⎜⎝ −3 1 1 −2 −5

0 14/3 2/3 −7/3 53/3
0 −1/3 2/3 −13/3 14/3
0 −1/3 5/3 11/3 −4/3

⎞⎟⎠ ∼
⎛⎜⎝ −3 1 1 −2 −5

0 14/3 2/3 −7/3 53/3
0 0 5/7 −9/2 83/14
0 0 12/7 7/2 −1/14

⎞⎟⎠ ∼
⎛⎜⎝ −3 1 1 −2 −5

0 14/3 2/3 −7/3 53/3
0 0 12/7 7/2 −1/14
0 0 5/7 −9/2 83/14

⎞⎟⎠ ∼
⎛⎜⎝ −3 1 1 −2 −5

0 14/3 2/3 −7/3 53/3
0 0 12/7 7/2 −1/14
0 0 0 −143/24 143/24

⎞⎟⎠
We can observe that there was a row change before the first and third elimination steps. The
solution of the triangular system is x1 = 4, x2 = 3, x3 = 2 and x4 = −1. □

Suppose we perform the Gaussian elimination with partial pivoting on the coefficient
matrix A, and we collect the row changes performed during this algorithm. It is easy to
see that if we perform all these row changes first on the matrix A without the elimination
steps, then the Gaussian elimination can be performed on this matrix, and the numerical
result will be the same as for the Gaussian elimination with partial pivoting performed for
the original system. According to Theorem 3.7, the row change can be performed by mul-
tiplying the matrix A by a permutation matrix P from the left. Therefore, Theorem 3.26
has the following consequence.

Theorem 3.28. If det(A) ̸= 0, then there exists a permutation matrix P such that the
linear system PAx = Pb can be solved by Gaussian elimination (without row changes)
for all vector b.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

78 3. Linear Systems

Complete Pivoting

To further reduce the effect of rounding we can use the following modification of the
partial pivoting, which is called complete pivoting or maximal pivoting : before the kth
step of the elimination we find the first row index l and column index m such that

|alm| = max{|aij| : i = k, . . . , n, j = k, . . . , n}.

(That is the element with largest magnitude is located in the lth row and in the mth
column.) Then we interchange the kth and lth rows and the kth and mth columns. We
have to note that the first n columns of the augmented matrix of the system contains
coefficients of the variables. At the beginning of the algorithm the first column contains
the coefficients of x1, the second one contains those of x2, and so on, the nth column
contains the coefficients of xn. Therefore, when we interchange columns, we have to record
the changes in the order of the variables too. Then we continue with the elimination step,
as in the Gaussian elimination.

The disadvantage of this method is that it requires more comparisons than the partial
pivoting, so it slows down the running of the algorithm.

Example 3.29. Consider again the system examined in Example 3.22, and here we solve it
using Gaussian elimination with complete pivoting:⎛⎜⎜⎝

1 −2 −2 −2 −11
2 −1 2 4 −8
−1 2 3 −4 27
−2 1 4 −2 28
x1 x2 x3 x4

⎞⎟⎟⎠ ∼
⎛⎜⎜⎝

2 −1 2 4 −8
1 −2 −2 −2 −11
−1 2 3 −4 27
−2 1 4 −2 28
x1 x2 x3 x4

⎞⎟⎟⎠ ∼
⎛⎜⎜⎝

4 −1 2 2 −8
−2 −2 −2 1 −11
−4 2 3 −1 27
−2 1 4 −2 28
x4 x2 x3 x1

⎞⎟⎟⎠ ∼
⎛⎜⎜⎝

4 −1 2 2 −8
0 −5/2 −1 2 −15
0 1 5 1 19
0 1/2 5 −1 24
x4 x2 x3 x1

⎞⎟⎟⎠ ∼
⎛⎜⎜⎝

4 −1 2 2 −8
0 1 5 1 19
0 −5/2 −1 2 −15
0 1/2 5 −1 24
x4 x2 x3 x1

⎞⎟⎟⎠ ∼
⎛⎜⎜⎝

4 2 −1 2 −8
0 5 1 1 19
0 −1 −5/2 2 −15
0 5 1/2 −1 24
x4 x3 x2 x1

⎞⎟⎟⎠ ∼
⎛⎜⎜⎝

4 2 −1 2 −8
0 5 1 1 19
0 0 −23/10 11/5 −56/5
0 0 −1/2 −2 5
x4 x3 x2 x1

⎞⎟⎟⎠ ∼
⎛⎜⎜⎝

4 2 −1 2 −8
0 5 1 1 19
0 0 −23/10 11/5 −56/5
0 0 0 −57/23 171/23
x4 x3 x2 x1

⎞⎟⎟⎠
In order to follow the effect of the column changes, we augmented the matrices with an extra row
where we record the variable whose coefficients are listed in that particular column. Here before
the first elimination step, we interchanged the first and fourth columns, since 4 was the element
with the largest magnitude in the coefficients. (Another option would be to interchange the first
and third rows and then the first and fourth columns; or to interchange the first and fourth
rows and the first and third columns.) Before the second elimination step, we interchanged the
second and third rows and the second and third columns. And before the third elimination step
there were no row or column changes. Finally, we solved the triangular system. The fourth
equation gave us the value of the variable x1, and the third equation can be solved for x2, the

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

3.3. Gaussian Elimination, Pivoting Strategies 79

second equation implied the value of x3, and finally, from the first equation we got the solution
for x4. The result is again x1 = −3, x2 = 2, x3 = 4 and x4 = −2.

We comment that the advantage of the partial and complete pivoting appears when we do
the computations using floating point arithmetic. □

Scaled Partial Pivoting

Numerical observations indicate that if the order of magnitude of the elements in the
coefficient matrix is significantly different, then the effect of rounding can be large (see
Example 3.25). Therefore, it is usual to multiply the rows of the system with a nonzero real
to equalize the magnitude of the coefficients. If we combine it with the partial pivoting,
we get a technique called scaled partial pivoting : We are looking for positive factors
d1, . . . , dn > 0 so that the elements of the matrix B := DA be of the same magnitude,
where D = diag(d1, . . . , dn). Then, instead of solving the linear system Ax = b, we solve
the equivalent linear system DAx = Db numerically. One simple strategy is to select
D so that max{|bij| : 1 ≤ j ≤ n} ≈ 1 be satisfied for all i = 1, . . . , n. We can define
di := 1/si where si := max{|aij| : 1 ≤ j ≤ n}. The problem here is that the division
may introduce further rounding error in the calculation. To avoid it, let β be the base
of the number representation on the computer, and let ri be the smallest integer so that
βri ≥ si, and define bij := aij/β

ri (i, j = 1, . . . , n). Then the division will not contain
rounding error, and 1/β < max1≤j≤n |bij| ≤ 1 holds for all i = 1, . . . , n.

The following result can be proved.

Theorem 3.30. Suppose we perform a scaled partial pivoting on the coefficient matrix A
with the matrix D = diag(d1, . . . , dn) which do not introduce rounding errors (e.g., using
β powers). Then if partial or complete pivoting on the matrix DA yields the same row
(and column) changes as the same pivoting on the matrix A, then the numerical solutions
of the systems Ax = b and DAx = Db with Gaussian elimination using pivoting will be
identical.

The previous result shows that the scaling of the equations effects only the selection of
the pivot elements, not the numerical result. So it is popular to use the scaling to select
the pivot elements, but we do not perform the the scaling of the rows. This variant of
the scaled pivoting is called partial pivoting with implicit scaling. The result is one of the
most popular algorithms to solve linear systems.

Algorithm 3.31. Gaussian elimination with partial pivoting and implicit scal-
ing

INPUT: aij, (i = 1, . . . , n, j = 1, . . . , n+ 1) - augmented matrix
OUTPUT:x1, . . ., xn

(computation of the scale factors:)
for i = 1, . . . , n do

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

80 3. Linear Systems

si ← max
1≤j≤n

|aij|
end do
(elimination:)
for k = 1, . . . , n− 1 do

let l be the smallest row index for which
|alk|
sl

= max
k≤i≤n

|aik|
si

interchange the kth and lth rows of the matrix A
for i = k + 1, . . . , n do

lik ← aik/akk
for j = k + 1, . . . , n+ 1 do

aij ← aij − likakj
end do

end do
end do
(backward substitution:)
xn ← an,n+1/ann
for i = n− 1, . . . , 1 do

xi ← (ai,n+1 −
n∑︂

j=i+1

aijxj)/aii

end do
output(x1, x2, . . . , xn)

We note that in our methods many times we needed to interchange two rows of a
matrix A = (aij). This requires a lot of operation, therefore, instead of it we can do the
following trick in programming: We store the elements of the matrix in a two-dimensional
array a[i, j]. We define an array m[i] with initial values m[i] = i, (i = 1, . . . , n). If we
interchange the kth and lth rows, we swap the kth and lth elements of the array m[·].
When we have to refer to an element aij of the matrix A, we can use the value a[m[i], j].

Theorem 3.32. If the matrix A is diagonally dominant, then the Gaussian elimination
can be performed on the linear system Ax = b without pivoting, and the method is stable
with respect to the rounding errors.

Proof. First we note that if the matrix A is diagonally dominant, then Theorem 3.8
implies that the linear system Ax = b has a unique solution.

We show that each of the coefficient matrices A(1), A(2), . . ., A(n−1) of the elimination
steps is also diagonally dominant. Since A(0) = A is diagonally dominant, it follows
|a11| >

∑︁n
j=2 |a1j|, and hence a11 ̸= 0. Therefore, the matrix A(1) is well-defined. We

show that A(1) is diagonally dominant. Since the first row of A(1) is identical to that of
A, it is diagonally dominant. Let 1 < i ≤ n. Using a

(1)
ij = aij − ai1

a11
a1j, (j = 2, . . . , n), and

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

3.3. Gaussian Elimination, Pivoting Strategies 81

a
(1)
i1 = 0, we get

n∑︂
j=2
j ̸=i

|a(1)ij | =
n∑︂

j=2
j ̸=i

|aij −
ai1
a11

a1j| ≤
n∑︂

j=2
j ̸=i

(|aij|+
|ai1|
|a11|
|a1j|) =

n∑︂
j=2
j ̸=i

|aij|+
|ai1|
|a11|

n∑︂
j=2
j ̸=i

|a1j|.

Since the ith row of A is also diagonally dominant, it follows

n∑︂
j=2
j ̸=i

|a(1)ij | < |aii| − |ai1|+
|ai1|
|a11|

(|a11| − |a1i|)

= |aii| −
|ai1|
|a11|
|a1i|

≤
⃓⃓⃓⃓
aii −

ai1
a11

a1i

⃓⃓⃓⃓
= |a(1)ii |.

This shows that all the rows of A(1) are diagonally dominant, hence the matrix is diago-
nally dominant.

Similar argument shows that all matrices A(2), . . . ,A(n−1) are diagonally dominant.
The numerical stability is not shown here. □

We present the next result without its proof.

Theorem 3.33. Let A be a symmetric n×n matrix, b ∈ Rn. Then A is positive definite
if and only if the Gaussian elimination can be performed for the system Ax = b without
pivoting, and the pivot elements are all positive. Moreover, in this case the method is
stable with respect to the rounding errors.

Exercises

1. Solve the following linear systems using Gaussian elimination

(i) without pivoting,

(ii) with partial pivoting,

(iii) with complete pivoting,

(iv) with scaled partial pivoting:

(a)
2x1 + 2x2 − 2x3 = −4
−x1 + 3x2 = −11
4x1 + 2x2 − 3x3 = −1

(b)
−x1 − 3x2 + 2x4 = 10
−2x1 + 3x2 + x4 = 8
4x1 + x2 − x3 − 3x4 = −21
2x1 + x2 − x3 + 3x4 = 7

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

82 3. Linear Systems

2. Use 4-digit arithmetic in the calculations, and apply the question of the previous exercise
for the following systems:

(a)
1.03x1 − 1.1x2 + 8x3 = −9.06
−4.1x1 + 10.1x2 − 6x3 = 106.2
2.11x1 − 4.2x2 + 12x3 = −40.22

(exact solution: (-2, 10, 0.5)),

(b)
x1 + 1

2x2 + 1
3x3 = 20

1
2x1 + 1

3x2 + 1
4x3 = 14

1
3x1 + 1

4x2 + 1
5x3 = 11

(exact solution: (6, -12, 60))

3. Prove Theorem 3.30.

4. Prove Theorem 3.33 (except the statement related to the stability).

3.4. Gauss–Jordan Elimination

A version of the Gaussian elimination is the Gauss–Jordan elimination, where we use the
elimination steps of the Gaussian elimination to transform the coefficient matrix part of
the augmented matrix to the identity matrix, i.e., the matrix (A,b) is converted to the
form (I,b(n−1)). Then the solution of the linear system is x = b(n−1).

Algorithm 3.34. Gauss–Jordan elimination

INPUT: aij, (i = 1, . . . , n, j = 1, . . . , n+ 1) - augmented coefficient matrix
OUTPUT:x1, . . ., xn

(converting the coefficients to a diagonal form:)
for k = 1, . . . , n do

for i = 1, . . . , n do
if i ̸= k do

lik ← aik/akk
for j = k + 1, . . . , n+ 1 do

aij ← aij − likakj
end do

end do
end do

end do
for i = 1, . . . , n do

xi ← ai,n+1/aii
end do
output(x1, x2, . . . , xn)

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

3.5. Tridiagonal Linear Systems 83

It can be checked that the operation count of the Gauss-Jordan elimination is n3/2 +
O(n2) number of multiplications and divisions and n3/2+O(n2) number of additions and
subtractions.

Example 3.35. We apply the Gauss–Jordan elimination to the linear system examined in
Example 3.22:⎛⎝ 1 −2 −2 −2 −11

2 −1 2 4 −8
−1 2 −3 −4 3
−2 1 4 −2 28

⎞⎠ ∼
⎛⎝ 1 −2 −2 −2 −11

0 3 6 8 14
0 0 −5 −6 −8
0 −3 0 −6 6

⎞⎠ ∼
⎛⎝ 1 0 2 10/3 −5/3

0 3 6 8 14
0 0 −5 −6 −8
0 0 6 2 20

⎞⎠ ∼
⎛⎜⎝ 1 0 0 14/15 −73/15

0 3 0 4/5 22/5
0 0 −5 −6 −8
0 0 0 −26/5 52/5

⎞⎟⎠ ∼
⎛⎝ 1 0 0 0 −3

0 3 0 0 6
0 0 −5 0 −20
0 0 0 −26/5 52/5

⎞⎠ ∼
⎛⎝ 1 0 0 0 −3

0 1 0 0 2
0 0 1 0 4
0 0 0 1 −2

⎞⎠
The last column gives us the solution: x1 = −3, x2 = 2, x3 = 4 and x4 = −2. □

We can combine pivoting strategies together with the Gauss–Jordan elimination.

Example 3.36. Here we apply the Gauss–Jordan elimination with partial pivoting to the
linear system examined in Example 3.22:⎛⎝ 1 −2 −2 −2 −11

2 −1 2 4 −8
−1 2 3 −4 27
−2 1 4 −2 28

⎞⎠ ∼
⎛⎝ 2 −1 2 4 −8

1 −2 −2 −2 −11
−1 2 3 −4 27
−2 1 4 −2 28

⎞⎠ ∼
⎛⎝ 2 −1 2 4 −8

0 −3/2 −3 −4 −7
0 3/2 4 −2 23
0 0 6 2 20

⎞⎠ ∼
⎛⎝ 2 0 4 20/3 −10/3

0 −3/2 −3 −4 −7
0 0 1 −6 16
0 0 6 2 20

⎞⎠ ∼
⎛⎝ 2 0 4 20/3 −10/3

0 −3/2 −3 −4 −7
0 0 6 2 20
0 0 1 −6 16

⎞⎠ ∼
⎛⎜⎝ 2 0 0 16/3 −50/3

0 −3/2 0 −3 3
0 0 6 2 20
0 0 0 −19/3 38/3

⎞⎟⎠ ∼
⎛⎝ 2 0 0 0 −6

0 −3/2 0 0 −3
0 0 6 0 24
0 0 0 −19/3 38/3

⎞⎠ ∼
⎛⎝ 1 0 0 0 −3

0 1 0 0 2
0 0 1 0 4
0 0 0 1 −2

⎞⎠
Therefore, the solution is x1 = −3, x2 = 2, x3 = 4 and x4 = −2. □

Exercises

1. Solve the linear systems given in Exercises 1 and 2 of Section 3.3 with Gauss–Jordan
elimination.

2. Prove that the number of arithmetic operation needed for the Gauss-Jordan elimination
is n3/2 + n2 − n/2 multiplication and divisions.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

84 3. Linear Systems

3.5. Tridiagonal Linear Systems

We say that a square matrix (aij) is tridiagonal if aij = 0 for all |i− j| > 1, i.e., nonzero
numbers can appear only in the main diagonal and in the next diagonal above and under
it. Tridiagonal linear systems (i.e., a linear system with a tridiagonal coefficient matrix)
appear frequently in applications, so it is an important class of linear systems. We will
use the following notations:⎛⎜⎜⎜⎜⎝

d1 c1 0 0 · · · 0
a1 d2 c2 0 · · · 0
0 a2 d3 c3 · · · 0

.
0 0 · · · an−2 dn−1 cn−1
0 0 · · · 0 an−1 dn

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

x1
x2
x3
...
xn−1
xn

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
b1
b2
b3
...
bn−1
bn

⎞⎟⎟⎟⎟⎠ . (3.10)

It is practical to store the elements of a tridiagonal matrix in three vectors (ai), (di)
and (ci), as it is used above. In this case only 3n − 2 storage area is needed for the
coefficients.

It is clear that applying the Gaussian elimination to the system (3.10) the elements ai
below the main diagonal will become 0, and the numbers ci will not be changed during the
elimination steps. We have to compute the new values of the variables di and bi during
the elimination. In the next algorithm we override the old values of the vectors (di) and
(bi) with the actual new ones.

Algorithm 3.37. Gaussian elimination for tridiagonal linear systems

INPUT: ai, ci (i = 1, . . . , n− 1), di, bi (i = 1, . . . , n)
OUTPUT:x1,. . .,xn

(elimination:)
for i = 2, . . . , n do

temp← ai−1/di−1

di ← di − temp · ci−1

bi ← bi − temp · bi−1

end do
(backward substitution:)
xn ← bn/dn
for i = n− 1, . . . , 1 do

xi ← (bi − cixi+1)/di
end do
output(x1, x2, . . . , xn)

We can check that the method above requires 5n − 4 number of multiplications and
divisions. If we compare it with the number of operations of the Algorithm 3.23, which
is n3/3 multiplications and divisions, then we can see that for a tridiagonal system this
special algorithm should be applied.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

3.7. Matrix Inversion and Determinants 85

It follows from Theorem 3.32 that if the tridiagonal matrix A is also diagonally dom-
inant, then Algorithm 3.37 can be performed (without pivoting).

Exercises

1. Solve the following tridiagonal linear systems:

x1 − 0.5x2 = 1.5
0.5x1 + 4x2 − 0.5x3 = −4.0

0.5x2 + 2x3 − 0.5x4 = 2.0
0.5x3 + 4x4 − 0.5x5 = −4.0

0.5x4 + 2x5 − 0.5x6 = 2.0
0.5x5 + x6 = −0.5

2. Show that Algorithm 3.37 requires 5n− 4 number of multiplications and divisions.

3. Formulate an algorithm similar to Algorithm 3.37 for a band matrix where the nonzero
elements appear only in the main diagonal and in the next 2 diagonals above and below
it, i.e., when aij = 0 for |i− j| > 2.

3.6. Simultaneous Linear Systems

Frequently we would like to solve so-called simultaneous linear systems, i.e., systems of
the form Ax = b(i) for i = 1, . . . ,m, where the coefficient matrices are identical, but the
right-hand-sides of the equations are different. We can shortly write the above system as
AX = B, where the ith columns of the n×m dimensional matrixB = (b(1),b(2), . . . ,b(m))
is b(i), and the ith column of the n ×m dimensional matrix X = (x(1),x(2), . . . ,x(m)) is
x(i), i.e., the solution of the system Ax(i) = b(i). Since pivoting in the Gaussian or Gauss–
Jordan elimination depends only on the coefficient matrix, it can be performed on the
n×(n+m) dimensional augmented matrix. For example, if we perform the Gauss-Jordan
elimination on the augmented matrix (A,B) we get a matrix of the form (I,X). Then
the solution of the simultaneous linear system X appears in the last m columns of the
augmented matrix.

Exercises

1. Show that the operation count of the Gaussian elimination on the augmented matrix
(A,b(1), . . . ,b(m)) is n3/3 +mn2 − n/3 number of multiplications and divisions.

2. Prove that the operation count of the Gauss–Jordan elimination on the augmented matrix
(A,b(1), . . . ,b(m)) is n3/2 +mn2 − n/2 number of multiplications and divisions.

3. Reformulate Algorithm 3.37 for solving simultaneous tridiagonal linear systems.

4. Prove that the system of linear systems Ax(i) = b(i), i = 1, 2, . . . ,m is equivalent to the
matrix equation AX = B, where X = (x(1), . . . ,x(m)) and B = (b(1), . . . ,b(m)).

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

86 3. Linear Systems

3.7. Matrix Inversion and Determinants

The inverse matrix A−1 of a nonsingular square matrix A satisfies the matrix equation
AA−1 = I, so A−1 is the solution of the simultaneous linear system AX = I. It can
be shown that if such matrix X exists, then XA = I holds too, hence X is the inverse
matrix of A. We can use the Gauss-Jordan elimination to solve the simultaneous linear
system. It can be checked that the number of operations needed to compute the matrix
inverse with the Gauss–Jordan elimination is 3

2
n3 +O(n2) number of multiplications and

divisions and 3
2
n3 +O(n2) number of additions and subtractions.

Example 3.38. Compute the inverse of the matrix

A =

(︄
1 0 2
−1 1 0
−2 0 −1

)︄
.

We use the Gauss–Jordan elimination:(︄
1 0 2 1 0 0
−1 1 0 0 1 0
−2 0 −1 0 0 1

)︄
∼

(︄
1 0 2 1 0 0
0 1 2 1 1 0
0 0 3 2 0 1

)︄
∼(︄

1 0 2 1 0 0
0 1 2 1 1 0
0 0 3 2 0 1

)︄
∼

(︄
1 0 0 −1/3 0 −2/3
0 1 0 −1/3 1 −2/3
0 0 3 2 0 1

)︄
∼(︄

1 0 0 −1/3 0 −2/3
0 1 0 −1/3 1 −2/3
0 0 1 2/3 0 1/3

)︄

Hence

A−1 =
1

3

(︄
−1 0 −2
−1 3 −2
2 0 1

)︄
.

□

Certainly, we can use pivoting techniques together with the Gauss-Jordan elimination
for computing the inverse matrix if we wanted to reduce the rounding errors or to avoid
division by zero.

According to Theorem 3.26 the Gaussian elimination with pivoting can be performed
if and only if det(A) ̸= 0. In the proof of the theorem we can see that det(A) =
(−1)s det(A(n−1)), where s denotes the number of row changes. Therefore, the determi-
nant is equal to the product of the pivot elements with an appropriate sign: det(A) =

(−1)sa11a(1)22 · · · a
(n−1)
nn .

Example 3.39. Consider the coefficient matrix of Example 3.22, i.e., let

A =

⎛⎝ 1 −2 −2 −2
2 −1 2 4
−1 2 3 −4
−2 1 4 −2

⎞⎠ .

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

3.7. Matrix Inversion and Determinants 87

Compute the determinant of A. In Example 3.22 we performed the Gaussian elimination on A
and got

A(3) =

⎛⎝ 1 −2 −2 −2
0 3 6 8
0 0 1 −6
0 0 0 38

⎞⎠ .

Therefore, det(A) = det(A(3)) = 1 · 3 · 1 · 38 = 114. □

Exercises

1. Compute the inverse of the matrices:

(a)

(︄
−1 1 2
−2 1 0
0 1 −1

)︄
(b)

(︄
−3 1 2
0 3 1
−2 −1 1

)︄
(c)

⎛⎝ 1 −1 0 2
2 1 0 1
1 0 −1 0
1 2 2 −1

⎞⎠
2. Prove that the matrix inversion using Gauss–Jordan elimination requires 3n3/2 − n/2

number of multiplications and divisions.

3. Formulate an algorithm for matrix inversion using Gauss–Jordan elimination taking into
account that in the problem AX = I the matrix I has a special form, so multiplication by
0 should not be computed. Show that the resulting algorithm requires n3 multiplications
and divisions and n3 − 2n2 + n additions and subtractions.

4. Compute the determinants of the matrices given in Exercise 1 using the Gaussian elimi-
nation.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

Chapter 4

Iterative Techniques for Solving Linear Systems

In this chapter we first discuss the theory of linear fixed-point iteration, and then we
apply it for the solution of linear systems (we define the Jacobi and Gauss–Seidel itera-
tions). Finally, we introduce the condition number of matrices, and study perturbation
of linear systems.

4.1. Linear Fixed-Point Iteration

In this section we investigate linear n dimensional fixed-point iterations of the form

x(k+1) = Tx(k) + c, k = 0, 1, 2, (4.1)

First we consider the case when c = 0. Then it is easy to see that x(k) = Tkx(0) for all
k = 1, 2,

Theorem 4.1. The following statements are equivalent:

(i) lim
k→∞

Tk = 0 (zero matrix), i.e., lim
k→∞
∥Tk∥ = 0 for any matrix norm ∥ · ∥;

(ii) lim
k→∞

Tkx = 0 (zero vector) for all x ∈ Rn, i.e., lim
k→∞
∥Tkx∥ = 0 for all x ∈ Rn and

for any vector norm ∥ · ∥;

(iii) ρ(T) < 1.

Proof. Statement (ii) follows from (i), since

∥Tkx∥ ≤ ∥Tk∥∥x∥

for all x ∈ Rn and for any norm ∥ · ∥.
Suppose (ii) holds. Let λ be an eigenvalue of T, and let v be an eigenvector corre-

sponding to λ. Then Tkv = λkv, hence Tkv → 0 (as k → ∞) implies |λ| < 1, since
v ̸= 0. Since λ was an arbitrary eigenvalue of T, ρ(T) < 1 is satisfied.

Now suppose (iii) holds. Theorem 3.17 implies that there exists a matrix norm ∥ · ∥
and ε > 0 such that ∥T∥ ≤ ρ(T) + ε < 1. Then

∥Tk∥ ≤ ∥T∥k ≤ (ρ(T) + ε)k → 0,

90 4. Iterative Techniques for Solving Linear Systems

as k →∞. But then Theorem 2.47 yields ∥Tk∥ → 0 in any matrix norm ∥ ·∥, so (i) holds.

□

The next theorem states that ∥T∥ < 1 implies ∥Tk∥ → 0.

Theorem 4.2. If ∥T∥ < 1 in some matrix norm ∥ · ∥, then ∥Tk∥ → 0 as k →∞.

Proof. The statement follows from ∥Tk∥ ≤ ∥T∥k. □

Next we investigate the convergence of the matrix geometric series or Neumann-series
I+A+A2 +A3 + · · · , where A is a square matrix.

Theorem 4.3. If ρ(A) < 1, then the geometric series I+A+A2+A3+· · · is convergent,
the matrix I−A is invertible, and

(I−A)−1 = I+A+A2 +A3 + · · · .

Conversely, if the geometric series I+A+A2 +A3 + · · · is convergent, then ρ(A) < 1.

Proof. Let ρ(A) < 1. Suppose that I −A is not invertible. Then Theorem 3.3 yields
that there exists a nonzero vector x ̸= 0 such that (I−A)x = 0. But then Ax = x, i.e.,
1 is an eigenvalue of A, which contradicts to the assumption that ρ(A) < 1. Hence I−A
is invertible.

It is easy to check that

(I−A)(I+A+A2 +A3 + · · ·+Am) = I−Am+1. (4.2)

Therefore,

I+A+A2 +A3 + · · ·+Am = (I−A)−1(I−Am+1),

and so, using that Theorem 4.1 implies Am+1 → 0, we get

I+A+A2 +A3 + · · ·+Am → (I−A)−1,

as m→∞.

Now suppose that the geometric series I+A+A2 +A3 + · · · is convergent. Then it
is easy to see that Am → 0, and hence Theorem 4.1 yields ρ(A) < 1. □

Corollary 4.4. If ∥A∥ < 1 in some matrix norm ∥·∥, then the matrix I−A is invertible,
the geometric series I+A+A2+A3+· · · is convergent, I+A+A2+A3+· · · = (I−A)−1,
and

∥(I−A)−1∥ ≤ 1

1− ∥A∥
.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

4.1. Linear Fixed-Point Iteration 91

Proof. We have to prove only the last statement, the others follow immediately from
Theorems 4.3 and 3.16. Using the continuity of the matrix norm, the triangle-inequality
and the properties of the norm, we get

∥(I−A)−1∥ = ∥ lim
m→∞

(I+A+A2 +A3 + · · ·+Am)∥

= lim
m→∞

∥I+A+A2 +A3 + · · ·+Am∥

≤ lim
m→∞

(∥I∥+ ∥A∥+ ∥A2∥+ ∥A3∥+ · · ·+ ∥Am∥)

≤ lim
m→∞

(1 + ∥A∥+ ∥A∥2 + ∥A∥3 + · · ·+ ∥A∥m)

=
1

1− ∥A∥
.

□

The last result has an important consequence: if A is nonsingular, then all matrices
“close“ to A are also nonsingular.

Theorem 4.5. Let A and B be n× n matrices. Let A be nonsingular, and

∥A−B∥ < 1

∥A−1∥
.

Then B is also nonsingular, moreover,

∥B−1∥ ≤ ∥A−1∥
1− ∥A−1∥∥A−B∥

(4.3)

and

∥A−1 −B−1∥ ≤ ∥A−1∥2∥A−B∥
1− ∥A−1∥∥A−B∥

. (4.4)

Proof. Consider the identities B = A − (A − B) = A(I − A−1(A − B)). Using the
assumption we get ∥A−1(A−B)∥ ≤ ∥A−1∥∥A−B∥ < 1, therefore, Corollary 4.4 yields
that the matrix I−A−1(A−B) is invertible. But then B−1 = (I−A−1(A−B))−1A−1

also exists. From this, relation A−1 − B−1 = A−1(B −A)B−1 and Corollary 4.4 imply
estimates (4.3) and (4.4). □

Consider again the fixed-point problem (4.1). Now we consider the general case. It is
easy to see that the kth term of the fixed-point iteration is

x(k) = Tkx(0) + (Tk−1 +Tk−2 + · · ·+T+ I)c, k = 1, 2,

Theorems 4.1 and 4.3 imply the following results.

Theorem 4.6. Let c ̸= 0. The fixed-point equation x = Tx + c has a unique solution
and the fixed-point iteration (4.1) converges to the unique solution of the equation for all
x(0) if and only if ρ(T) < 1.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

92 4. Iterative Techniques for Solving Linear Systems

Proof. Let ρ(T) < 1. Then Theorem 4.3 yields that I − T is invertible, hence the
equation x = Tx+ c has a unique solution: x = (I−T)−1c. Theorems 4.1 and 4.3 imply
that Tkx(0) → 0 for all x(0) ∈ Rn, and (Tk−1 + Tk−2 + · · · + T + I)c → (I − T)−1c as
k →∞.

Conversely, let x be the solution of x = Tx+c, and suppose x(k) → x as k →∞. Then
subtracting the equations x = Tx+c and x(k+1) = Tx(k)+c we get x−x(k+1) = T(x−x(k)),
and so

x− x(k+1) = T(x− x(k)) = · · · = Tk+1(x− x(0)). (4.5)

Let z be an arbitrary vector, and x(0) = x− z. Then

lim
k→∞

Tk+1z = lim
k→∞

Tk+1(x− x(0)) = lim
k→∞

(x− x(k+1)) = x− x = 0.

Theorem 4.1 yields ρ(T) < 1. □

Corollary 4.7. If ∥T∥ < 1 in some matrix norm ∥ · ∥, then the iteration (4.1) is
convergent for all initial values x(0), and

∥x− x(k)∥ ≤ ∥T∥k∥x− x(0)∥. (4.6)

Estimate (4.6) implies that the smaller the ∥T∥ is, the faster the convergence of the
sequence x(k). Therefore, Theorem 3.17 yields that the smaller the ρ(T) is, the faster the
convergence (in a certain norm) of the sequence x(k).

Next we investigate the effect of rounding error in the computation of the linear fixed-
point iteration. Suppose that instead of the sequence (4.1) we generate the sequence

y(k+1) = Ty(k) + c+w(k+1), k = 0, 1, . . . , (4.7)

y(0) = x(0) +w(0), (4.8)

where the effect of the rounding error in the kth step is represented by w(k+1), and w(0)

is the rounding error we get when we store the initial value of the sequence. We suppose
that

∥w(k)∥ ≤ ε, k = 0, 1, . . .

holds in a certain vector norm. We compute the difference of equations (4.7) and (4.1):

y(k+1) − x(k+1) = T(y(k) − x(k)) +w(k+1).

Then

∥y(k+1) − x(k+1)∥ ≤ ∥T(y(k) − x(k))∥+ ∥w(k+1)∥
≤ ∥T∥∥y(k) − x(k)∥+ ε

...

≤ ∥T∥k+1∥y(0) − x(0)∥+ (∥T∥k + · · ·+ ∥T∥+ 1)ε

≤ (∥T∥k+1 + ∥T∥k + · · ·+ ∥T∥+ 1)ε.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

4.2. Jacobi Iteration 93

If ∥T∥ < 1, then the last expression can be estimated by the sum of the geometric series:

∥y(k+1) − x(k+1)∥ ≤ 1

1− ∥T∥
ε.

This shows that the computation is stable with respect to the rounding errors, and the
smaller the ∥T∥ is, the smaller the rounding error is.

Exercises

1. Compute the sum of the geometric series I+A+A2 +A3 + · · · for

(a) A =

⎛⎝ 0 1 2 3
0 0 1 2
0 0 0 1
0 0 0 0

⎞⎠ , (b) A =

⎛⎜⎝ 1/2 0 0 0
0 1/3 0 0
0 0 1/4 0
0 0 0 1/5

⎞⎟⎠ .

2. Prove identity (4.2).

3. Work out the details of the proofs of (4.3) and (4.4).

4. Find all values of the parameter α for which the matrix sequence(︂
1 2
α 0

)︂k
converges to the zero matrix.

4.2. Jacobi Iteration

Example 4.8. Solve the linear system

5x1 + 3x2 − x3 = −4
2x1 − 10x2 + x3 = 25
−3x1 + 4x2 − 12x3 = −47.

(4.9)

We express x1 from the first, x2 from the second and x3 from the third equation:

x1 = (−4− 3x2 + x3)/5

x2 = (−25 + 2x1 + x3)/10 (4.10)

x3 = (47− 3x1 + 4x2)/12.

System (4.10) is a three dimensional linear fixed-point equation, so we define the sequences

x
(k+1)
1 = (−4− 3x

(k)
2 + x

(k)
3)/5

x
(k+1)
2 = (−25 + 2x

(k)
1 + x

(k)
3)/10 (4.11)

x
(k+1)
3 = (47− 3x

(k)
1 + 4x

(k)
2)/12

for k = 0, 1, 2, Table 4.1 lists the numerical results starting from the initial values x
(0)
1 =

x
(0)
2 = x

(0)
3 = 0 . We can observe that the sequences converge, and their limits are x1 = 1,

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

94 4. Iterative Techniques for Solving Linear Systems

x2 = −2 and x3 = 3, which are the solutions of the system (4.9). The iteration (4.11) can be
written in a vector form as

x(k+1) = Tx(k) + c, (4.12)

where

T =

(︄
0 −3/5 1/5

2/10 0 1/10
−3/12 4/12 0

)︄
and c =

(︄ −4/5
−25/10
47/12

)︄
.

Corollary 4.7 yields the convergence of the iteration (4.12) if the norm of T is less than 1 in
some norm. Since ∥T∥∞ = max{4/5, 3/10, 7/12} = 4/5 < 1, we get that the iteration (4.11) is
convergent. □

Table 4.1: Jacobi iteration

k x
(k)
1 x

(k)
2 x

(k)
3

0 0.000000 0.000000 0.000000
1 -0.800000 -2.500000 3.916667
2 1.483333 -2.268333 3.283333
3 1.217667 -1.875000 2.789722
4 0.882944 -1.977494 2.987250
...

...
...

...
14 0.999999 -1.999992 2.999990
15 0.999993 -2.000001 3.000003
16 1.000001 -2.000001 3.000001
17 1.000001 -2.000000 2.999999
18 1.000000 -2.000000 3.000000

Consider the linear system

a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2nxn = b2
...

...
...

...
an1x1 + an2x2 + . . . + annxn = bn.

(4.13)

If aii ̸= 0 for all i = 1, . . . , n, then the system (4.13) can be transformed into the form

xi = −
n∑︂

j=1
j ̸=i

aij
aii

xj +
bi
aii

, i = 1, . . . , n, (4.14)

and we can define the Jacobi iteration for k = 0, 1, 2, . . . by

x
(k+1)
i = −

n∑︂
j=1
j ̸=i

aij
aii

x
(k)
j +

bi
aii

, i = 1, . . . , n. (4.15)

If aii = 0 for some i, then we can try to interchange rows so that in the resulting matrix
aii ̸= 0 holds for all i = 1, . . . , n. We introduce the notations A = L+D+U, where

L =

⎛⎜⎜⎝
0 0 0 · · · 0
a21 0 0 · · · 0
a31 a32 0 · · · 0
...

...
. . .

an1 an2 · · · an,n−1 0

⎞⎟⎟⎠ , U =

⎛⎜⎜⎝
0 a12 a13 · · · a1n
0 0 a23 · · · a2n
0 0 0 · · · a3n
...

...
. . .

0 0 · · · 0 0

⎞⎟⎟⎠ ,

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

4.3. Gauss–Seidel Iteration 95

and D = diag(a11, a22, . . . , ann). L and U are lower and upper triangular matrices (with
zeros in the diagonal too). With this notation the linear system Ax = b can be rewritten
as Dx = −(L + U)x + b. Then multiplying this equation by D−1 we get a linear
system of the form (4.14). Therefore, the Jacobi iteration can be defined by (4.12), where
T = TJ := −D−1(L+U) and c = D−1b.

Theorem 4.6 and Corollary 4.7 imply the following necessary and sufficient condition
for the convergence of the Jacobi iteration.

Theorem 4.9. The Jacobi iteration is convergent for all initial values if and only if
ρ(TJ) < 1.

Corollary 4.10. If ∥TJ∥ < 1 in some matrix norm ∥ · ∥, then the Jacobi iteration is
convergent for all initial values x(0).

In practice we can use the following sufficient condition.

Theorem 4.11. If the matrix A is diagonally dominant, then the Jacobi iteration is
convergent for all initial values x(0).

Proof. Since

TJ =

⎛⎜⎜⎜⎝
0 −a12/a11 −a13/a11 · · · −a1n/a11

−a21/a22 0 −a23/a22 · · · −a2n/a22
−a31/a33 −a32/a33 0 · · · −a3n/a33

...
. . .

...
−an1/ann −an2/ann −an3/ann · · · 0

⎞⎟⎟⎟⎠ ,

using the diagonal dominance of A, we get

∥TJ∥∞ = max
i=1,...,n

⎧⎪⎨⎪⎩
n∑︂

j=1
j ̸=i

|aij|
|aii|

⎫⎪⎬⎪⎭ < 1.

Hence Corollary 4.10 implies the statement. □

Exercises

1. Solve the following linear systems with Jacobi iteration:

(a)
6.2x1 + 1.1x2 − 3.4x3 = 5.1
−0.6x1 + 2.9x2 + 0.3x3 = −7.2
1.1x1 − 0.6x2 + 4.4x3 = 3.1

(b)

−8x1 + 3x2 − 2x3 = 6
2x1 + 6x2 + x3 − 2x4 = 3
3x1 − 3x2 + 10x3 + x4 = 5

x2 − 3x3 + 7x4 = −17

2. Show that the Jacobi iteration is convergent for all initial values if A is column diagonally
dominant.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

96 4. Iterative Techniques for Solving Linear Systems

4.3. Gauss–Seidel Iteration

Example 4.12. Consider again the system (4.9), and its equivalent form (4.10). Define the
iteration

x
(k+1)
1 = (−4− 3x

(k)
2 + x

(k)
3)/5

x
(k+1)
2 = (−25 + 2x

(k+1)
1 + x

(k)
3)/10 (4.16)

x
(k+1)
3 = (47− 3x

(k+1)
1 + 4x

(k+1)
2)/12.

The difference between the iterations (4.11) and (4.16) is that here if a new value of a variable xi
is computed, then its is immediately used in the computation of the next iteration. The k+1-th
value of x1 is computed in the first equation, then in the computation of the new value of x2 the

updated value of x
(k+1)
1 is used in the second equation (which is hopefully a better approximation

of x1 than x
(k)
1) together with x

(k)
3 , which has no a new value at this moment. In Table 4.2 we

present the numerical results corresponding to the initial values x
(0)
1 = x

(0)
2 = x

(0)
3 = 0. We can

observe that this method converges faster to the limits than the Jacobi iteration. □

Table 4.2: Gauss–Seidel iteration

k x
(k)
1 x

(k)
2 x

(k)
3

0 0.000000 0.000000 0.000000
1 -0.800000 -2.660000 3.230000
2 1.442000 -1.888600 2.926633
3 0.918487 -2.023639 3.012499
4 1.016683 -1.995413 2.997358
5 0.996720 -2.000920 3.000513
6 1.000655 -1.999818 2.999897
7 0.999870 -2.000036 3.000020
8 1.000026 -1.999993 2.999996
9 0.999995 -2.000001 3.000001
10 1.000001 -2.000000 3.000000
11 1.000000 -2.000000 3.000000

Now consider again the general linear system (4.13). Motivated by the example above,
we define the Gauss–Seidel iteration to solve the system (4.13). For k = 0, 1, 2, . . . (if
aii ̸= 0 for all i = 1, . . . , n) we define

x
(k+1)
i = −

i−1∑︂
j=1

aij
aii

x
(k+1)
j −

n∑︂
j=i+1

aij
aii

x
(k)
j +

bi
aii

, i = 1, . . . , n. (4.17)

Equation (4.17) can be rearranged to

i∑︂
j=1

aijx
(k+1)
j = −

n∑︂
j=i+1

aijx
(k)
j + bi, i = 1, . . . , n,

i.e., using matrix notation,

(D+ L)x(k+1) = −Ux(k) + b,

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

4.3. Gauss–Seidel Iteration 97

where L, D, U is defined in the previous section. So the Gauss–Seidel iteration can be
written in the form (4.12) with T = TG := −(D+ L)−1U and c = (D+ L)−1b.

Theorem 4.6 and Corollary 4.7 imply immediately the next results.

Theorem 4.13. The Gauss–Seidel iteration is convergent for any initial value if and
only if ρ(TG) < 1.

Corollary 4.14. If ∥TG∥ < 1 in some matrix norm ∥·∥, then the Gauss–Seidel iteration
is convergent for all initial values x(0).

Similarly to the Jacobi iteration, the Gauss–Seidel iteration is also convergent if the
coefficient matrix is diagonally dominant.

Theorem 4.15. If A is diagonally dominant, then the Gauss–Seidel iteration is conver-
gent for all initial values x(0).

Proof. Let x = (x1, . . . , xn)
T be the solution of equation (4.13). Then we express xi

from the ith equation of (4.13), and subtracting it from (4.17), we get

x
(k+1)
i − xi = −

i−1∑︂
j=1

aij
aii

(x
(k+1)
j − xj)−

n∑︂
j=i+1

aij
aii

(x
(k)
j − xj).

Therefore,

|x(k+1)
i − xi| ≤

i−1∑︂
j=1

⃓⃓⃓⃓
aij
aii

⃓⃓⃓⃓
|x(k+1)

j − xj|+
n∑︂

j=i+1

⃓⃓⃓⃓
aij
aii

⃓⃓⃓⃓
|x(k)

j − xj|. (4.18)

Let

αi :=
i−1∑︂
j=1

⃓⃓⃓⃓
aij
aii

⃓⃓⃓⃓
and βi :=

n∑︂
j=i+1

⃓⃓⃓⃓
aij
aii

⃓⃓⃓⃓
.

With this notation inequality (4.18) yields

|x(k+1)
i − xi| ≤ αi∥x(k+1) − x∥∞ + βi∥x(k) − x∥∞

for i = 1, . . . , n. Let l be an index for which |x(k+1)
l − xl| = ∥x(k+1) − x∥∞. Then

∥x(k+1) − x∥∞ ≤ αl∥x(k+1) − x∥∞ + βl∥x(k) − x∥∞.

The matrix A is diagonally dominant, therefore, αl < 1, and so

∥x(k+1) − x∥∞ ≤
βl

1− αl

∥x(k) − x∥∞.

Hence we obtain

∥x(k) − x∥∞ ≤
(︃

max
l=1,...,n

βl

1− αl

)︃k

∥x(0) − x∥∞.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

98 4. Iterative Techniques for Solving Linear Systems

This guarantees that the Gauss–Seidel iteration is convergent, since the diagonal domi-
nance yields

βl

1− αl

≤ αl + βl < 1

for all l = 1, . . . , n, and so

max
l=1,...,n

βl

1− αl

≤ max
l=1,...,n

{αl + βl} = ∥TJ∥∞ < 1 (4.19)

follows. □

Estimate (4.19) yields that the error estimate of the Gauss–Seidel iteration is better
than that of for the Jacobi iteration. So, in general, the Gauss–Seidel iteration converges
faster for the case of a diagonally dominant coefficient matrix. In the general case the
Gauss–Seidel iteration is faster than the Jacobi iteration if ρ(TG) < ρ(TJ). But we do
not know a general condition in terms of the coefficient matrix A to check this relation.
We formulate one result below for a special case without proof.

Theorem 4.16 (Stein–Rosenberg). Suppose aij ≤ 0 if i ̸= j and aii > 0 for all
i = 1, . . . , n. Then exactly one of the statements holds:

1. 0 ≤ ρ(TG) < ρ(TJ) < 1,

2. 1 < ρ(TJ) < ρ(TG),

3. ρ(TJ) = ρ(TG) = 0,

4. ρ(TJ) = ρ(TG) = 1.

The theorem implies that for systems satisfying the conditions of the theorem the
Jacobi iteration is convergent if and only if the Gauss–Seidel iteration is convergent, and
the Gauss–Seidel iteration is faster. But in general we can find examples when the Jacobi
iteration converges faster than the Gauss–Seidel iteration.

Exercises

1. Solve the systems given in Exercise 1 of the previous section using Gauss–Seidel iteration.

2. Show that both the Jacobi and the Gauss–Seidel iteration determine the exact root of the
system in finitely many steps if A is upper triangular and aii ̸= 0 for i = 1, . . . , n.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

4.4. Error Bounds and Iterative Refinement 99

4.4. Error Bounds and Iterative Refinement

We can introduce stopping criteria for the Jacobi and the Gauss–Seidel iterations similar
to nonlinear iterations. As we defined in Section 2.8, we can use the following stopping
criteria or any combination of them:

(i) ∥x(k+1) − x(k)∥ < ε, (ii)
∥x(k+1) − x(k)∥
∥x(k+1)∥

< ε and (iii) ∥b−Ax(k)∥ < ε.

Condition (iii) is a natural analogue of condition (iii) of Section 2.8 used for nonlinear
equations. We investigate this criterion in this section.

The vector r := b−Ax̃ is called the residual vector of the approximate solution x̃ of
the linear system Ax = b. The stopping criterion (iii) relies on the hypothesis that if the
norm of r is small, then x̃ is a good approximation of the exact solution x. The following
example shows that this is not necessarily true in general.

Example 4.17. The exact solution of the linear system(︂
4 1
4.03 1

)︂(︂
x1
x2

)︂
=
(︂

5
5.03

)︂
(4.20)

is x = (1, 1)T . Consider x̃ = (2, −3)T as the “approximate” solution. The corresponding
residual vector is r = b −Ax̃ = (0, 0.03)T . Its infinity norm is ∥r∥∞ = 0.03, which is small,
but x̃ cannot be considered as a good approximation of the true solution. □

The next result gives conditions which imply that the smallness of the norm of ∥r∥
yields that the error of the approximation is also small.

Theorem 4.18. Let A be a nonsingular square matrix, x be the exact solution of the
system Ax = b, the vector x̃ is an approximate solution, and r := b−Ax̃. Then

∥x− x̃∥ ≤ ∥A−1∥∥r∥, (4.21)

and
∥x− x̃∥
∥x∥

≤ ∥A∥∥A−1∥ ∥r∥
∥b∥

. (4.22)

Proof. From the relations Ax = b and Ax̃ = b − r we have A(x − x̃) = r, and hence
x− x̃ = A−1r. This relation together with ∥A−1r∥ ≤ ∥A−1∥∥r∥ implies (4.21).

Estimates (4.21) and ∥b∥ ≤ ∥A∥∥x∥ yield

∥x− x̃∥
∥x∥

≤ ∥A∥∥A
−1∥∥r∥

∥A∥∥x∥
≤ ∥A∥∥A−1∥ ∥r∥

∥b∥
.

□

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

100 4. Iterative Techniques for Solving Linear Systems

The previous result answers our previous question: if the residual vector is small in
norm, then it implies the smallness of the error of the approximation only if the product
∥A∥∥A−1∥ is not too big. The number cond(A) := ∥A∥∥A−1∥ is called the condition
number of the matrix A relative to a norm ∥ · ∥. The condition number corresponding to
the ∥ · ∥p norm is denoted by condp(A). If a condition number of the matrix A is “big”,
then it is called ill-conditioned, otherwise it is called well-conditioned. It is not defined
exactly how big the condition number should be in order to call the matrix ill-conditioned.
In practice, if the condition number is bigger than 100–1000, then we say that the matrix
is ill-conditioned. Therefore, if the coefficient matrix is ill-conditioned then the stopping
criterion (iii) is not reliable.

Example 4.19. Consider the coefficient martix A of Example 4.17. We can check that

A−1 =
(︂ −33.33 33.33

143.3 −133.3
)︂
,

and so ∥A∥∞ = 5.03, ∥A−1∥∞ = 267.6. Therefore, cond∞(A) = 1346, and Theorem 4.18
explains why (2,−3)T is not a good approximation of the true solution despite the fact that r
is small in norm. □

Suppose we solve the linear system Ax = b with Gaussian elimination and t-digit
arithmetic. Let x̃ be the numerical solution, which, in general, has rounding error. We
compute the residual vector r = b − Ax̃, but using here 2t-digit arithmetic (double
precision) for the computation of r. It can be shown that

∥r∥ ≈ 10−t∥A∥∥x̃∥.
We can use this relation to estimate the condition number of A in the following way:
Consider the equationAy = r, and let ỹ be its numerical solution using t-digit arithmetic.
Note that the linear system Ay = r can be solved effectively if we store the lij factors and
the row changes used in the first Gaussian elimination, and now we do the elimination
steps only on the vector r. (In Section 5.1 below we will show an effective method for
solving several linear systems with the same coefficient matrix.) Then

ỹ ≈ A−1r = A−1(b−Ax̃) = A−1b− x̃ = x− x̃,

so ∥ỹ∥ is an estimate of the error ∥x− x̃∥, and
∥ỹ∥ ≈ ∥A−1r∥ ≤ ∥A−1∥∥r∥ ≈ ∥A−1∥∥A∥10−t∥x̃∥ = 10−tcond(A)∥x̃∥.

From this we get the formula

cond(A) ≈ 10t
∥ỹ∥
∥x̃∥

(4.23)

as an approximation of the condition number. Let r̃ := r−Aỹ be the residual vector of ỹ.
In general, ∥r̃∥ is much smaller than ∥r∥, therefore, if instead of x̃ we consider x̄ := x̃+ ỹ
as the approximation of x, then for the residual vector corresponding to x̄ we have

∥b−Ax̄∥ = ∥b−A(x̃+ ỹ)∥ = ∥r−Aỹ∥ = ∥r̃∥ ≪ ∥b−Ax̃∥,
i.e., x̄ is a much better approximation of x than x̃. If we repeat this procedure we get the
method of iterative refinement. This method gives a good approximation of the solution
in a few steps even for ill-conditioned coefficient matrices.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

4.4. Error Bounds and Iterative Refinement 101

Algorithm 4.20. Iterative refinement

INPUT: A, b
N - maximal iteration number
TOL - tolerance
t - number of digits of precision

OUTPUT:z - approximate solution
COND - estimate of cond∞(A)

We solve the system Ax = b with Gaussian elimination
for k = 1, 2, . . . , N do

We compute the residual vector r = b−Ax using double precision.
We solve Ay = r for y
z← x+ y
if k = 1 do

COND ← 10t ∥y∥∞∥x∥∞
output(COND)

end do
if ∥y∥∞ < TOL do

output(z)
stop

end do
x← z

end do
output(The maximal number of iteration is exceeded.)

Example 4.21. Consider again system (4.20). Its exact solution is x = (1, 1)T . Using Gaussian
elimination with 4-digit arithmetic we get the approximate solution x̃ = (0.9375, 1.2500)T . Its
residual vector is (with double precision): r = b−Ax̃ = (0, 0.001875)T , so ∥r∥∞ = 0.001875.

Solving Ay = r with Gaussian elimination (with 4-digit arithmetic) we get the approximate
solution ỹ = (0.0586, −0.2344)T . Hence (4.23) yields

cond∞(A) ≈ 104
∥ỹ∥∞
∥x̃∥∞

= 104
0.2344

1.25
= 1875. (4.24)

We have seen in Example 4.19 that cond∞(A) = 1346, so (4.24) is an approximation of the
condition number. The relative error of the approximate solution x̃ is

∥x− x̃∥∞
∥x∥∞

= 0.25,

which is relatively large (since A is ill-conditioned). Using Theorem 4.18 we get the error bound

∥x− x̃∥∞
∥x∥∞

≤ cond∞(A)
∥r∥∞
∥b∥∞

= 0.5017

for the relative error. Using one step of the iterative refinement we get the approximate solution
x(2) = x+ y = (0.9961, 1.016)T , which is close to the true solution. □

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

102 4. Iterative Techniques for Solving Linear Systems

Exercises

1. Compute the condition numbers cond∞ and cond1 of the following matrices:

(a)
(︂

1 2
4 −1

)︂
, (b)

(︄
1 0 2
2 1 0
1 −1 1

)︄

2. Estimate the condition number cond∞(A) for

A =

⎛⎝ 1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

⎞⎠ .

3. Using 4-digit arithmetic solve

0.009x1 − 0.52x2 = −5.191
9211x1 + 21.1x2 = 9422

with applying two steps of the iterative refinement. (The exact solution is: (1, 10).)

4.5. Perturbation of Linear Systems

Consider the linear system

Ax = b. (4.25)

Suppose that instead of (4.25) we solve the linear system

Ax̃ = b̃, (4.26)

where b̃ := b+∆b is a perturbation of b by ∆b. Its exact solution is denoted by x̃. The
next result gives a relation between the solutions of the two problems.

Theorem 4.22. Let A be a nonsingular square matrix, x and x̃ be solutions of the linear
systems (4.25) and (4.26), respectively. Then

∥x− x̃∥
∥x∥

≤ cond(A)
∥b− b̃∥
∥b∥

.

Proof. Subtracting (4.25) and (4.26) we getA(x−x̃) = b−b̃, hence x−x̃ = A−1(b−b̃),
therefore, ∥x−x̃∥ ≤ ∥A−1∥∥b−b̃∥. Using this and the inequality ∥b∥ = ∥Ax∥ ≤ ∥A∥∥x∥
it follows

∥x− x̃∥
∥x∥

≤ ∥A∥∥A
−1∥∥b− b̃∥
∥A∥∥x∥

≤ cond(A)
∥b− b̃∥
∥b∥

.

□

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

4.5. Perturbation of Linear Systems 103

The theorem says that one order of magnitude increase in cond(A) can result in one
order of magnitude increase in the relative error of the approximation, or in other words,
a loss of one significant digit in the approximation.

Now we consider the general case, when we perturb both the coefficient matrix and
the right-hand-side of the system. We consider the linear system

Ãx̃ = b̃, (4.27)

where ∥b− b̃∥ and ∥A− Ã∥ are “small”.

Theorem 4.23. Let A be a nonsingular square matrix, and Ã be such that ∥A− Ã∥ <
1/∥A−1∥. Let x and x̃ be the exact solutions of (4.25) and (4.27), respectively. Then

∥x− x̃∥
∥x∥

≤ cond(A)

1− cond(A)∥A−Ã∥
∥A∥

(︄
∥A− Ã∥
∥A∥

+
∥b− b̃∥
∥b∥

)︄
.

Proof. First consider the relation Ã = A − (A − Ã) = A(I − A−1(A − Ã)). Since
by our assumption ∥A−1(A− Ã)∥ ≤ ∥A−1∥∥A− Ã∥ < 1, Corollary 4.4 yields that Ã is
invertible, and

∥(Ã)−1∥ ≤ ∥(I−A−1(A− Ã))−1∥∥A−1∥

≤ ∥A−1∥
1− ∥A−1(A− Ã)∥

≤ ∥A−1∥
1− ∥A−1∥∥A− Ã∥

.

From equations (4.26) and (4.25) we get

x− x̃ = x− (Ã)−1b̃ = (Ã)−1(Ãx− b̃) = (Ã)−1(b− b̃− (A− Ã)x).

Therefore,

∥x− x̃∥ ≤ ∥A−1∥
1− ∥A−1∥∥A− Ã∥

(∥b− b̃∥+ ∥A− Ã∥∥x∥)

=
∥A∥∥A−1∥

1− ∥A−1∥∥A∥∥A−Ã∥
∥A∥

(︄
∥b− b̃∥
∥A∥

+
∥A− Ã∥
∥A∥

∥x∥

)︄
.

Dividing both sides by ∥x∥ and using relation ∥b∥ ≤ ∥A∥∥x∥ we get

∥x− x̃∥
∥x∥

≤ cond(A)

1− cond(A)∥A−Ã∥
∥A∥

(︄
∥b− b̃∥
∥A∥∥x∥

+
∥A− Ã∥
∥A∥

)︄

≤ cond(A)

1− cond(A)∥A−Ã∥
∥A∥

(︄
∥b− b̃∥
∥b∥

+
∥A− Ã∥
∥A∥

)︄
.

□

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

104 4. Iterative Techniques for Solving Linear Systems

The following properties of the condition number can be proved easily.

Theorem 4.24. Let ∥ · ∥ be a fixed matrix norm and cond(·) be the corresponding
condition number function. Then

1. cond(A) ≥ 1,

2. ρ(A)ρ(A−1) ≤ cond(A)

hold for all invertible matrices A.

The number cond∗(A) := ρ(A)ρ(A−1) is called the spectral condition number of the
matrix A. According to the previous result, the spectral condition number of a matrix
is always less than any other condition number. Its disadvantage is that it is difficult to
compute, since it requires the computation of eigenvalues of matrices.

We present the next result without proof.

Theorem 4.25 (Gastinel). Let ∥ · ∥ be a matrix norm, A be invertible. Then

1

cond(A)
= min

{︃
∥A−B∥
∥A∥

: B is singular

}︃
.

The theorem implies that if the condition number of A is big, then there is a singular
matrix close to A.

An example for an ill-conditioned matrix is the so-called Hilbert-matrix :

Hn =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1

2
1
3
· · · 1

n
1
2

1
3

1
4
· · · 1

n+1
1
3

1
4

1
5
· · · 1

n+2
...

...
1
n

1
n+1

1
n+2

· · · 1
2n−1

⎞⎟⎟⎟⎟⎟⎟⎠ .

In Table 4.3 we computed the spectral condition number of the Hilbert-matrix for several
values of n. We can observe that the spectral condition number (and hence all conditions
numbers) increase quickly as n increases.

Exercises

1. Compute the spectral condition number of the matrix(︂
1 4
2 −1

)︂
.

2. Prove Theorem 4.24.

3. Show that

cond∗(A) =
max{|λ1|, . . . , |λn|}
min{|λ1|, . . . , |λn|}

,

where λ1, . . . , λn are the eigenvalues of the matrix A.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

4.5. Perturbation of Linear Systems 105

Table 4.3: Spectral condition number of the Hilbert-matrix

n cond∗(Hn) n cond∗(Hn)

3 5.24 · 102 7 7.45 · 108
4 1.55 · 104 8 1.53 · 1010
5 4.77 · 105 9 4.93 · 1011
6 1.50 · 106 10 1.60 · 1013

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

Chapter 5

Matrix Factorization

We will investigate the matrix factorization problem: for a given square matrix A we
are looking for special matrices B and C such that A = BC. First we study the LU
factorization, and then the Cholesky factorization.

5.1. LU Factorization

Let A be an n × n matrix. The product A = LU is called LU factorization of A or
Doolittle’s method if L is lower triangular with all entries 1 in the main diagonal, and U
is upper triangular.

Theorem 5.1. Let A be a nonsingular square matrix. If the LU factorization of A
exists, then its is unique.

Proof. Suppose A = L1U1 = L2U2 are two LU factorizations of the matrix A. Since
det(A) = det(L1) det(U1) = det(L2) det(U2) ̸= 0, therefore, L1, L2, U1 and U2 are
nonsingular matrices. Hence L−1

2 L1 = U2U
−1
1 . Using Theorem 3.6, the matrix L−1

2 L1 is
lower triangular, and the matrix U2U

−1
1 is upper triangular. Therefore, both matrices

are diagonal. It is easy to see that the main diagonal of L−1
2 L1 consists of only 1 entry,

hence L−1
2 L1 = U2U

−1
1 = I, which implies that L1 = L2 and U1 = U2. □

Consider the definition of the Gaussian elimination introduced in Section 3.3. Let
li1 = ai1/a11, i = 2, 3, . . . , n, as in Section 3.3, and define the lower triangular matrix

L1 :=

⎛⎜⎜⎜⎝
1
−l21 1
−l31 1
...

. . .
−ln1 1

⎞⎟⎟⎟⎠ ,

where the missing elements are all equal to 0. It is easy to check whether the product L1A
gives the matrix A(1), the matrix obtained performing the first elimination step of the
Gaussian elimination on the coefficient matrix: A(1) = L1A. Similarly, let li2 = a

(1)
i2 /a

(1)
22 ,

i = 3, 4, . . . , n, and define the matrix

L2 :=

⎛⎜⎜⎜⎝
1

1
−l32 1
...

. . .
−ln2 1

⎞⎟⎟⎟⎠ ,

108 5. Matrix Factorization

where all elements in the main diagonal are 1, in the second column the elements under the
diagonal are −l32, −l42, . . ., −ln2, and all the other elements are 0. Then A(2) = L2A

(1)

holds. We define the lower triangular matrices L3, . . . ,Ln−1 in a similar manner. Simple
computation shows

Ln−1Ln−2 · · ·L1 =

⎛⎜⎜⎜⎝
1
−l21 1
−l31 −l32 1
...

...
.

−ln1 −ln2 · · · −ln,n−1 1

⎞⎟⎟⎟⎠ , (5.1)

and

L := (Ln−1Ln−2 · · ·L1)
−1

= L−1
1 · · ·L−1

n−2L
−1
n−1

=

⎛⎜⎜⎜⎝
1
l21 1
l31 0 1
... 0

.
ln1 0 · · · 0 1

⎞⎟⎟⎟⎠ · · ·
⎛⎜⎜⎜⎝

1
0 1
0 0 1

0
...

.
0 0 · · · ln,n−1 1

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
1
l21 1
l31 l32 1
...

...
.

ln1 ln2 · · · ln,n−1 1

⎞⎟⎟⎟⎠ . (5.2)

Let U := A(n−1), i.e., the upper triangular matrix which is the result of the Gaussian
elimination. Then U = Ln−1 · · ·L1A, which gives A = LU. We have proved the following
result.

Theorem 5.2. If the Gaussian elimination can be performed on a square matrix A, then
the LU factorization A = LU exists. Then U is the upper triangular matrix obtained by
the Gaussian elimination, and L is defined by (5.2), where lij denote the factors used in
the Gaussian elimination.

Example 5.3. Consider the coefficient matrix of Example 3.22:

A =

⎛⎝ 1 −2 −2 −2
2 −1 2 4
−1 2 3 −4
−2 1 4 −2

⎞⎠ .

As we saw in Example 3.22, the Gaussian elimination can be performed on A, and l21 = 2,
l31 = −1, l41 = −2, l32 = 0, l42 = −1 and l43 = 6. If we compute the LU factorization, then
we write down the Gaussian elimination so that the factors lij can be written in place of the

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

5.1. LU Factorization 109

elements which are eliminated (changed to 0):⎛⎝ 1 −2 −2 −2
2 −1 2 4
−1 2 3 −4
−2 1 4 −2

⎞⎠ ∼
⎛⎝ 1 −2 −2 −2

2 3 6 8
−1 0 1 −6
−2 −3 0 −6

⎞⎠ ∼
⎛⎝ 1 −2 −2 −2

2 3 6 8
−1 0 1 −6
−2 −1 6 2

⎞⎠ ∼
⎛⎝ 1 −2 −2 −2

2 3 6 8
−1 0 1 −6
−2 −1 6 38

⎞⎠ .

Now in the last matrix the elements in the main diagonal and above are the elements of the
matrix U, and the elements below the main diagonal are the entries of L. Therefore,⎛⎝ 1 −2 −2 −2

2 −1 2 4
−1 2 3 −4
−2 1 4 −2

⎞⎠ =

⎛⎝ 1 0 0 0
2 1 0 0
−1 0 1 0
−2 −1 6 1

⎞⎠⎛⎝ 1 −2 −2 −2
0 3 6 8
0 0 1 −6
0 0 0 38

⎞⎠ ,

which can be checked by performing the product. □

The following results can be proved easily.

Theorem 5.4. If all the principal minors of A are nonzero, then the Gaussian elim-
ination can be performed without row changes, and so the LU factorization A = LU
exists.

Theorem 5.5. For any invertible square matrix A there exists a permutation matrix P
such that the LU factorization PA = LU exists.

If an LU factorization A = LU is known, then we can solve linear systems with the
coefficient matrix A efficiently. Consider the system Ax = b. We introduce the new
variable y = Ux. Then the original system is equivalent to

Ly = b

Ux = y,

where both systems are triangular. We solve the first equation using a forward substitution
method for y, and then the second equation using the backward substitution method for
x. It is easy to check that n2 + O(n) number of multiplications/divisions are needed to
solve the two triangular systems, and to compute the LU factorization, n3/3 + O(n2)
number of multiplications/divisions are needed. It is especially efficient if we solve several
linear system with the same coefficient matrix.

Exercises

1. Compute the LU factorization of the following matrices:

(a)

⎛⎝ 2 3 −1
−1 −2 −1
0 2 4

⎞⎠ (b)

⎛⎝ 4 −1 2
−12 0 −1

8 −17 26

⎞⎠
(c)

⎛⎜⎜⎝
1 3 −1 2
−2 −4 5 −5
0 6 6 −2
2 4 −14 16

⎞⎟⎟⎠ (d)

⎛⎜⎜⎝
2 −1 3 −2
−8 5 −7 7
2 −4 −14 0
−4 7 23 4

⎞⎟⎟⎠

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

110 5. Matrix Factorization

2. Show that the matrix (︄
2 2 3
1 1 4
1 0 1

)︄
has no LU factorization.

3. Show that the matrix (︄
1 1 −1
2 2 2
3 3 −4

)︄
has infinitely many LU factorization. Do not we get a contradiction to Theorem 5.1?

4. Prove Theorem 5.4. (Hint: Use that during the elimination steps the principal minors of

A(k−1) and A(k) are equal. Why?)

5. Prove Theorem 5.5.

6. Solve the linear systems given in Exercise 1 of Section 3.3 using LU factorization.

5.2. Cholesky Factorization

Let A be a symmetric matrix. The factorization A = LLT of the matrix A, where L is
a lower triangular matrix, is called the Cholesky factorization.

We note that if the Cholesky factorization exists, it is not unique. The next theorem
formulates a sufficient condition for the existence of the Cholesky factorization.

Theorem 5.6. If A is positive definite, then the Cholesky factorization A = LLT exists,
the matrix L is real, and we can select positive elements in the main diagonal of L.

Proof. We prove the statement using mathematical induction with respect to the di-
mension of the matrix A. The statement is obvious for 1 × 1 matrices. Suppose the
statement of the theorem holds for (n − 1) × (n − 1) matrices, and let A be an n × n
matrix. We partition the matrix A in the following form:

A =

(︃
X y
yT ann

)︃
,

where X is an (n− 1)× (n− 1) matrix, y is an n− 1-dimensional column vector. Theo-
rem 3.10 yields that X is positive definite. We are looking for the Cholesky factorization
of A in the form

A =

(︃
X y
yT ann

)︃
=

(︃
L̃ 0
cT d

)︃(︃
L̃T c
0T d

)︃
. (5.3)

Here L̃ is an (n−1)×(n−1) dimensional lower triangular matrix, c is an n−1-dimensional
column vector, d ∈ R. If we perform the matrix multiplication on the partitioned matrices,
we get the relations

X = L̃L̃T , L̃c = y and cTc+ d2 = ann.

By the induction hypothesis the equation X = L̃L̃T has a lower triangular solution L̃ ∈
R(n−1)×(n−1), where in the main diagonal we can select positive elements. This yields

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

5.2. Cholesky Factorization 111

that L̃ is nonsingular, so the equation L̃c = y has a unique solution c. Let d be a
(possibly complex) root of the equation cTc + d2 = ann. Then relation (5.3) holds. d
can be selected to be a positive real if and only if d2 = ann − cTc > 0. Relation (5.3)
implies det(A) = det(L̃)2d2. Since A is positive definite, it follows det(A) > 0 (see
Theorem 3.10). This yields that d2 is positive, hence d can be selected to be a positive
real. □

Example 5.7. Find the Cholesky factorization of the matrix(︄
4 −8 4
−8 17 −11
4 −11 22

)︄
.

We write (︄
4 −8 4
−8 17 −11
4 −11 22

)︄
=

(︄
l11 0 0
l21 l22 0
l31 l32 l33

)︄(︄
l11 l21 l31
0 l22 l32
0 0 l33

)︄
We consider first the equation for the first row first element: 4 = l211. This can be solved for l11:
the positive solution is l11 = 2. Then we consider the elements under the main diagonal of the
first column: −8 = l21l11, 4 = l31l11. These can be solved uniquely for l21 and l31: l21 = −4,
l31 = 2. Now we consider the element of the main diagonal of the second column: 17 = l221+ l222.
Its positive solution is l22 = 1. Then look at the element in the second column under the main
diagonal: −11 = l31l21+ l32l22. This can be solved as l32 = −3. Finally, the element in the third
row and third column is 22 = l231 + l232 + l233. This gives l33 = 3. We have then(︄

4 −8 4
−8 17 −11
4 −11 22

)︄
=

(︄
2 0 0
−4 1 0
2 −3 3

)︄(︄
2 −4 2
0 1 −3
0 0 3

)︄
.

□

We can generalize the method of the previous example:

Algorithm 5.8. Cholesky factorization

INPUT: A
OUTPUT:L

l11 ←
√
a11

for i = 2, . . . , n do
li1 ← ai1/l11

end do
for j = 2, . . . , n− 1 do

ljj ←
√︂

ajj −
∑︁j−1

k=1 l
2
jk

for i = j + 1, . . . , n do

lij ←
(︂
aij −

∑︁j−1
k=1 likljk

)︂
/ljj

end do
end do

lnn ←
√︂

ann −
∑︁n−1

k=1 l
2
nk

output(lij, i = 1, . . . , n, j = 1, . . . , i)

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

112 5. Matrix Factorization

The operation count of Algorithm 5.8 is n3/6+n2/2−2n/3 number of multiplications
and divisions, and n3/6 − n/6 number of additions and subtractions, and n number of
square roots.

Exercises

1. Compute the Cholesky factorization of the following matrices:

(a)

⎛⎝ 16 −8 −12
−8 8 4

−12 4 35

⎞⎠ , (b)

⎛⎝ 4 −2 −4
−2 26 7

−4 7 6

⎞⎠ ,

(c)

⎛⎜⎜⎝
1 −1 −2 1

−1 10 2 2

−2 2 29 8

1 2 8 7

⎞⎟⎟⎠ , (d)

⎛⎜⎜⎝
16 −8 0 −4
−8 5 1 3

0 1 10 −5
−4 3 −5 7

⎞⎟⎟⎠ .

2. Give an example for a matrix for which the Cholesky factorization is not unique.

3. Show that the matrix (︂
0 1
1 0

)︂
has no Cholesky factorization.

4. Prove that the operation count of Algorithm 5.8 is n3/6 + n2/2 − 2n/3 number of mul-
tiplications and divisions, and n3/6 − n/6 number of additions and subtractions, and n
number of square roots.

5. Show without using Theorem 3.10 that the matrix X in the proof of Theorem 5.6 is
positive definite.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

Chapter 6

Interpolation

Given pairwise different points x0, x1, . . ., xn ∈ [a, b], the so-called mesh points or
node points, and corresponding function values y0, y1, . . ., yn. The basic problem of
interpolation is to find a function g from a certain class of functions which interpolates
the given data, i.e., satisfies relations

g(xi) = yi, i = 0, 1, . . . , n.

The geometrical meaning of the problem is to find a function g of given property whose
graph goes through the points (xi, yi) for all i = 0, 1, . . . , n.

In this chapter we first study the case when g is assumed to be a polynomial of certain
order. This problem is called Lagrange interpolation. In Section 6.4 we consider a more
general problem, the Hermite interpolation, when we interpolate not only function values
but also derivative values. Finally, we discuss the spline interpolation.

6.1. Lagrange Interpolation

Suppose we want to interpolate given data using a polynomial of degree m of the form
g(x) = c0 + c1x+ c2x

2 + · · ·+ cmx
m. This formula contains m+ 1 number of parameters.

In the basic problem of interpolation the conditions define n+ 1 number of equations. It
is natural to expect that the problem has a unique solution if m = n. We reformulate the
problem: We are looking for a polynomial Ln of degree at most n which satisfies

Ln(xi) = yi, i = 0, 1, . . . , n. (6.1)

This problem is called Lagrange interpolation. We show that this problem has a unique
solution. The solution Ln of this problem is called Lagrange interpolating polynomial, or
shortly, Lagrange polynomial. The proof for the existence is easy: we give its formula
explicitly. For k = 0, 1, . . . , n we define the polynomial of degree n by

lk(x) :=
(x− x0)(x− x1) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
. (6.2)

The polynomials l0, . . . , ln are called Lagrange basis polynomials of degree n. It follows
from the definition that

lk(xi) =
{︂

1, if k = i,
0, if k ̸= i.

114 6. Interpolation

It follows that the polynomial

Ln(x) :=
n∑︂

k=0

yklk(x)

is of degree at most n, and it solves the Lagrange interpolation problem (6.1).
Now we show that the Lagrange interpolation problem (6.1) has a unique solution.

Suppose Ln and L̃n are polynomials of degree at most n, and both are solutions of problem
(6.1). We define the function P (x) := Ln(x)− L̃n(x). Then P is a polynomial of degree
at most n, and P (xi) = 0 for all i = 0, 1, . . . , n, i.e., P has n+1 different roots. But then
the Fundamental theorem of algebra yields that P is identically equal to 0, i.e., Ln = L̃n.
We have proved the following theorem.

Theorem 6.1. The Lagrange interpolating problem has a unique solution which can be
given by

Ln(x) =
n∑︂

k=0

yk
(x− x0)(x− x1) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
. (6.3)

Example 6.2. Consider the given data

xi -1 1 2 3

yi -3 1 3 29

Find the Lagrange polynomial which interpolates the data above. Since four data points are
given, the Lagrange polynomial is of degree at most three. Using formula (6.3) we get

L3(x) = − 3
(x− 1)(x− 2)(x− 3)

(−1− 1)(−1− 2)(−1− 3)
+

(x+ 1)(x− 2)(x− 3)

(1 + 1)(1− 2)(1− 3)

+ 3
(x+ 1)(x− 1)(x− 3)

(2 + 1)(2− 1)(2− 3)
+ 29

(x+ 1)(x− 1)(x− 2)

(3 + 1)(3− 1)(3− 2)

= 3x3 − 6x2 − x+ 5.
□

The values yi associated to mesh points xi can be considered, in general, as values of a
function f at the mesh points, i.e., yi = f(xi). For example, f can be a physical quantity
which is measured at finitely many points. Or f can be a solution of a mathematical model
which we solve by a numerical method, so the value of f can be computed in finitely many
points, and the obtained results are numerical approximations of the solution of the model.
Or f can be a function with a known formula, but its computation requires too many
arithmetic operations, so we compute it exactly only at a few points. In all these cases
we would possibly like to evaluate the function f at a point x which is not a mesh point.
It is common to compute an interpolation polynomial Ln associated to the given data,
and we use Ln(x) as an approximation of the function value f(x). If x is located outside
the interval determined by the mesh points, we speak about extrapolation. We use the
terminology interpolation if x is located between two mesh points.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

6.1. Lagrange Interpolation 115

Example 6.3. Consider the function f(x) = cosx on the interval [−π, π]. Using the mesh
points π, 0 and π, and the points −π, −π/2, 0, π/2 and π we have computed the associated
Lagrange interpolating polynomials L2 and L4. The polynomials and the graph of the function
f can be seen in Figure 6.1. We can observe that in the case of 5 mesh points we get a better
approximation of f than using only 3 mesh points. It is also clear from the figure that outside
the interval [−π, π] the Lagrange polynomials are not close to the function f . □

−4 −3 −2 −1 0 1 2 3 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

cos x

L
4
(x)

L
2
(x)

Figure 6.1: Lagrange interpolation of the function cosx using the mesh points −π, 0, π
and the mesh points −π,−π/2, 0, π/2, π, respectively

For the proof of Theorem 6.5 below we will need the following result.

Theorem 6.4 (Generalized Rolle’s Theorem). Let f ∈ Cn[a, b], a ≤ x0 < x1 · · · <
xn ≤ b, and suppose f(x0) = f(x1) = · · · = f(xn) = 0. Then there exists ξ ∈ (x0, xn)
such that f (n)(ξ) = 0.

Proof. Using the assumptions f(x0) = f(x1) = 0, Rolle’s Theorem (Theorem 2.3) yields
that there exists η1 ∈ (x0, x1) such that f ′(η1) = 0. Similarly, using Rolle’s Theorem
for the intervals [x1, x2], . . ., [xn−1, xn] we get that there exist numbers η2 ∈ (x1, x2),
. . ., ηn ∈ (xn−1, xn) such that f ′(η2) = · · · = f ′(ηn) = 0. Consider then the intervals
[η1, η2], . . ., [ηn−1, ηn]. Since at the end points of the intervals we have f ′(ηi) = 0, Rolle’s
Theorem implies that there exist numbers θ2 ∈ (η1, η2), . . ., θn ∈ (ηn−1, ηn) for which
f ′′(θ2) = · · · = f ′′(θn) = 0. Applying again Rolle’s Theorem we get that the third
derivative of f has zeros at n − 2 points, the fourth derivative of f vanishes at n − 3
points, etc., f (n) is zero at a point ξ. □

Theorem 6.5. Let f ∈ Cn+1[a, b], xi ∈ [a, b] (i = 0, . . . , n) be pairwise distinct mesh
points and yi = f(xi) (i = 0, . . . , n). Let Ln(x) be the corresponding Lagrange interpolat-
ing polynomial. Then for every x ∈ [a, b] there exists ξ = ξ(x) ∈ ⟨x, x0, x1, . . . , xn⟩ such
that

f(x) = Ln(x) +
f (n+1)(ξ)

(n+ 1)!
(x− x0)(x− x1) · · · (x− xn).

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

116 6. Interpolation

Proof. If x = xi for some i, then the statement is obviously satisfied. Fix a number
x ∈ (a, b) such that x ̸= xi for all i = 0, . . . , n, and consider the function

g(t) := f(t)− Ln(t)−
(t− x0) · · · (t− xn)

(x− x0) · · · (x− xn)
(f(x)− Ln(x)).

Clearly, g ∈ Cn+1, and g(x) = g(x0) = g(x1) = · · · = g(xn) = 0. Then the generalized
Rolle’s Theorem (Theorem 6.4) yields that there exists a number ξ ∈ ⟨x, x0, . . . , xn⟩ such
that g(n+1)(ξ) = 0. Since Ln is a polynomial of degree at most n, its (n + 1)-st order
derivative is identically 0, so

g(n+1)(t) = f (n+1)(t)− (n+ 1)!

(x− x0) · · · (x− xn)
(f(x)− Ln(x)).

This gives the statement with t = ξ. □

Now we consider the case when the mesh points are equidistant, i.e., xi = x0 + ih.
Theorem 6.5 yields that the truncation error of the interpolation can be estimated by

|f(x)− Ln(x)| ≤
Mn+1

(n+ 1)!
|(x− x0) · · · (x− xn)|, (6.4)

where Mn+1 = sup{|f (n+1)(t)| : t ∈ [x0, xn]}. Suppose x ∈ (xk, xk+1) for some 0 ≤ k < n.
Then we have

|(x− xk)(x− xk+1)| ≤
h2

4
,

and so

n∏︂
i=0

|x− xi| ≤
h2

4

k−1∏︂
i=0

(x− xi)
n∏︂

i=k+2

(xi − x)

≤ h2

4

k−1∏︂
i=0

(xk+1 − xi)
n∏︂

i=k+2

(xi − xk)

=
hn+1

4

k−1∏︂
i=0

(k + 1− i)
n∏︂

i=k+2

(i− k)

=
hn+1

4
(k + 1)!(n− k)!

≤ hn+1

4
n!

(See Exercise 4.) This and (6.4) imply the next result.

Theorem 6.6. Let f ∈ Cn+1[a, b], xi = a + i(b − a)/n (i = 0, . . . , n) and yi = f(xi)
(i = 0, . . . , n). Let x ∈ [a, b]. Then

|f(x)− Ln(x)| ≤
Mn+1

4(n+ 1)

(︃
b− a

n

)︃n+1

,

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

6.1. Lagrange Interpolation 117

where Mn+1 := sup{|f (n+1)(x)| : x ∈ [a, b]}.

Example 6.7. Consider again Example 6.3. According to the previous theorem it follows for
x ∈ [−π, π]

|f(x)− L2(x)| ≤
1

12
π3 ≈ 2.5839 and |f(x)− L4(x)| ≤

1

20

(︂π
2

)︂5
≈ 0.4782.

Certainly, Theorem 6.6 gives an upper estimate of the truncation error. Figure 6.1 shows that
the actual error can be significantly smaller. □

The next result will be used in Chapter 7. We state the theorem without giving its
proof.

Theorem 6.8. Suppose f ∈ Cn+2[a, b], a = x0 < · · · < xn = b, and let

f (n+1)(ξ(x))

(n+ 1)!
(x− x0) · · · (x− xn)

be the truncation error of the Lagrange interpolation of degree n. Then the function
x ↦→ f (n+1)(ξ(x)) can be extended continuously for x = xi, and it is differentiable for all
x ̸= xi, and

d

dx
f (n+1)(ξ(x)) =

1

n+ 2
f (n+2)(η(x)),

where η(x) ∈ ⟨x0, . . . , xn, x⟩, moreover,
d

dx
f (n+1)(ξ(x)) can be extended continuously for

x = xi (i = 0, 1, . . . , n).

Newt we discuss the problem of interpolation for functions of two variables. We
consider only the easiest case, we assume the function f is defined on a rectangular
domain. Let f : [a, b] × [c, d] → R, and consider the division of the intervals [a, b] and
[c, d] by a = x0 < x1 < . . . < xn = b and c = y0 < y1 < . . . < ym = d. Let zij = f(xi, yj),
i = 0, . . . , n, j = 0, . . . ,m. We define the following two-variable polynomial to interpolate
the given data:

Ln,m(x, y) :=
n∑︂

i=0

m∑︂
j=0

zijli(x)l̃j(y), (6.5)

where li and l̃j are the Lagrange basis polynomials of degree n and m, respectively,
corresponding to the mesh points a = x0 < x1 < . . . < xn = b and c = y0 < y1 <
. . . < ym = d defined by (6.2). The function Ln,m satisfies Ln,m(xi, yj) = zij for all i, j.
If x is fixed, then Ln,m(x, ·) is a polynomial of degree at most m. Conversely, if y is
fixed, then Ln,m(·, y) is a polynomial of degree at most n. The problem above is called
two-dimensional Lagrange interpolation or bivariate Lagrange interpolation or Lagrange
interpolation of two variables.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

118 6. Interpolation

Example 6.9. Consider the following given function values:

(xi, yj) (0, 0) (1, 0) (2, 0) (0, 2) (1, 2) (2, 2)

zij 2 -1 1 1 0 2

Applying formula (6.5) we get the two-variable polynomial

L2,1(x, y) = 2
(x− 1)(x− 2)

(0− 1)(0− 2)

y − 2

0− 2
− x(x− 2)

1(1− 2)

y − 2

0− 2
+

x(x− 1)

2(2− 1)

y − 2

0− 2

+
(x− 1)(x− 2)

(0− 1)(0− 2)

y

2
+ 0

x(x− 2)

1(1− 2)

y

2
+ 2

x(x− 1)

2(2− 1)

y

2

= − 1

2
x2y +

5

2
x2 +

3

2
xy − 11

2
x− 1

2
y + 2.

This is of second order in x, and first order in y. The graph of the polynomial can be seen in
Figure 6.2. □

0

0.5

1

1.5

2 0

0.5

1

1.5

2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y
x

Figure 6.2: Bivariate Lagrange interpolation

Exercises

1. Compute and plot the graph of the Lagrange polynomials corresponding to the following
data, and find the value of the Lagrange polynomial at x = 1:

(a)
xi -1 0 2 4

yi 3 -2 4 -2

(b)
xi 0.1 0.4 1.3 2.5 2.8

yi 1.2 0.2 -2.2 3.1 1.3

(c)
xi -0.5 0.0 1.5 2.0 3.0 3.5

yi -0.5 1.5 3.5 2.0 2.5 6.5

2. Show, without giving the formula of the Lagrange polynomial, that the system (6.1) has
a unique solution.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

6.2. Divided Differences 119

3. Let li(x) (i = 0, 1, . . . , n) be defined by (6.2). Show that for all x

n∑︂
i=0

li(x) = 1.

4. Prove that (k + 1)!(n− k)! ≤ n! for all k = 0, 1, . . . , n− 1.

5. What is the smallest positive integer n for which the function cosx can be approximated
by the Lagrange polynomial Ln(x) for all x ∈ [−π, π] with an error smaller than 0.001,
assuming we use equidistant mesh points on the interval [−π, π]?

6. Give the two-dimensional Lagrange interpolating polynomial L2,2 corresponding to the
given data:

(xi, yj) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

zij 3 1 0 2 -1 0 2 3 1

6.2. Divided Differences

Given a function f : [a, b]→ R and pairwise different mesh points xi ∈ [a, b] (i = 0, . . . , n).
Then the zeroth divided difference of the function f at the point x0 is defined by f [x0] :=
f(x0). The first divided difference of the function f at the points x0, x1 is the number

f [x0, x1] :=
f [x1]− f [x0]

x1 − x0

,

(i.e., f [x0, x1] = f(x1)−f(x0)
x1−x0

). In general, the nth divided difference of the function f
relative to the points x0, x1, . . . , xn is defined by

f [x0, x1, . . . , xn] :=
f [x1, x2, . . . , xn]− f [x0, x1, . . . , xn−1]

xn − x0

.

We note that we have not assumed the mesh points are ordered increasingly.

Theorem 6.10. Let xi (i = 0, 1, . . . , n) be pairwise different mesh points. Then

f [x0, x1, . . . , xn] =
n∑︂

i=0

f(xi)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
.

Proof. We prove the statement using mathematical induction with respect to n. For
n = 0 the statement is obvious. (In this case in the denominator we have the “empty
product”, which, by definition, equals to 1.) Suppose the statement holds for n, and
consider the (n+1)-st divided difference f [x0, x1, . . . , xn+1]. The definition of the divided

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

120 6. Interpolation

difference, the inductive hypothesis and some calculations yield

f [x0, x1, . . . , xn+1] =
f [x1, x2, . . . , xn+1]− f [x0, x1, . . . , xn]

xn+1 − x0

=
1

xn+1 − x0

{︃n+1∑︂
i=1

f(xi)

(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn+1)

−
n∑︂

i=0

f(xi)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)

}︃
=

1

xn+1 − x0

{︃
f(xn+1)

(xn+1 − x1) · · · (xn+1 − xn)
− f(x0)

(x0 − x1) · · · (x0 − xn)

+
n∑︂

i=1

f(xi)

(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)

·
(︃

1

xi − xn+1

− 1

xi − x0

)︃}︃
=

n+1∑︂
i=0

f(xi)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn+1)
,

which proves the statement. □

The previous result has some immediate consequences.

Corollary 6.11. The divided differences are independent of the order of the mesh points.

Corollary 6.12. If the function f is continuous, then the divided differences depend
continuously on the mesh points.

Suppose f is differentiable. Then the function x1 ↦→ f [x0, x1] is continuous for x1 ̸=
x0. Now compute the limit limx1→x0 f [x0, x1]. Using the definition of the first divided
difference and the differentiability of the function we get

lim
x1→x0

f [x0, x1] = lim
x1→x0

f(x1)− f(x0)

x1 − x0

= f ′(x0).

Therefore, we define the first divided difference relative to equal mesh points by

f [x0, x0] := f ′(x0).

With this definition the function x1 ↦→ f [x0, x1] is extended continuously for x1 = x0.
Higher order divided differences with equal mesh points will be defined in Exercises 6 and
7 of the next section.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

6.3. Newton’s Divided Difference Formula 121

Exercises

1. Compute the following divided differences:

(a) f [x0, x1, x2, x3], where xi = i, f(x) = x2,

(b) f [x0, x1, x2], where xi = 0.2i, f(x) = sinx,

(c) f [x0, x0], where x0 = 0, f(x) = sinx.

2. Let f ∈ C1[a, b], and x0, x1 ∈ (a, b), x0 ̸= x1. Show that there exists ξ ∈ ⟨x0, x1⟩ such that

f [x0, x1] = f ′(ξ).

3. Let x0 < x1 < x2 < x3 and

P (x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + a3(x− x0)(x− x1)(x− x2).

Show that

a0 = P [x0], a1 = P [x0, x1], a2 = P [x0, x1, x2], and a3 = P [x0, x1, x2, x3].

6.3. Newton’s Divided Difference Formula

The disadvantage of formula (6.3) is that if we add an additional mesh point, then the
whole formula (6.3) must be recomputed. In this section we define a new formula for the
Lagrange polynomial, and in this form it will be easy to add a new mesh point to the
formula.

Suppose function values yi = f(xi) are given for i = 0, 1, . . . , n. First consider the
relation

Ln(x) = L0(x) + (L1(x)− L0(x)) + (L2(x)− L1(x)) + · · ·+ (Ln(x)− Ln−1(x)).

By definition, L0(x) = f(x0). Consider the difference Li(x)− Li−1(x). It is a polynomial
of degree at most i, and since Li and Li−1 both satisfy the interpolating equations at x0,
. . ., xi−1, we have Li(xj) − Li−1(xj) = f(xj) − f(xj) = 0 (j = 0, 1, . . . , i − 1). But then
the Fundamental Theorem of Algebra yields

Li(x)− Li−1(x) = ai(x− x0)(x− x1) · · · (x− xi−1),

where ai ∈ R. If we substitute x = xi into this relation and use for Li−1(xi) the formula
(6.3), we get

f(xi)−
i−1∑︂
k=0

f(xk)
(xi − x0) · · · (xi − xk−1)(xi − xk+1) · · · (xi − xi−1)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xi−1)

= ai(xi − x0) · · · (xi − xi−1).

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

122 6. Interpolation

So from this we get for ai that

ai =
f(xi)

(xi − x0) · · · (xi − xi−1)
− 1

(xi − x0) · · · (xi − xi−1)

·
i−1∑︂
k=0

f(xk)
(xi − x0) · · · (xi − xk−1)(xi − xk+1) · · · (xi − xi−1)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xi−1)

=
i∑︂

k=0

f(xk)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xi)

= f [x0, x1, . . . , xi].

Therefore, the Lagrange interpolating polynomial can be written as

Ln(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1) + · · ·
+ f [x0, x1, . . . , xn](x− x0)(x− x1) · · · (x− xn−1). (6.6)

We have to emphasize that this is the same polynomial as (6.3), only it is given by a
different formula. The polynomial given by (6.6) is called Newton’s divided difference
formula or shortly Newton polynomial.

The advantage of formula (6.6) compared to (6.3) can be seen immediately. It is easy
to add a new mesh point to the formula, we have the simple correction term:

Ln+1(x) = Ln(x) + f [x0, x1, . . . , xn+1](x− x0) · · · (x− xn).

Another advantage is that a polynomial of the form (6.6) can be easily evaluated using the
Horner’s method. Furthermore, the degree of the polynomial can be determined in this
form easily. If, for example, f [x0, x1, . . . , xn] ̸= 0, then the polynomial is of degree n. In
Algorithm 6.13 we present the computation of the coefficients of the Newton polynomial,
i.e., the values ai = f [x0, . . . , xi]. In Algorithm 6.14 we formulate a method to evaluate
the Newton polynomial using Horner’s method.

Algorithm 6.13. Computation of the coefficients of the Newton polynomial

INPUT: n - number of mesh points − 1
xi, (i = 0, 1, . . . , n) - mesh points
yi, (i = 0, 1, . . . , n) - function values

OUTPUT: ai, (i = 0, 1, . . . , n) - coefficients of the Newton polynomial, where ai
is the coefficient of the ith-order term

for i = 0, 1, . . . , n do
ai ← yi

end do
for j = 1, 2, . . . , n do

for i = n, n− 1, . . . , j do
ai ← (ai − ai−1)/(xi − xi−j)

end do
end do
output(a0, a1, . . . , an)

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

6.3. Newton’s Divided Difference Formula 123

Note that Algorithm 6.13 was organized so that only those divided differences are
stored by the end of the algorithm which are needed for the Newton polynomial.

Algorithm 6.14. Evaluation of the Newton polynomial

INPUT: n - number of mesh points − 1
xi, (i = 0, 1, . . . , n) - mesh points
ai, (i = 0, 1, . . . , n) - coefficients of the Newton polynomial
x - the value where we evaluate the Newton polynomial

OUTPUT: y - function value of the Newton polynomial at x

y ← an
for i = n− 1, n− 2, . . . , 0 do

y ← y(x− xi) + ai
end do
output(y)

When we do the computation of the divided differences by hand, it is recommended to
list the values of the divided differences in a triangular table as it can be seen in Table 6.1.
The numbers in the first two columns are the input data, the rest of the numbers must
be computed: a number is obtained so that we take the difference of the number to the
left and above, and it is divided by the difference of the appropriate mesh points xk.
The numbers in frames in the diagonal of the table give the coefficients of the Newton
polynomial in (6.6).

Table 6.1: Computation of the divided differences by hand

x0 f(x0)

x1 f(x1) f [x0, x1]

x2 f(x2) f [x1, x2] f [x0, x1, x2]

x3 f(x3) f [x2, x3] f [x1, x2, x3]
. . .

...
...

...
...

xn f(xn) f [xn−1, xn] f [xn−2, xn−1, xn] · · · f [x0, x1, . . . , xn]

Example 6.15. Consider again Example 6.2. We compute L3(x) in Newton’s divided difference
form, and we evaluate L3(0). First we compute the table of divided differences:

−1 −3
1 1 2
2 3 2 0
3 29 26 12 3

This yields that
L3(x) = −3 + 2(x+ 1) + 3(x+ 1)(x− 1)(x− 2),

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

124 6. Interpolation

and so L3(0) = −3 + 2 · 1 + 3 · 1(−1)(−2) = 5. We can simplify this formula of L3 and we get
the same form of the polynomial as in Example 6.2: L3(x) = 3x3 − 6x2 − x+ 5.

□

Next we study again the truncation error of the interpolation. In Section 6.1 we

obtained that it has the form f (n+1)(ξ)
(n+1)!

(x − x0)(x − x1) · · · (x − xn). This is certainly the
same for the Newton’s divided difference form of the interpolating polynomial, but here
we give a different form of the same truncation error.

Theorem 6.16. Let xi ∈ (a, b) (i = 0, . . . , n) be pairwise different mesh points and
yi = f(xi) (i = 0, . . . , n). Let Ln(x) be the corresponding nth degree Lagrange interpolating
polynomial. Then

f(x) = Ln(x) + f [x0, x1, . . . , xn, x](x− x0)(x− x1) · · · (x− xn).

Proof. Fix x ∈ (a, b) which is different from each mesh points. (If x = xi for some i, then
the statement is clearly true.) Add x to the mesh points together with the function value
f(x). Let Ln+1 be the Lagrange interpolating polynomial corresponding to the extended
data set. Then we have

Ln+1(t) = Ln(t) + f [x0, x1, . . . , xn, x](t− x0) · · · (t− xn).

Now substitution t = x proves the statement, since f(x) = Ln+1(x). □

This form of the truncation error has no practical importance, since in order to com-
pute f [x0, . . . , xn, x] the exact value of f(x) is needed. But its consequence is important.
Comparing it to Theorem 6.5 we get the following result.

Corollary 6.17. If f ∈ Cn[a, b] and xi (i = 0, . . . , n) are pairwise different mesh points,
then there exists ξ ∈ ⟨x0, x1, . . . , xn⟩ such that

f [x0, x1, . . . , xn] =
1

n!
f (n)(ξ).

Exercises

1. Repeat Exercise 1 of Section 6.1 using the Newton’s divided difference form of the Lagrange
interpolating polynomial.

2. Show that if P is a polynomial of degree n, then

P (x) =

n∑︂
i=0

P [x0, . . . , xi]
i−1∏︂
k=0

(x− xk).

3. Let x0, . . . , xn be pairwise different numbers. Show that if P is a polynomial of degree n,
then P [x0, . . . , xm] = 0 for all m > n.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

6.4. Hermite Interpolation 125

4. Prove that if f(x) = c0 + c1x+ · · ·+ cnx
n, then cn = f [x0, x1, . . . , xn].

5. Prove that

f [x0, x1, . . . , xn] =

⃓⃓⃓⃓
⃓⃓⃓⃓ 1 x0 x20 · · · xn−1

0 f(x0)
1 x1 x21 · · · xn−1

1 f(x1)
...

...
...

...
...

1 xn x2n · · · xn−1
n f(xn)

⃓⃓⃓⃓
⃓⃓⃓⃓

⃓⃓⃓⃓
⃓⃓⃓⃓ 1 x0 x20 · · · xn−1

0 xn0
1 x1 x21 · · · xn−1

1 xn1
...

...
...

...
...

1 xn x2n · · · xn−1
n xnn

⃓⃓⃓⃓
⃓⃓⃓⃓

.

6. Show that

lim
(x1,x2,...,xn)→(x0,x0...,x0)

f [x0, x1, . . . , xn] =
f (n)(x0)

n!
.

(Hint: Use Corollary 6.17.)

7. Let f ∈ C2. Define the following divided differences:

f [x0, x0, x1] := lim
x2→x0

f [x0, x2, x1], f [x0, x1, x0] := lim
x2→x0

f [x0, x1, x2],

and

f [x1, x0, x0] := lim
x2→x0

f [x1, x0, x2], f [x0, x0, x0] =
f ′′(x0)

2
.

Show that the limits above exist, and the second divided differences satisfy:

(a) f [x0, x0, x1] =
f [x0, x1]− f [x0, x0]

x1 − x0
,

(b) f [x1, x0, x0] =
f [x0, x0]− f [x1, x0]

x0 − x1
,

(c) f [x0, x0, x1] = f [x0, x1, x0] = f [x1, x0, x0],

(d) lim
(x1,x2)→(x0,x0)

f [x0, x1, x2] = f [x0, x0, x0],

(e) There exists ξ ∈ ⟨x0, x1⟩ such that f [x0, x0, x1] = f ′′(ξ)/2.

8. Check that Algorithm 6.13 gives back the coefficients of the Newton polynomial.

6.4. Hermite Interpolation

In this section we generalize the basic problem of interpolation. Let f be a differentiable
function, and given mesh points xi (i = 0, . . . , n). The so-called Hermite interpolation
asks to find a polynomial g(x) = c0 + c1x + · · · + cmx

m which interpolates not only the
function values yi = f(xi), but also the derivative values y′i := f ′(xi). Therefore, we are
looking for a polynomial g of degree m which satisfies the interpolation conditions

g(xi) = yi, g′(xi) = y′i, i = 0, 1, . . . , n.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

126 6. Interpolation

The geometrical meaning of this problem is that the graph of g goes through the given
points (xi, yi) in a way that the tangent line of the graph at xi has a slope equal to the value
y′i. In the formula of the polynomial g there are m+ 1 parameters, and the interpolation
conditions specify 2(n + 1) conditions. So we expect that the Hermite interpolation
problem has a unique solution in the class of polynomials with degree at most m = 2n+1.
The next theorem will prove this result. The solution of the Hermite interpolation problem
is called Hermite interpolating polynomial or shortly Hermite polynomial , and it is denoted
by H2n+1.

In the next theorem we will use higher order divided differences where two consecu-
tive mesh points can be equal: f [x0, x0, x1, x1, . . . , xn, xn], where x0, . . . , xn are pairwise
different mesh points. Its definition is the usual recursion:

f [x0, x0, x1, x1, . . . , xn, xn] =
f [x0, x1, x1, . . . , xn, xn]− f [x0, x0, x1, x1, . . . , xn]

xn − x0

.

The divided difference with lower orders are defined in a similar manner until we get
first divided differences with different or equal mesh points. Both are already defined in
Section 6.2.

Theorem 6.18. The Hermite interpolation problem has a unique solution in the class
of polynomials with degree at most (2n+ 1), which is given by

H2n+1(x) = f [x0] + f [x0, x0](x− x0) + f [x0, x0, x1](x− x0)
2

+ f [x0, x0, x1, x1](x− x0)
2(x− x1) + f [x0, x0, x1, x1, x2](x− x0)

2(x− x1)
2

+ f [x0, x0, x1, x1, x2, x2](x− x0)
2(x− x1)

2(x− x2) + · · · (6.7)

+ f [x0, x0, x1, x1, . . . , xn, xn](x− x0)
2(x− x1)

2 · · · (x− xn−1)
2(x− xn).

Moreover, the truncation error is

f(x)−H2n+1(x) = f [x0, x0, . . . , xn, xn, x](x− x0)
2 · · · (x− xn)

2. (6.8)

Proof. First we discuss the uniqueness of the Hermite polynomial. Suppose H2n+1 and
H̃2n+1 are polynomials of degree at most (2n + 1) which both satisfy the equations of
the Hermite interpolation problem. Then P := H2n+1 − H̃2n+1 is a polynomial of degree
at most (2n + 1) which satisfies P (xi) = H2n+1(xi) − H̃2n+1(xi) = f(xi) − f(xi) = 0
and P ′(xi) = H ′

2n+1(xi) − H̃ ′
2n+1(xi) = f ′(xi) − f ′(xi) = 0, i.e., xi is a double root of P

for all i = 0, 1, . . . , n. Hence P has 2(n + 1) = 2n + 2 number of roots, and hence the
Fundamental Theorem of Algebra yields that P is identically equal to 0, since the degree
of P is at most (2n + 1). This implies that if the solution of the Hermite interpolation
problem exists, it has to be unique.

Now we show that the polynomial H2n+1 defined by (6.7) is a solution of the Her-
mite interpolation problem, and satisfies the error formula (6.9) too. Direct computation
gives that H2n+1(x0) = f(x0) and H ′

2n+1(x0) = f [x0, x0] = f ′(x0). Next we show that
H2n+1(x1) = f(x1) and H ′

2n+1(x1) = f ′(x1) hold too. To prove this, select numbers x̃i

close to xi so that the numbers {xi, x̃i : i = 0, 1, . . . , n} be pairwise different, and let L2n+1

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

6.4. Hermite Interpolation 127

be the Lagrange polynomial interpolating the function values of f at these mesh points.
Then

L2n+1(x) = f [x0] + f [x0, x
′
0](x− x0) + f [x0, x

′
0, x1](x− x0)(x− x′

0)

+ f [x0, x
′
0, x1, x

′
1](x− x0)(x− x′

0)(x− x1) + · · ·
+ f [x0, x

′
0, x1, x

′
1, . . . , xn, x

′
n](x− x0)(x− x′

0) · · · (x− xn−1)

· (x− x′
n−1)(x− xn),

and

f(x) = L2n+1(x) + f [x0, x
′
0, . . . , xn, x

′
n, x](x− x0)(x− x′

0) · · · (x− xn)(x− x′
n).

The definition of L2n+1 and H2n+1 and the continuity of the divided difference (see Exer-
cise 3) yield for all x that

L2n+1(x)→ H2n+1(x) as (x′
0, x

′
1, . . . , x

′
n)→ (x0, x1, . . . , xn), (6.9)

and so

f(x) = H2n+1(x) + f [x0, x0, x1, x1, . . . , xn, xn, x](x− x0)
2(x− x1)

2 · · · (x− xn)
2.

This proves relation (6.8). It follows from the uniqueness of the Lagrange polynomial that
if we interchange x0, x

′
0 and x1, x

′
1, then the interpolating polynomial remains the same,

so

L2n+1(x) = f [x1] + f [x1, x
′
1](x− x1) + f [x1, x

′
1, x0](x− x1)(x− x′

1)

+ f [x1, x
′
1, x0, x

′
0](x− x1)(x− x′

1)(x− x0) + · · ·
+ f [x1, x

′
1, x0, x

′
0, x2, x

′
2 . . . , xn, x

′
n](x− x1)(x− x′

1)(x− x0)(x− x′
0)

· (x− x2)(x− x′
2) · · · (x− xn−1)(x− x′

n−1)(x− xn).

But then taking the limit (x′
0, x

′
1, . . . , x

′
n) → (x0, x1, . . . , xn) of both sides, and using

relation (6.9), we get

H2n+1(x) = f [x1] + f [x1, x1](x− x1) + f [x1, x1, x0](x− x1)
2

+ f [x1, x1, x0, x0](x− x1)
2(x− x0) + f [x1, x1, x0, x0, x2](x− x1)

2(x− x0)
2

+ f [x1, x1, x0, x0, x2, x2](x− x1)
2(x− x0)

2(x− x2) + · · ·
+ f [x1, x1, x0, x0, x2, x2, . . . , xn, xn](x− x1)

2(x− x0)
2(x− x2)

2

· · · (x− xn−1)
2(x− xn).

But from this form it is clear that H2n+1(x1) = f(x1) and H ′
2n+1(x1) = f ′(x1). In a

similar manner we can show that H2n+1(xi) = f(xi) and H ′
2n+1(xi) = f ′(xi) hold for

i = 2, 3, . . . , n. □

Theorem 6.19. Let f ∈ C2n+2. Then there exists ξ ∈ ⟨x0, x1, . . . , xn, x⟩ such that

f(x)−H2n+1(x) =
f (2n+2)(ξ)

(2n+ 2)!
(x− x0)

2 · · · (x− xn)
2.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

128 6. Interpolation

Proof. The proof is similar to that of Theorem 6.5. Let x be a number different from
all mesh points, and define the function

g(z) := f(z)−H2n+1(z)−
(z − x0)

2 · · · (z − xn)
2

(x− x0)2 · · · (x− xn)2
(f(x)−H2n+1(x)).

Clearly, g ∈ C2n+2, and x0, . . . , xn are all double roots, and x is a simple root of g.
Therefore, the generalized Rolle’s Theorem (Theorem 6.4) implies that there exists ξ ∈
⟨x0, x1, . . . , xn, x⟩ such that g(2n+2)(ξ) = 0. This yields the statement of the theorem.

□

Comparing relations (6.8) and Theorem 6.19 we get the next result.

Corollary 6.20. Suppose f ∈ C2n+2, and x, x0, . . . , xn are pairwise different numbers.
Then there exists ξ ∈ ⟨x0, x1, . . . , xn, x⟩ such that

f [x0, x0, . . . , xn, xn, x] =
f (2n+2)(ξ)

(2n+ 2)!
.

Table 6.2: Table of divided differences for the Hermite polynomial

x0 f(x0)

x0 f(x0) f [x0, x0]

x1 f(x1) f [x0, x1] f [x0, x0, x1]

x1 f(x1) f [x1, x1] f [x0, x1, x1]
. . .

...
...

...
...

xn f(xn) f [xn−1, xn] f [xn−1, xn−1, xn] · · ·
xn f(xn) f [xn, xn] f [xn−1, xn, xn] · · · f [x0, x0, x1, x1 . . . , xn, xn]

When we compute the divided differences required in formula (6.8), we list the numbers
in a triangular table (see Table 6.2). This is similar to Table 6.1. The difference is that we
list all mesh points and the corresponding function values twice, and in the third column
the first divided differences corresponding to equal mesh points are the given derivative
values. The rest of the numbers in the table are computed in a similar way as in Table 6.1.
The framed numbers are used in formula (6.8) as the coefficients.

Example 6.21. Consider the following data:

xi -1 1 2

yi 2 4 11

y′i 3 -5 30

Find the corresponding Hermite interpolating polynomial. We fill out the following table of
divided differences:

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

6.5. Spline Interpolation 129

-1 2

-1 2 3

1 4 1 -1

1 4 -5 -3 -1

2 11 7 12 5 2

2 11 30 23 11 2 0

In the third column the framed numbers are the input derivative values. Therefore, the Hermite
polynomial is

H5(x) = 2+ 3(x+1)− (x+1)2− (x+1)2(x− 1) + 2(x+1)2(x− 1)2 = 2x4− x3− 6x2 +2x+7,

so H5 is a polynomial of degree 4. □

Exercises

1. Compute the Hermite interpolating polynomials corresponding to the following data:

(a)
xi -2 -1 0 1

yi 4 1 14 -35

y′i -1 -2 43 -394

(b)
xi -1 0 2 3

yi 1 2 64 -19

y′i 3 -1 111 -301

2. Prove that if P is a polynomial of degree at most (2n+2), xi (i = 0, 1, . . . , n) are pairwise
different mesh points, and H2n+1 is the Hermite polynomial corresponding to P and the
mesh points, then P (x) = H2n+1(x) for all x.

3. Let f ∈ C1. Prove that

lim
(x′

0,x
′
1,...,x

′
n)→(x0,x1,...,xn)

f [x0, x
′
0, x1, x

′
1, . . . , xn, x

′
n] = f [x0, x0, x1, x1, . . . , xn, xn]

and

lim
(x′

0,...,x
′
n−1)→(x0,...,xn−1)

f [x0, x
′
0, x1, x

′
1, . . . , xn−1, x

′
n−1, xn]

= f [x0, x0, x1, x1, . . . , xn−1, xn−1, xn].

4. Let i0, i1, . . . , in be a rearrangement of the finite sequence 0, 1, . . . , n. Show that

f [x0, x0, x1, x1, . . . , xn, xn] = f [xi0 , xi0 , xi1 , xi1 , . . . , xin , xin].

5. The Hermite interpolation problem can be formulated in a general form: at the ith mesh
point the first ki derivatives of a function is given, which we are to interpolate. We can
generalize the method of this section. As an illustration we consider the following problem:
given two mesh points x0 and x1, and a function f ∈ C3. We are looking for a polynomial
of minimal degree for which

H(x0) = f(x0), H ′(x0) = f ′(x0), H ′′(x0) = f ′′(x0), and H(x1) = f(x1).

(Here k0 = 2 and k1 = 0.) Show that the solution of this problem is the polynomial of
degree at most 3

H(x) := f [x0] + f [x0, x0](x− x0) + f [x0, x0, x0](x− x0)
2 + f [x0, x0, x0, x1](x− x0)

3.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

130 6. Interpolation

6.5. Spline Interpolation

Let a = x0 < x1 < . . . < xn = b be a division of the interval [a, b]. The continuous function
S : [a, b] → R is a spline function of degree k corresponding to the mesh {x0, . . . , xn} if
S ∈ Ck−1[a, b], and the restriction of S to each interval [xi, xi+1] is a polynomial of degree
at most k. The first, second and third order spline functions are called linear, quadratic
and cubic spline functions, respectively.

The simplest method of the interpolation is when linear splines are used to interpolate
the given data. Geometrically this means that we connect the given data points (xi, yi)
by line segments. The error of the linear spline interpolation is discussed in Exercise 2.

The main disadvantage of the linear spline interpolation is that the interpolating
function is not smooth, i.e., it is not differentiable. In case of cubic spline interpolation
the interpolating function is twice continuously differentiable, which is smooth enough in
practice. For the rest of this section we investigate cubic spline interpolation.

Suppose given pairwise different mesh points a = x0 < x1 < . . . < xn = b and
corresponding function values y0, y1, . . . , yn. We are looking for a cubic spline function S
which interpolates the given data, i.e., it satisfies

S(xi) = yi, i = 0, 1, . . . , n.

The restriction of S to the interval [xi, xi+1] is denoted by Si (i = 0, 1, . . . , n− 1). Since
S interpolates the points (xi, yi), and it is twice continuously differentiable, therefore, the
functions Si satisfy the following relations:

Si(xi) = yi, i = 0, 1, . . . , n− 1, (6.10)

Si(xi+1) = yi+1, i = 0, 1, . . . , n− 1, (6.11)

S ′
i(xi+1) = S ′

i+1(xi+1), i = 0, 1, . . . , n− 2, (6.12)

S ′′
i (xi+1) = S ′′

i+1(xi+1), i = 0, 1, . . . , n− 2. (6.13)

Since the polynomials Si are defined by 4 parameters, so S is determined by 4n parameters.
The number of conditions in (6.10)–(6.13) is only 4n− 2, therefore, this problem has no
unique solution yet. Hence we expect that two additional conditions can be given, and
then we hope to have a unique solution. Frequently used conditions are the following

S ′′
0 (x0) = 0 and S ′′

n−1(xn) = 0. (6.14)

A cubic spline function defined by conditions (6.10)–(6.14) is called natural spline function.
Next we show that the above problem has a unique natural spline solution. Consider the
functions Si in the form:

Si(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3,

where ai, bi, ci and di (i = 0, 1, . . . , n− 1) are parameters to be determined. Then

S ′
i(x) = bi + 2ci(x− xi) + 3di(x− xi)

2,

S ′′
i (x) = 2ci + 6di(x− xi).

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

6.5. Spline Interpolation 131

These equations imply

ai = Si(xi) = yi, bi = S ′
i(xi) and ci = S ′′

i (xi)/2, i = 0, 1, . . . , n− 1. (6.15)

With the help of relation (6.15) we define the constants an, bn and cn (which will be used
later):

an := yn, bn := S ′(xn) and cn := S ′′(xn)/2. (6.16)

(The derivatives in (6.16) denote left sided derivatives.) Substituting x = xi+1 into the
formula of Si, and using equation (6.11) and relation ai = yi, we get

yi + bi(xi+1 − xi) + ci(xi+1 − xi)
2 + di(xi+1 − xi)

3 = yi+1.

Introduce the notations ∆xi := xi+1 − xi and ∆yi := yi+1 − yi. Then

bi∆xi + ci(∆xi)
2 + di(∆xi)

3 = ∆yi, i = 0, 1, . . . , n− 1. (6.17)

Condition (6.12) and relation bi+1 = S ′
i+1(xi+1) yield

bi + 2ci∆xi + 3di(∆xi)
2 = bi+1 (6.18)

for i = 0, 1, . . . , n − 2. Using the definition of bn we get that (6.18) holds for i = n − 1
too. Similarly, from equation (6.13) and the definition of cn it follows

2ci + 6di∆xi = 2ci+1, i = 0, 1, . . . , n− 1,

hence

di =
ci+1 − ci
3∆xi

, i = 0, 1, . . . , n− 1. (6.19)

Substituting it back to equations (6.17) and (6.18) we get

bi∆xi + ci(∆xi)
2 +

ci+1 − ci
3

(∆xi)
2 = ∆yi, i = 0, 1, . . . , n− 1, (6.20)

bi + 2ci∆xi + (ci+1 − ci)∆xi = bi+1, i = 0, 1, . . . , n− 1. (6.21)

From the first equation we express

bi =
∆yi
∆xi

− 2ci + ci+1

3
∆xi,

and substituting it into the second equation for i = 0, 1, . . . , n− 2 we get

ci∆xi + 2ci+1(∆xi +∆xi+1) + ci+2∆xi+1 = 3
∆yi+1

∆xi+1

− 3
∆yi
∆xi

, i = 0, 1, . . . , n− 2. (6.22)

Note that in the derivation of equation (6.22) we have not used condition (6.14), so it
holds for any cubic spline interpolation.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

132 6. Interpolation

Equation (6.22) determines a system of n−1 linear equations for ci. We add equations
c0 = 0 and cn = 0 following from condition (6.14) into it, so we get a n + 1-dimensional
linear system of the form Ax = b, where x = (c0, c1, . . . , cn)

T ,

A =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0 · · · 0

∆x0 2(∆x0 +∆x1) ∆x1 0 0 · · · 0
0 ∆x1 2(∆x1 +∆x2) ∆x2 0 · · · 0

. . .
. . .

. . .
0 · · · ∆xn−2 2(∆xn−2 +∆xn−1) ∆xn−1
0 · · · 0 0 1

⎞⎟⎟⎟⎟⎟⎠
is a tridiagonal matrix and

b =

⎛⎜⎜⎜⎜⎝
0

3∆y1
∆x1
− 3∆y0

∆x0
...

3∆yn−1

∆xn−1
− 3∆yn−2

∆xn−2

0

⎞⎟⎟⎟⎟⎠ .

Since A is diagonally dominant, the system Ax = b has a unique solution. Then with
the help of ci, we can compute the coefficients di and bi. Therefore, the problem has a
unique solution. We note that, in practice, the tridiagonal system Ax = b can be solved
efficiently by the special Gaussian elimination defined in Algorithm 3.37. We have proved
the following result.

Theorem 6.22. The problem of natural cubic spline interpolation has a unique solution.

Example 6.23. Find the natural cubic spline interpolation of the following given data:

xi 0.0 1.0 1.5 2.0 3.0 4.0

yi 0.5 0.1 2.5 -1.0 -0.5 0.0

Using the notations introduced before the linear system of the coefficients ci is⎛⎜⎜⎜⎝
1 0 0 0 0 0
1 3 0.5 0 0 0
0 0.5 2 0.5 0 0
0 0 0.5 3 1 0
0 0 0 1 4 1
0 0 0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

c0
c1
c2
c3
c4
c5

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0

15.6
−35.4
22.5

0
0

⎞⎟⎟⎟⎠ .

Solving it and substituting back ci into (6.19) and (6.20) we get the coefficients di and bi. The
resulting natural spline function is:

S0(x) = 0.5− 3.4141079x+ 3.0141079x3,

S1(x) = 0.1 + 5.6282158(x− 1) + 9.04232365(x− 1)2 − 21.3975104(x− 1)3,

S2(x) = 2.5− 1.3775934(x− 1.5)− 23.0539419(x− 1.5)2 + 23.6182573(x− 1.5)3,

S3(x) = −1.0− 6.7178423(x− 2) + 12.3734440(x− 2)2 − 5.1556017(x− 2)3,

S4(x) = −0.5 + 2.5622407(x− 3)− 3.0933610(x− 3)2 + 1.0311203(x− 3)3.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

6.5. Spline Interpolation 133

0 0.5 1 1.5 2 2.5 3 3.5 4
−3

−2

−1

0

1

2

3

Figure 6.3: Natural spline interpolation

The graph of this function can be seen in Figure 6.3. □

Instead of condition (6.14) we can specify other boundary conditions for S. Now we
investigate condition

S ′(x0) = y′0 and S ′(xn) = y′n, (6.23)

where y′0 and y′n are given numbers. This means that we know (specify) the slope of the
tangent line of S at the end points of the interval. A cubic spline which satisfy conditions
(6.23) is called clamped spline function. In this case equations (6.22) hold. We need to add
two equations in order to get a well-posed linear system. Using relations b0 = S ′(x0) = y′0,
equation (6.20) implies

y′0∆x0 + c0(∆x0)
2 +

c1 − c0
3

(∆x0)
2 = ∆y0,

hence

2c0∆x0 + c1∆x0 = 3
∆y0
∆x0

− 3y′0. (6.24)

Expressing bn−1 from equation (6.20) and substituting it into (6.21), and using relation
bn = y′n we get

∆yn−1

∆xn−1

− 2cn−1 + cn
3

∆xn−1 +∆xn−1(cn−1 + cn) = y′n,

hence

cn−1∆xn−1 + 2cn∆xn−1 = 3y′n − 3
∆yn−1

∆xn−1

. (6.25)

If in the system Ax = b of the natural spline interpolation we replace the first equation
with equation (6.24) and the last equation with (6.25), then it is easy to see that the
coefficient matrix remains to be diagonally dominant, therefore, the modified system has
a unique solution. So the cubic spline interpolation problem together with conditions
(6.23) has a unique clamped spline function solution.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

134 6. Interpolation

The natural cubic spline interpolating functions have the following minimal property,
which means that the spline interpolating functions are the smoothest among all possible
interpolating functions.

Theorem 6.24. Let a = x0 < x1 < . . . < xn = b be mesh points and y0, y1, . . . , yn be
function values, and let S be the natural cubic spline interpolating function associated to
the given data. Then ∫︂ b

a

(S ′′(x))2 dx ≤
∫︂ b

a

(f ′′(x))2 dx (6.26)

for every f ∈ C2[a, b], which also interpolates the given data, i.e., f(xi) = yi for i =
0, 1, . . . , n.

Proof. Introduce the function g(x) := f(x)−S(x). Then f ′′(x) = S ′′(x)+ g′′(x), and so∫︂ b

a

(f ′′(x))2 dx =

∫︂ b

a

(S ′′(x))2 dx+ 2

∫︂ b

a

S ′′(x)g′′(x) dx+

∫︂ b

a

(g′′(x))2 dx.

Since
∫︁ b

a
(g′′(x))2 dx ≥ 0, the statement of the theorem follows if we show∫︂ b

a

S ′′(x)g′′(x) dx = 0.

Dividing the integral into the sum of integral over the intervals of consecutive mesh points,
and using integration by parts we get∫︂ b

a

S ′′(x)g′′(x) dx =
n∑︂

i=1

∫︂ xi

xi−1

S ′′(x)g′′(x) dx

=
n∑︂

i=1

[S ′′(x)g′(x)]
xi

xi−1
−

n∑︂
i=1

∫︂ xi

xi−1

S ′′′(x)g′(x) dx

= S ′′(b)g′(b)− S ′′(a)g′(a)−
n∑︂

i=1

∫︂ xi

xi−1

S ′′′(x)g′(x) dx.

Since S is a natural spline function, we have S ′′(a) = S ′′(b) = 0. Since S is a third
order polynomial over the intervals [xi−1, xi], its second derivative is constant, which can
be factored out in front of the integral. But

∫︁ xi

xi−1
g′(x) dx = g(xi) − g(xi−1) = 0, since

g(xi) = 0 for i = 0, 1, . . . , n. This completes the proof. □

The next theorem investigates the error of the clamped cubic spline interpolation. We
present the result without proof.

Theorem 6.25. Let f ∈ C4[a, b], a = x0 < x1 < . . . < xn = b mesh points, yi = f(xi),
i = 0, 1, . . . , n function values, and y′0 = f ′(a) and y′n = f ′(b) derivative values, and let S

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

6.5. Spline Interpolation 135

be the corresponding clamped cubic spline function. Then for x ∈ [a, b] it follows

|f(x)− S(x)| ≤ 5

384
M4h

4,

|f ′(x)− S ′(x)| ≤

(︄√
3

216
+

1

24

)︄
M4h

3,

|f ′′(x)− S ′′(x)| ≤
(︃

1

12
+

h

3k

)︃
M4h

2,

where M4 := max{|f (4)(x)| : x ∈ [a, b]}, h := max{xi+1 − xi : i = 0, 1, . . . , n − 1},
k := min{xi+1 − xi : i = 0, 1, . . . , n− 1}.

We note that the error of the natural cubic spline interpolating function can be given
similarly.

Exercises

1. Find the formula of the linear spline function interpolating the data (xi, yi), i = 0, 1, . . . , n
on the interval [xi, xi+1].

2. Given a continuous function f : [a, b] → R, and let Sh be a linear spline interpolating
function of the function f corresponding to equidistant mesh of the interval [a, b] with
step size h.

(a) Show that max{|f(x)− Sh(x)| : x ∈ [a, b]} → 0, as h→ 0.

(b) Let f ∈ C1[a, b]. Show that

|f(x)− Sh(x)| ≤M1h, x ∈ [a, b],

where M1 := max{|f ′(x)| : x ∈ [a, b]}.

3. Compute and draw the graph of the natural cubic spline function corresponding to the
data given in Exercise 1 of Section 6.1.

4. Show that for a cubic spline interpolation any of the conditions

S′(x0) = f ′(x0) or S′(xn) = f ′(xn)

determines the cubic spline interpolation function uniquely.

5. Show that if S is the clamped cubic spline corresponding to given mesh points a = x0 <
x1 < . . . < xn = b, function values y0, y1, . . . , yn, and derivative values y′0 and y′n, then S
satisfies inequality (6.26) for all functions f ∈ C2[a, b] which satisfy f(xi) = yi for all i,
f ′(a) = y′0 and f ′(b) = y′n.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

Chapter 7

Numerical Differentiation and Integration

In this chapter first we study several methods for numerical differentiation, and con-
sider the Richardson’s extrapolation method to obtain higher order methods. Next we
define Newton-Cotes formulas and the Gaussian quadrature to approximate definite inte-
grals.

7.1. Numerical differentiation

In this section we present two methods to derive numerical approximation formulas for
the derivative, and we derive some basic approximation formulas.

The derivative of a function is defined by the limit

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
.

Therefore, if |h| is small, then the difference quotient f(x0+h)−f(x0)
h

is close to the value
of the derivative. But we need more: we need to know the truncation error of the
approximation. Next we derive this formula in two different ways, and we will derive
the formula of the truncation error too.

Suppose f ∈ C3[a, b] and x0 ∈ (a, b). The idea of the first method is the following: We
approximate the function f in a neighbourhood of x0 by a Lagrange polynomial Ln(x).
We use L′

n(x0) as an approximation of f ′(x0). We will call this method as Lagrange’s
method. Consider a simple case: let n = 1, x1 = x0 + h ∈ (a, b) (and x0 ̸= x1), consider
the first-order Lagrange polynomial interpolation of f corresponding to the mesh points
x0 and x1:

f(x) = L1(x) + E1(x)

=
f(x0)(x− x0 − h)

−h
+

f(x0 + h)(x− x0)

h
+

f ′′(ξ(x))

2
(x− x0)(x− x0 − h).

Taking the derivative of both sides we get

f ′(x) =
f(x0 + h)− f(x0)

h
+

f ′′(ξ(x))

2
(2(x− x0) + h)

+
d

dx

(︂
f ′′(ξ(x))

)︂(x− x0)(x− x0 − h)

2
. (7.1)

138 7. Numerical Differentiation and Integration

Theorem 6.8 yields that the function f ′′(ξ(x)) is differentiable for x ̸= x0, x0 + h, but the
derivative cannot be computed explicitly. On the other hand, taking the limit x→ x0 in
(7.1) we get

f ′(x0) =
f(x0 + h)− f(x0)

h
− h

2
f ′′(ξ), (7.2)

where ξ ∈ ⟨x0, x0 + h⟩. Therefore, if we use the approximation formula

f ′(x0) ≈
f(x0 + h)− f(x0)

h
, (7.3)

the truncation error of the approximation has the form −h
2
f ′′(ξ). Formula (7.3) is called

first-order forward difference formula if h > 0, and first-order backward difference formula
if h < 0. In these formulas the mesh point x0 + h is located right and left to x0, in the
respective cases. Formula (7.2) shows that approximation (7.3) is first-order in h. Formula
(7.3) is also called two-point difference formula, since it uses two mesh points.

The same formula can be derived (under weaker conditions) in the following way: Let
f ∈ C2[a, b], and consider the first-order Taylor expansion of f around x0:

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(ξ(x))

2
(x− x0)

2.

Substitution x = x0 + h gives

f(x0 + h) = f(x0) + f ′(x0)h+
f ′′(ξ)

2
h2,

hence

f ′(x0) =
f(x0 + h)− f(x0)

h
− h

2
f ′′(ξ),

where ξ = ξ(x0 + h).

Example 7.1. Consider the function f(x) = ex
2+x. We have f ′(x) = ex

2+x(2x + 1), so
f ′(0) = 1. We compute an approximate value of f ′(0) using the first-order forward (h > 0) and
backward (h < 0) difference formula, i.e., formula (7.3). In Table 7.1 we printed the approximate
values and their errors for different values of h. The numerical results show that if the step size
h decreases by one order of magnitude, then the corresponding error also decreases by one order
of magnitude. □

Table 7.1: First-order difference formula, f(x) = ex
2+x, x0 = 0

|h| forward difference error backward difference error

0.100 1.1627807 1.6278e-01 0.8606881 1.3931e-01
0.010 1.0151177 1.5118e-02 0.9851156 1.4884e-02
0.001 1.0015012 1.5012e-03 0.9985012 1.4988e-03

The previous two methods are appropriate to derive higher order, so more precise for-
mulas. Suppose f ∈ Cn+1, and consider an approximation of f by a Lagrange polynomial
of degree n:

f(x) =
n∑︂

k=0

f(xk)lk(x) +
f (n+1)(ξ(x))

(n+ 1)!
(x− x0)(x− x1) · · · (x− xn), (7.4)

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

7.1. Numerical differentiation 139

where lk(x) are the Lagrange basis polynomials of degree n defined by (6.2). Differenti-
ating (7.4) and using substitution x = xi we get

f ′(xi) =
n∑︂

j=0

f(xj)l
′
j(xi) +

f (n+1)(ξ(xi))

(n+ 1)!

n∏︂
j=0
j ̸=i

(xi − xj), (7.5)

which is called n + 1-point difference formula to approximate f ′(xi). We apply relation
(7.5) for equidistant mesh points, so we assume xj = x0 + jh, where h > 0. It can be
shown that the error term in (7.5) is of nth-order in h, and then the resulting formula
will also be called difference formula of order n.

Consider the case when n = 2, i.e., we study three-point formulas. Consider the mesh
points x0, x0 + h, x0 + 2h. Then

l0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
=

(x− x1)(x− x2)

2h2
,

l1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
=

(x− x0)(x− x2)

−h2
,

l2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
=

(x− x0)(x− x1)

2h2
,

therefore,

l′0(x) =
2x− x1 − x2

2h2
,

l′1(x) =
2x− x0 − x2

−h2
,

l′2(x) =
2x− x0 − x1

2h2
.

We apply them with x = x0, x = x0 + h and x = x0 + 2h, so relation (7.5) yields

f ′(x0) =
1

h

(︃
−3

2
f(x0) + 2f(x0 + h)− 1

2
f(x0 + 2h)

)︃
+

h2

3
f ′′′(ξ0), (7.6)

f ′(x0 + h) =
1

h

(︃
−1

2
f(x0) +

1

2
f(x0 + 2h)

)︃
− h2

6
f ′′′(ξ1), (7.7)

f ′(x0 + 2h) =
1

h

(︃
1

2
f(x0)− 2f(x0 + h) +

3

2
f(x0 + 2h)

)︃
+

h2

3
f ′′′(ξ2). (7.8)

The substitutions x0 ← x0 − 2h and h ← −h give that (7.8) can be written in the form
(7.6), and (7.7) has the form

f ′(x0) =
1

h

(︃
−1

2
f(x0 − h) +

1

2
f(x0 + h)

)︃
− h2

6
f ′′′(ξ1). (7.9)

Relation (7.9) is called three-point midpoint formula or second-order central difference
formula. (It is also called centered difference.) Formula (7.6) is called three-point endpoint

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

140 7. Numerical Differentiation and Integration

formula. It is also called second-order forward difference formula if h > 0, and second-
order backward difference formula if h < 0.

Example 7.2. We approximate the derivative of the function f(x) = ex
2+x at x = 0 with

second-order difference formulas (formulas (7.6) and (7.9)). The results can be seen in Table 7.2
for different values of h. The numerical results demonstrate that the truncation error of the
formulas is second-order in h. □

Table 7.2: Second-order difference formulas, f(x) = ex
2+x, x0 = 0

|h| forward error backward error central error

0.100 0.9693157 3.0684e-02 0.9820952 1.7905e-02 1.0117344 1.1734e-02
0.010 0.9997603 2.3968e-04 0.9997728 2.2718e-04 1.0001167 1.1667e-04
0.001 0.9999977 2.3396e-06 0.9999977 2.3271e-06 1.0000012 1.1667e-06

Without proofs we present 5-point central and one-sided formulas, i.e., fourth-order
difference formulas :

f ′(x0) =
1

12h

(︃
−25f(x0) + 48f(x0 + h)− 36f(x0 + 2h) + 16f(x0 + 3h)

− 3f(x0 + 4h)

)︃
+

h4

5
f (5)(ξ0), (7.10)

f ′(x0) =
1

12h

(︃
f(x0 − 2h)− 8f(x0 − h) + 8f(x0 + h)− f(x0 + 2h)

)︃
+

h4

30
f (5)(ξ1). (7.11)

Formula (7.10) is one-sided, and (7.11) is central difference.

Example 7.3. We apply formulas (7.10) and (7.11) to approximate the first derivative of

f(x) = ex
2+x at x = 0. Table 7.3 shows the numerical results. □

Table 7.3: Fourth-order difference formulas, f(x) = ex
2+x, x0 = 0

|h| forward error backward error central error

0.100 0.9967110 3.2890e-03 0.9991793 8.2070e-04 0.9997248 2.7523e-04
0.010 0.9999998 1.7345e-07 0.9999998 1.5136e-07 1.0000000 2.7005e-08
0.001 1.0000000 1.6311e-11 1.0000000 1.6090e-11 1.0000000 2.7000e-12

Next we use the Taylor’s method to derive approximation formulas for higher order
derivatives. Let f ∈ C4, and consider the third-order Taylor polynomial expansion of f
at x0 with the fourth-order error term:

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)

2 +
f ′′′(x0)

6
(x− x0)

3 +
f (4)(ξ)

24
(x− x0)

4.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

7.1. Numerical differentiation 141

If we substitute x = x0 − h and x = x0 + h into this relation, we get

f(x0 − h) = f(x0)− f ′(x0)h+
f ′′(x0)

2
h2 − f ′′′(x0)

6
h3 +

f (4)(ξ1)

24
h4

and

f(x0 + h) = f(x0) + f ′(x0)h+
f ′′(x0)

2
h2 +

f ′′′(x0)

6
h3 +

f (4)(ξ2)

24
h4.

Adding the two equations we get

f(x0 − h) + f(x0 + h) = 2f(x0) + f ′′(x0)h
2 +

f (4)(ξ1) + f (4)(ξ2)

24
h4,

which yields

f ′′(x0) =
f(x0 − h)− 2f(x0) + f(x0 + h)

h2
+

f (4)(ξ1) + f (4)(ξ2)

24
h4.

Therefore, the approximation formula

f ′′(x0) ≈
f(x0 − h)− 2f(x0) + f(x0 + h)

h2
(7.12)

has an error of order h2. We can rewrite the error term f (4)(ξ1)+f (4)(ξ2)
24

h4 in a simpler form.
We have by our assumptions that f (4) is continuous, therefore, Theorem 2.2 yields that
there exists a point ξ in between ξ1 and ξ2 such that

f (4)(ξ) =
f (4)(ξ1) + f (4)(ξ2)

2
.

Hence

f ′′(x0) =
f(x0 − h)− 2f(x0) + f(x0 + h)

h2
+

f (4)(ξ)

12
h2. (7.13)

Example 7.4. We computed the approximation of the second-order derivative of f(x) = ex
2+x

at x = 0 using formula (7.12) and different step sizes. The numerical results can be seen in
Table 7.4. Note that the exact derivative value is f ′′(0) = 3. □

Table 7.4: Approximation of the second-order derivative, f(x) = ex
2+x, x0 = 0

h approximation error

0.100 3.0209256 2.0926e-02
0.010 3.0002083 2.0834e-04
0.001 3.0000021 2.0833e-06

The numerical differentiation is an unstable problem. To illustrate it we consider a
function f(x) and its perturbation of the form

g(x) = f(x) +
1

n
sin(n2x).

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

142 7. Numerical Differentiation and Integration

If we compute an approximation of g′ instead of f ′ using any difference formula obtained
above, then there is a small change in the function values used in the difference formula
if n is large. But the difference between the exact value of the derivatives is large, since
g′(x) = f ′(x) + n cos(n2x).

Next we investigate the effect of the rounding in numerical differentiation. Consider
the simplest difference formula, the first-order difference (7.2). Suppose that here, instead
of the exact function values f(x0) and f(x0 + h), we use their approximate values f0 and
f1, where

f(x0) = f0 + e0 and f(x0 + h) = f1 + e1.

Then

f ′(x0) ≈
f1 − f0

h
,

and the resulting error is

f ′(x0)−
f1 − f0

h
= f ′(x0)−

f(x0 + h)− f(x0)

h
+

f(x0 + h)− f(x0)

h
− f1 − f0

h

= −h

2
f ′′(ξ) +

e1 − e0
h

. (7.14)

Relation (7.14) shows that the error consists of two parts: the truncation error and the
rounding error. If the step size h is small, then the rounding error will be small, but the
rounding error can go to ∞ as h→ 0.

Example 7.5. Consider the function f(x) = ex. We compute the approximation of f ′(1) = e
using first-order forward difference formula. In order to enlarge the effect of the rounding, we
used 6- and 4-digit arithmetic in the computation. We can see in Table 7.5 that in case of
the 4-digit arithmetic, when we decreased the step size to 0.001 from 0.01, the error of the
approximation increased. The reason is, clearly, the increase of the rounding error, since here
we subtracted two numbers which are close to each other, and also divided by a small number.

□

Table 7.5: Effect of rounding in first-order forward difference, f(x) = ex, x0 = 1

6-digit arithmetic 4-digit arithmetic
h approximation error approximation error

0.100 2.8589000 1.4062e-01 2.8600000 1.4172e-01
0.010 2.7320000 1.3718e-02 2.8000000 8.1718e-02
0.001 2.7200000 1.7182e-03 3.0000000 2.8172e-01

The formulas derived in this section can be applied to approximate partial derivatives.
We list some formulas next.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

7.2. Richardson’s extrapolation 143

∂f(x0, y0)

∂x
≈ f(x0 + h, y0)− f(x0, y0)

h
, (7.15)

∂f(x0, y0)

∂y
≈ f(x0, y0 + h)− f(x0, y0)

h
, (7.16)

∂2f(x0, y0)

∂x2
≈ f(x0 + h, y0)− 2f(x0, y0) + f(x0 − h, y0)

h2
(7.17)

∂2f(x0, y0)

∂y2
≈ f(x0, y0 + h)− 2f(x0, y0) + f(x0, y0 − h)

h2
(7.18)

∂2f(x0, y0)

∂x ∂y
≈ f(x0 + h, y0 + h)− f(x0 + h, y0)− f(x0, y0 + h) + f(x0, y0)

h2

(7.19)

∂2f(x0, y0)

∂x2
≈ f(x0 + 2h, y0)− 2f(x0 + h, y0) + f(x0, y0)

h2
(7.20)

Exercises

1. Compute an approximation of f ′(x0) using first-order forward and backward difference
formulas with h = 0.1 and 0.01 if

(a) f(x) = x4 − 6x2 + 3x, x0 = 1, (b) f(x) = ex sinx, x0 = 0,

(c) f(x) = cosx2, x0 = 1, (d) f(x) = x lnx, x0 = 1.

2. Apply second-order difference formulas in the previous exercise.

3. Approximate f ′′(x0) for the functions given in Exercise 1.

4. Derive formulas (7.6) and (7.9) using Taylor’s method.

5. Prove relations (7.10) and (7.11).

6. Derive the following approximation formulas:

f ′′′(x0) ≈
1

2h3

(︂
f(x0 + 2h)− 2f(x0 + h) + 2f(x0 − h)− f(x0 − 2h)

)︂
,

f (4)(x0) ≈
1

h4

(︂
f(x0 + 2h)− 4f(x0 + h) + 6f(x0)− 4f(x0 − h) + f(x0 + 2h)

)︂
7. Derive formulas (7.15)–(7.20) using

(a) approximation formulas formulated for single variable functions,

(b) two-variable Lagrange’s method,

(c) two-variable Taylor’s method.

Compute the truncation errors.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

144 7. Numerical Differentiation and Integration

7.2. Richardson’s extrapolation

Suppose given a value M , and let K(h) be its approximation, where h denotes the dis-
cretization parameter of the approximation method. We also suppose that the truncation
error of the approximation is known, and it has a special form, the error can be given by
an even-order Taylor polynomial (or possibly Taylor series) approximation of the form

M = K(h) + a2h
2 + a4h

4 + a6h
6 + · · ·+ a2mh

2m + b(h), (7.21)

where |b(h)| ≤ Bh2m+2 with some constant B > 0. The error here is second-order in h.
Now we present a general method to generate higher order approximation formulas using
K(h). Consider relation (7.21) corresponding to parameter h/2:

M = K(h/2) + a2
h2

4
+ a4

h4

16
+ a6

h6

64
+ · · ·+ a2m

h2m

22m
+ b(h/2). (7.22)

Multiplying both sides of (7.22) by 4, and subtracting equation (7.21) from it, the second-
order term in h cancels out, and solving it for M we get

M =
4K(h/2)−K(h)

3
− 1

4
a4h

4 − 5

16
a6h

6

− · · · − 22m−2 − 1

22m−2 · 3
a2mh

2m +
4b(h/2)− b(h)

3
. (7.23)

This relation can be written in the form

M = K(1)(h) + a
(1)
4 h4 + a

(1)
6 h6 + · · ·+ a

(1)
2mh

2m + b(1)(h), (7.24)

where

K(1)(h) :=
4K(h/2)−K(h)

3
, b(1)(h) :=

4b(h/2)− b(h)

3
, a

(1)
2i :=

1− 4i−1

4i−1 · 3
a2i,

i = 2, . . . ,m. Relation (7.24) yields that formula K(1)(h) approximates M with a fourth-
order error in h. The previous method can be repeated: we use (7.24) with h/2, multiply
it by 16, subtract from it equation (7.24), and then solve it for M . Then the fourth-order
error term cancels out, and we get relation

M = K(2)(h) + a
(2)
6 h6 + · · ·+ a

(2)
2mh

2m + b(2)(h), (7.25)

where

K(2)(h) :=
16K(1)(h/2)−K(1)(h)

15
, b(2)(h) :=

16b(1)(h/2)− b(1)(h)

15
,

a
(2)
2i :=

1− 4i−2

4i−2 · 15
a
(1)
2i , i = 3, . . . ,m.

Relation (7.25) means that K(2)(h) approximates M with a sixth-order error in h. The
generation of new approximation formulas can be continued as

K(i+1)(h) := K(i)(h/2) +
K(i)(h/2)−K(i)(h)

4i+1 − 1
, i = 0, 1, . . . ,m− 1, (7.26)

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

7.3. Newton–Cotes Formulas 145

where K(0)(h) := K(h). This procedure to generate higher order approximation formulas
is called Richardson’s extrapolation. A similar procedure can be applied also in the case
when the Taylor expansion of the truncation error contains all powers of h (see Exercises 2
and 3), but later we will use the case presented in this section.

Example 7.6. In the previous section we saw that the central difference formula (7.9) is
second-order in h. Using Taylor’s method we get a more precise form of the truncation error.
Suppose that f ∈ C2m+3, and consider the following Taylor’s expansion:

f(x0 + h) = f(x0) + f ′(x0)h+ · · ·+ f (2m+2)(x0)

(2m+ 2)!
h2m+2 +

f (2m+3)(ξ1)

(2m+ 3)!
h2m+3.

We apply the previous relation with −h instead of h, subtracting the two equations, and solving
it for f ′(x0) we get:

f ′(x0) =
f(x0 + h)− f(x0 − h)

2h
− f ′′′(x0)

3!
h2 − f (5)(x0)

5!
h4

− · · · − f (2m+1)(x0)

(2m+ 1)!
h2m − f (2m+3)(ξ1) + f (2m+3)(ξ2)

(2m+ 3)!
h2m+2.

Hence we have that the central difference satisfies relation (7.21). Therefore, we get a higher
order formula using Richardson’s extrapolation. We have that formula

K(1)(h) =
4
f(x0 + h/2)− f(x0 + h/2)

h
− f(x0 + h)− f(x0 − h)

2h
3

=
f(x0 − h)− 8f(x0 − h/2) + 8f(x0 + h/2)− f(x0 + h)

6h

has fourth-order error in h. We note that this formula is equivalent to (7.11). □

Exercises

1. Derive a sixth-order approximation formula for the first derivative of a function starting
from the central difference formula (7.9) using the Richardson’s extrapolation. Apply the
formula for approximating the first derivative of f(x) = ex sinx at x = 0 using step size
h = 0.25.

2. Reformulate the Richardson’s extrapolation for the case when the Taylor expansion of the
truncation error contains all powers of h, i.e.,

M = K(h) + a1h+ a2h
2 + · · ·+ amhm + b(x),

where |b(h)| ≤ Bhm+1 with some B > 0.

3. Reformulate the Richardson’s extrapolation for the general case when

M = K(h) + a1h
α1 + a2h

α2 + · · ·+ amhαm + b(x),

where 1 ≤ α1 < α2 < · · · < αm are integers, and |b(h)| ≤ Bhαm+1 with some B > 0.

4. Derive a third-order approximation of the first derivative using Richardson’s extrapolation
starting from the first-order difference formula.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

146 7. Numerical Differentiation and Integration

7.3. Newton–Cotes Formulas

Let f ∈ C[a, b]. The definite integral, similarly to the derivative, is defined by a limit.
The definition using Riemann’s sum is the following: consider a finite partition of the
interval [a, b] using the mesh points a = x0 < x1 < · · · < xn = b, and in each subinterval

[xi−1, xi] select a point ξi. Then the integral
∫︁ b

a
f(x) dx is a limit of the Riemann’s sum∑︁n

i=1 f(ξi)(xi − xi−1) as the norm of the partition, max{xi − xi−1 : i = 1, . . . , n} goes to
zero. Such a Riemann’s sum is for example∫︂ b

a

f(x) dx ≈ b− a

n

(︃
f

(︃
x0 + x1

2

)︃
+ f

(︃
x1 + x2

2

)︃
+ · · ·+ f

(︃
xn−1 + xn

2

)︃)︃
, (7.27)

where xi = a+ i(b−a)/n, i = 0, 1, . . . , n. This formula is called midpoint rule or rectangle
rule. (See Exercises 5 and 6.)

Similarly to the numerical differentiation, we can use the Lagrange’s method to derive
approximation formulas for definite integrals. Consider a partition of the interval [a, b]
(typically with equidistant mesh points), and let Ln be the Lagrange interpolating poly-

nomial of the function f corresponding to the given mesh. Consider
∫︁ b

a
Ln(x) dx as an

approximation of
∫︁ b

a
f(x) dx. We suppose that f ∈ Cn+1[a, b]. Then Theorem 6.5 yields

the error of the approximation:∫︂ b

a

f(x) dx =
n∑︂

k=0

f(xk)

∫︂ b

a

lk(x) dx (7.28)

+

∫︂ b

a

f (n+1)(ξ(x))

(n+ 1)!
(x− x0)(x− x1) · · · (x− xn) dx,

where lk(x) (corresponding to the mesh points) is the Lagrange basis polynomial of degree
n defined by (6.2). Here we get an approximation formula of the form∫︂ b

a

f(x) dx ≈
n∑︂

k=0

ckf(xk), (7.29)

where the weights ck are defined by

ck =

∫︂ b

a

lk(x) dx. (7.30)

Approximation formulas of the form (7.29) are called quadrature formulas. Those quadra-
ture formulas when the weights ck are defined by the integrals (7.30) are called Newton–
Cotes formulas. If the end points of the interval a and b belong to the mesh points, then
formulas (7.29)–(7.30) are called closed Newton–Cotes formulas, and if all mesh points
belong to the open interval (a, b), then they are called open Newton–Cotes formulas.

We say that the degree of precision of a quadrature formula is n if the formula gives
back the exact value of the definite integral for all polynomials with degree at most n, and
there exists a polynomial of degree n + 1 for which the quadrature formula is not exact.
Therefore, the degree of precision of the (n+1)-point Newton–Cotes formula (7.29)–(7.30)

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

7.3. Newton–Cotes Formulas 147

is at least n, since in this case the Lagrange polynomial Ln is identical to the function f .
It is possible to show that for even n the (n+ 1)-point Newton–Cotes formulas are exact
for polynomials with degree n+ 1 too.

Next we consider the closed Newton–Cotes formula for n = 1. Let x0 = a, x1 = b and
h = b− a. Then

L1(x) = f(x0)
x− x1

x0 − x1

+ f(x1)
x− x0

x1 − x0

,

so ∫︂ x1

x0

L1(x) dx = f(x0)

∫︂ x1

x0

x− x1

x0 − x1

dx+ f(x1)

∫︂ x1

x0

x− x0

x1 − x0

dx

=

[︃
f(x0)

(x− x1)
2

2(x0 − x1)
+ f(x1)

(x− x0)
2

2(x1 − x0)

]︃x1

x0

=
h

2
(f(x0) + f(x1)).

The error of this formula, according to (7.28), is∫︂ x1

x0

f(x) dx− h

2
(f(x0) + f(x1)) =

∫︂ x1

x0

f ′′(ξ(x))

2
(x− x0)(x− x1) dx.

To simplify the formula of the error term we use that (x−x0)(x−x1) < 0 for x ∈ (x0, x1),
and hence Theorem 2.6 can be used. Therefore, there exists η ∈ (x0, x1) such that∫︂ x1

x0

f ′′(ξ(x))

2
(x− x0)(x− x1) dx =

f ′′(η)

2

∫︂ x1

x0

(x− x0)(x− x1) dx.

Hence ∫︂ x1

x0

f(x) dx− h

2
(f(x0) + f(x1)) =

f ′′(η)

2

∫︂ x1

x0

(x− x0)
2 − h(x− x0) dx

=
f ′′(η)

2

[︃
(x− x0)

3

3
− h

(x− x0)
2

2

]︃x1

x0

= −h3

12
f ′′(η).

We obtained the so-called trapezoidal rule:∫︂ b

a

f(x) dx =
h

2
(f(a) + f(b))− h3

12
f ′′(ξ), ξ ∈ (a, b). (7.31)

The name of the formula comes from the fact that h
2
(f(a) + f(b)) gives back the area of

the region bounded by the secant line of the function corresponding to the points a and
b, the x-axis, and the vertical lines x = a and x = b.

The trapezoidal rule gives a good approximation of the integral if the length of the
interval is small. If we have a large interval, then we divide it into n subintervals of equal

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

148 7. Numerical Differentiation and Integration

length by the mesh points xi = a+ ih (i = 0, 1, . . . , n), where h = (b−a)/n, and we apply
the trapezoidal rule for each subintervals:∫︂ b

a

f(x) dx =
n∑︂

i=1

∫︂ xi

xi−1

f(x) dx

=
n∑︂

i=1

h

2
(f(xi−1) + f(xi))−

h3

12

n∑︂
i=1

f ′′(ξi)

=
h

2

(︄
f(x0) + 2

n−1∑︂
i=1

f(xi) + f(xn)

)︄
− nh3

12

1

n

n∑︂
i=1

f ′′(ξi).

We suppose that f ∈ C2[a, b]. Then it follows from Theorem 2.2 that the average value
1
n

∑︁n
i=1 f

′′(ξi) can be replaced by a single function value of the form f ′′(ξ). Therefore,
using hn = b− a, we get

∫︂ b

a

f(x) dx =
h

2

(︄
f(x0) + 2

n−1∑︂
i=1

f(xi) + f(xn)

)︄
− (b− a)h2

12
f ′′(ξ), ξ ∈ (a, b). (7.32)

This formula is called composite trapezoidal rule.

Example 7.7. We compute approximate values of the integral
∫︁ 1
0 x2ex dx using the basic or

composite trapezoidal rule with h = 1, h = 0.5 and h = 0.25, respectively. It can be checked

that the exact value of the integral is
∫︁ 1
0 x2ex dx = e− 2 = 0.7182818 (with 7 digits precision).

For the first case we have ∫︂ 1

0
x2ex dx ≈ 1

2
(0 + e) = 1.3591409,

where we computed the numerical values with 7 digits precision. The error in this case is
0.6408591. With h = 0.5 the composite trapezoidal rule gives∫︂ 1

0
x2ex dx ≈ 0.5

2
(0 + 0.52e0.5 + e) = 0.8856606.

Hence its error is 0.1673788. Finally, for h = 0.25 we get∫︂ 1

0
x2ex dx ≈ 0.25

2
(0 + 0.252e0.25 + 0.52e0.5 + 0.752e0.75 + e) = 0.7605963,

so its error is 0.0423145. We can observe that if the step size reduces to its half, then the
corresponding error in the approximation reduces to its quarter, which indicates that the error
in h is quadratic. □

Consider formula (7.28) for n = 2 and using equidistant mesh points, i.e., x0 = a,

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

7.3. Newton–Cotes Formulas 149

x1 = x0 + h, x2 = b, h = (b− a)/2.∫︂ x2

x0

L2(x) dx = f(x0)

∫︂ x2

x0

(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
dx+ f(x1)

∫︂ x2

x0

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
dx

+ f(x2)

∫︂ x2

x0

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
dx

=
f(x0)

2h2

∫︂ x2

x0

(x− x2 + h)(x− x2) dx−
f(x1)

h2

∫︂ x2

x0

(x− x0)(x− x0 − 2h) dx

+
f(x2)

2h2

∫︂ x2

x0

(x− x0)(x− x0 − h) dx

=
f(x0)

2h2

[︃
(x− x2)

3

3
+ h

(x− x2)
2

2

]︃x2

x0

− f(x1)

h2

[︃
(x− x0)

3

3
− 2h

(x− x0)
2

2

]︃x2

x0

+
f(x2)

2h2

[︃
(x− x0)

3

3
− h

(x− x0)
2

2

]︃x2

x0

=
h

3
(f(x0) + 4f(x1) + f(x2)).

The truncation error is ∫︂ x2

x0

f ′′′(ξ(x))

6
(x− x0)(x− x1)(x− x2) dx.

Now there is a difference compared to the previous case: the function (x − x0)(x −
x1)(x−x2) has opposite signs on the intervals (x0, x1) and (x1, x2), so Theorem 2.6 is not
applicable on (x0, x2). We have a different method to simplify the formula for the error
term. Let

p(x) :=

∫︂ x

x0

(t− x0)(t− x1)(t− x2) dt

=

∫︂ x

x0

(t− x1 + h)(t− x1)(t− x1 − h) dt

=

[︃
(t− x1)

4

4
− h2 (t− x1)

2

2

]︃x
x0

=
(x− x1)

4

4
− h2(x− x1)

2

2
+

h4

4

=
1

4
((x− x1)

2 − h2)2.

Then p(x0) = p(x2) = 0, so integration by parts gives∫︂ x2

x0

f ′′′(ξ(x))

6
(x− x0)(x− x1)(x− x2) dx = −

∫︂ x2

x0

d

dx

f ′′′(ξ(x))

6
p(x) dx.

p is a nonnegative function, hence applying Theorems 2.6 and 6.8, we get∫︂ x2

x0

f ′′′(ξ(x))

6
(x− x0)(x− x1)(x− x2) dx = −f (4)(η)

24

∫︂ x2

x0

p(x) dx = −h5

90
f (4)(η).

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

150 7. Numerical Differentiation and Integration

We have proved the relation∫︂ x2

x0

f(x) dx =
h

3
(f(x0) + 4f(x1) + f(x2))−

h5

90
f (4)(η), η ∈ (x0, x2), (7.33)

which is called Simpson’s rule.
This error formula yields that the Simpson’s rule is precise for third-order polynomials,

since then f (4) is identically equal to 0. On the other hand, the order of approximation
in h is five. Similar higher order of precision can be shown for all Newton–Cotes formulas
with even n.

Similarly to the composite trapezoidal rule, we can derive the composite Simpson’s
rule: We divide the interval [a, b] into 2n equal parts, so let h = (b− a)/2n. Then∫︂ b

a

f(x) dx =
h

3

(︄
f(x0) + 4

n∑︂
i=1

f(x2i−1) + 2
n−1∑︂
i=1

f(x2i) + f(x2n)

)︄

− (b− a)h4

180
f (4)(ξ), ξ ∈ (a, b). (7.34)

Example 7.8. Compute the approximate values of
∫︁ 1
0 x2ex dx using (composite) Simpson’s

formula with h = 0.5, h = 0.25 and h = 0.125. First we get∫︂ 1

0
x2ex dx ≈ 0.5

3
(0 + 4 · 0.52e0.5 + e) = 0.7278339.

The error is 0.0095520. For h = 0.25 we apply the composite Simpson’s formula:∫︂ 1

0
x2ex dx ≈ 0.25

3
(0 + 4 · 0.252e0.25 + 2 · 0.52e0.5 + 4 · 0.752e0.75 + e) = 0.7189082.

Its error is 0.0006264. Finally, for h = 0.125 we get∫︂ 1

0
x2ex dx ≈ 0.125

3

(︂
0 + 4 · 0.1252e0.125 + 2 · 0.252e0.25 + 4 · 0.3752e0.375 + 2 · 0.52e0.5

+ 4 · 0.6252e0.625 + 2 · 0.752e0.75 + 4 · 0.8752e0.875 + e
)︂
= 0.7183215,

which has the error 0.0000396. □

Next we present some other closed Newton–Cotes formulas.

Simpson’s 3
8
formula:∫︂ x3

x0

f(x) dx =
3h

8

(︂
f(x0) + 3f(x1) + 3f(x2) + f(x3)

)︂
− 3h5

80
f (4)(ξ) (7.35)

n = 4:∫︂ x4

x0

f(x) dx =
2h

45

(︂
7f(x0)+ 32f(x1)+ 12f(x2)+ 32f(x3)+ 7f(x4)

)︂
− 8h7

945
f (6)(ξ) (7.36)

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

7.3. Newton–Cotes Formulas 151

Finally, we present some open Newton–Cotes formulas:

∫︂ x1

x−1

f(x) dx = 2hf(x0) +
h3

3
f ′′(ξ), (7.37)∫︂ x2

x−1

f(x) dx =
3h

2

(︂
f(x0) + f(x1)

)︂
+

3h3

4
f ′′(ξ), (7.38)∫︂ x3

x−1

f(x) dx =
4h

3

(︂
2f(x0)− f(x1) + 2f(x2)

)︂
+

14h5

45
f (4)(ξ), (7.39)∫︂ x4

x−1

f(x) dx =
5h

24

(︂
11f(x0) + f(x1) + f(x2) + 11f(x3)

)︂
+

95h5

144
f (4)(ξ). (7.40)

We close this section with the investigation of the numerical stability of the integration.

Theorem 7.9. Let
∑︁n

i=1 cif(xi) be a quadrature formula which is exact for constant
functions and each coefficient ci is positive. Let yi be an approximate value of the exact
function value f(xi), and suppose |yi − f(xi)| ≤ ε. Then⃓⃓⃓⃓

⃓
n∑︂

i=1

cif(xi)−
n∑︂

i=1

ciyi

⃓⃓⃓⃓
⃓ ≤ ε(b− a).

Proof. According to the assumptions, (b− a) =
∫︁ b

a
1 dx =

∑︁n
i=1 ci, therefore,⃓⃓⃓⃓

⃓
n∑︂

i=1

cif(xi)−
n∑︂

i=1

ciyi

⃓⃓⃓⃓
⃓ ≤

n∑︂
i=1

ci|f(xi)− yi| ≤ ε
n∑︂

i=1

ci = ε(b− a).

□

We note that all quadrature formulas we presented in this section were exact for
constant functions, and most of them had positive weights. Therefore, all such formulas
are stable for the rounding error.

Exercises

1. Compute approximate values of the integrals using the trapezoidal rule with step sizes
h = 0.5, 0.25, 0.125, respectively:

(a)
∫︁ 1
0 sin3 x dx,

(b)
∫︁ 2
1 ln(x+ 1) dx,

(c)
∫︁ 2
1 e1/x dx.

2. Repeat Exercise 1 using the Simpson’s rule.

3. Repeat Exercise 1 using formulas (7.35)-(7.36).

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

152 7. Numerical Differentiation and Integration

4. Repeat Exercise 1 using formulas Newton–Cotes Formulas (7.37)-(7.40).

5. Prove that the midpoint formula (7.27) gives back the sum of the areas under tangent
lines at the midpoints of the intervals [xi, xi+1].

6. Show that the midpoint formula is a Newton–Cotes formula, and derive its error term.

7. Derive formulas (7.35)-(7.36) (without computing the error terms).

8. Derive formulas (7.37)-(7.40) (without computing the error terms).

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

7.4. Gaussian Quadrature 153

7.4. Gaussian Quadrature

In the previous section we have seen that the Newton–Cotes formulas give back the exact
value of the integral for polynomials with certain degree. Now we would like to derive
quadrature formulas with similar property. Consider the general quadrature formula

∫︂ b

a

f(x) dx ≈
n∑︂

i=1

cif(xi).

We have the following statement:

Theorem 7.10. A quadrature formula

Q(f) :=
n∑︂

i=1

cif(xi) (7.41)

is exact for polynomials p(x) = amx
m + am−1x

m−1 + · · · + a0 of degree at most m if and
only if it is exact for the monomials xi for all i = 0, 1, . . . ,m.

Proof. If Q is exact for all polynomials with degree at most m, it certainly implies that
it is exact for all monomials xi for all i = 0, 1, . . . ,m.

Suppose now that Q is exact for the monomials xi for all i = 0, 1, . . . ,m. Then the
linearity of the integral and the quadrature formula Q yield that

∫︂ b

a

amx
m + am−1x

m−1 + · · ·+ a0 dx

= am

∫︂ b

a

xm dx+ am−1

∫︂ b

a

xm−1 dx+ · · ·+ a0

∫︂ b

a

1 dx

= amQ(xm) + am−1Q(xm−1) + · · ·+ a0Q(1)

= Q(amx
m + am−1x

m−1 + · · ·+ a0).

□

The quadrature formula Q defined by (7.41) contains 2n number of parameters, ci, xi

(i = 1, 2, . . . , n). The previous theorem indicates that such a quadrature formula can be
exact for polynomials with degree at most 2n − 1, since it also contains 2n coefficients.
Then Theorem 7.10 yields that a quadrature formula Q is exact for polynomials of degree

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

154 7. Numerical Differentiation and Integration

at most 2n− 1 if and only if the following 2n number of equations hold:∫︂ b

a

1 dx =
n∑︂

i=1

ci∫︂ b

a

x dx =
n∑︂

i=1

cixi∫︂ b

a

x2 dx =
n∑︂

i=1

cix
2
i (7.42)

...
...∫︂ b

a

x2n−1 dx =
n∑︂

i=1

cix
2n−1
i

The quadrature formula of the form (7.41) where the parameters are the solutions of the
nonlinear system (7.42) is called n-point Gaussian quadrature formula.

Consider the special case when n = 2 and [a, b] = [−1, 1]. Then system (7.42) is
equivalent to the system

2 = c1 + c2

0 = c1x1 + c2x2

2

3
= c1x

2
1 + c2x

2
2

0 = c1x
3
1 + c2x

3
2.

It can be checked that this system has a unique solution (apart from the order): c1 =

c2 = 1 and x1 = −
√
3
3
, x2 =

√
3
3
. So the two-point Gaussian quadrature formula is∫︂ 1

−1

f(x) dx ≈ f

(︄
−
√
3

3

)︄
+ f

(︄√
3

3

)︄
. (7.43)

Example 7.11. We compute the approximation of the integral of f(x) = ex on the interval
[−1, 1]. The Gaussian formula (7.43) yields∫︂ 1

−1
ex dx ≈ e−

√
3

3 + e
√
3

3 = 2.3426961.

Comparing it with the exact value e−1/e = 2.350424 we get that the error of the approximation
is 0.0077062, which is small, compared to the simplicity of the formula.

□

We need the notion of orthogonal functions. The functions f and g are called orthog-
onal on the interval [a, b] if ∫︂ b

a

f(x)g(x) dx = 0.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

7.4. Gaussian Quadrature 155

We show that there exists a sequence of functions (Pi)i=0,1,... which are pairwise or-
thogonal on the interval [−1, 1], and Pi is a polynomial of degree i. Let P0(x) := 1 and
P1(x) := x. Then P0 and P1 are orthogonal on [−1, 1]. We are looking for P2 in the form
P2(x) = x2 + a2,1P1(x) + a2,0P0(x). Then the requested orthogonality yields

0 =

∫︂ 1

−1

P2(x)P0(x) dx

=

∫︂ 1

−1

x2P0(x) dx+ a2,1

∫︂ 1

−1

P1(x)P0(x) dx+ a2,0

∫︂ 1

−1

P 2
0 (x) dx

=

∫︂ 1

−1

x2P0(x) dx+ a2,0

∫︂ 1

−1

P 2
0 (x) dx,

which gives

a2,0 = −
∫︁ 1

−1
x2P0(x) dx∫︁ 1

−1
P 2
0 (x) dx

.

Similarly,

0 =

∫︂ 1

−1

P2(x)P1(x) dx

=

∫︂ 1

−1

x2P1(x) dx+ a2,1

∫︂ 1

−1

P 2
1 (x) dx+ a2,0

∫︂ 1

−1

P0(x)P1(x) dx

=

∫︂ 1

−1

x2P1(x) dx+ a2,1

∫︂ 1

−1

P 2
1 (x) dx,

so

a2,1 = −
∫︁ 1

−1
x2P1(x) dx∫︁ 1

−1
P 2
1 (x) dx

.

We found a unique P2 of this form. We can continue this procedure. If P0,. . . , Pi are
already defined, then we are looking for Pi+1 in the form

Pi+1(x) = xi+1 + ai+1,iPi(x) + · · ·+ ai+1,0P0(x). (7.44)

Then, similarly to the previous computation, we get

ai+1,j = −
∫︁ 1

−1
xi+1Pj(x) dx∫︁ 1

−1
P 2
j (x) dx

, j = 0, 1, . . . , i, (7.45)

so Pi+1 can be defined uniquely. This method is called Gram–Schmidt orthogonalization,
and the resulting polynomial Pi is called Legendre polynomial of degree i. The formulas

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

156 7. Numerical Differentiation and Integration

of the first five Legendre polynomials are:

P0(x) = 1,

P1(x) = x,

P2(x) = x2 − 1

3
,

P3(x) = x3 − 3

5
x,

P4(x) = x4 − 6

7
x2 +

3

35
.

It can be shown that the Legendre polynomials satisfy the recursion

Pn+1(x) = xPn(x)−
n2

4n2 − 1
Pn−1(x). (7.46)

The next theorem summarizes the most important properties of the Legendre polynomials.

Theorem 7.12. Let Pi be the ith Legendre polynomial. Then

1. Pi is orthogonal to any polynomial with degree at most i− 1.

2. Pi is even if i is even, and it is odd if i is odd.

3. Pi has i distinct real roots in the interval (−1, 1), and they are symmetric to the
origin.

4. If (pi)i=0,1,... is a sequence of polynomials of degree (exactly) i, which are pairwise
orthogonal, then pi(x) = ciPi(x) for all i for some constant ci ̸= 0.

The next theorem shows that the mesh points of the n-point Gaussian quadrature
formula defined on the interval [−1, 1] are the roots of the nth-order Legendre polynomial
Pn.

Theorem 7.13. Let x1, x2, . . . , xn be the roots of the nth Legendre polynomial Pn, and
let

ci =

∫︂ 1

−1

(x− x1) · · · (x− xi−1)(x− xi+1) · · · (x− xn)

(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
dx. (7.47)

Then, for any polynomial p of degree at most 2n− 1, it follows∫︂ 1

−1

p(x) dx =
n∑︂

i=1

cip(xi).

The next result gives the truncation error of the Gaussian quadrature.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

7.4. Gaussian Quadrature 157

Theorem 7.14. Let f ∈ C2n[−1, 1]. Then there exists ξ ∈ (−1, 1) such that the n-point
Gaussian quadrature formula satisfies∫︂ 1

−1

f(x) dx =
n∑︂

k=1

ckf(xk) +
f (2n)(ξ)

(2n)!

∫︂ 1

−1

P 2
n(x) dx.

It can be shown that the error term in the previous theorem has the form

πf (2n)(ξ)

4n(2n)!
,

which gives that if f (2n) is bounded for all n with a bound independent of n, then the
error of the Gaussian quadrature goes to 0 exponentially. Note that the error in the
Newton–Cotes formulas tends to 0 only with polynomial speed if n→∞.

Table 7.6 presents the roots of the first several Legendre polynomials and the corre-
sponding coefficients.

Table 7.6: The parameters of the Gaussian quadrature formulas

n xi ci
2 0.5773502692 1.0000000000

-0.5773502692 1.0000000000

3 0.7745966692 0.5555555556
0.0000000000 0.8888888889
-0.7745966692 0.5555555556

4 0.8611363116 0.3478548451
0.3399810436 0.6521451549
-0.3399810436 0.6521451549
-0.8611363116 0.3478548451

5 0.9061798459 0.2369268850
0.5384693101 0.4786286705
0.0000000000 0.5688888889
-0.5384693101 0.4786286705
-0.9061798459 0.2369268850

The Gaussian quadrature formulas can be applied to the case when the interval is
[−1, 1]. But in case of an arbitrary interval [a, b], the new variable x = ((b−a)t+a+ b)/2
transforms the computation of the integral to the interval [−1, 1]:∫︂ b

a

f(x) dx =
b− a

2

∫︂ 1

−1

f

(︃
(b− a)t+ a+ b

2

)︃
dt.

Example 7.15. Approximate the integral
∫︁ 1
0 x2ex dx using the two-point Gaussian quadrature:∫︂ 1

0
x2ex dx =

1

2

∫︂ 1

−1

(︃
t+ 1

2

)︃2

e(t+1)/2 dt

≈ 1

2

⎛⎝(︄−√3/3 + 1

2

)︄2

e(−
√
3/3+1)/2 +

(︄√
3/3 + 1

2

)︄2

e(
√
3/3+1)/2

⎞⎠
= 0.7119418.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

158 7. Numerical Differentiation and Integration

The error of this approximation is 0.0063400. □

Exercises

1. Apply the 2-point Gaussian quadrature to the integrals given in Exercise 1 of the previous
section.

2. Apply the 3-, 4- and 5-point Gaussian quadrature formulas to the integrals given in Ex-
ercise 1 of the previous section.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

Chapter 8

Minimization of Functions

In this chapter we investigate the minimization of single and several variable real
functions. We study only the minimization, since a function f(x) takes its maximum at a
point where the corresponding function −f(x) takes its minimum, so finding a maximum
of a function can be reduced to minimization.

We classify minimization algorithms into three groups: methods which do not use
derivatives, methods which use only first and which use also second derivatives of a func-
tion. In the first class we study the golden section search, the simplex and the Nelder–
Mead methods. In the second class we consider the gradient method, and in the third
class we define the Newton’s method. The quasi-Newton methods can be considered
as algorithm in the third class where not the exact values of the derivatives, but their
approximate values are used.

8.1. Review of Calculus

Theorem 8.1. Let f : Rn → R be partially differentiable with respect to all variables.
Then if f has a local extremum at the point a ∈ Rn, then ∂f(a)

∂xi
= 0 holds for all i =

1, . . . , n.
If f ∈ C2 and f ′(a) = 0 for some a ∈ Rn, moreover, the Hessian matrix f ′′(a) is

positive (negative) definite, then f has a local minimum (maximum) at the point a.

For two-variable functions we have the following special case of the previous result.

Theorem 8.2. Let f : R2 → R, f ∈ C2. Then if f has a local extremum at the point
(a, b), then

∂f

∂x
(a, b) = 0,

∂f

∂y
(a, b) = 0 (8.1)

holds.
On the other hand, if relation (8.1) holds at a point (a, b), and

D(a, b) :=
∂2f

∂x2
(a, b) · ∂

2f

∂y2
(a, b)−

(︃
∂2f

∂x ∂y
(a, b)

)︃2

> 0,

then f has a local extremum point at (a, b). Moreover, f has a local maximum at (a, b) if
∂2f
∂x2 (a, b) < 0, and it has a local minimum at (a, b) if ∂2f

∂x2 (a, b) > 0. If D(a, b) < 0, then f
has no extremum at (a, b).

160 8. Minimization of Functions

8.2. Golden Section Search Method

Let f : [a, b]→ R be continuous, and suppose that it is a unimodal function, i.e., it has a
unique minimum point in the interval [a, b]. This holds if, e.g., the function is convex on
[a, b], but it is not necessary (see, e.g. the second and third functions in Figure 8.1). Let
p be the (unique) minimum point of f .

a b a b a b

Figure 8.1: Unimodal functions

The golden section search method is similar to the bisection method in the sense that
we define a sequence of nested intervals which all contains the minimum point p of f : Let
a < y < x < b. If f(x) > f(y), then p ∈ [a, x], otherwise p ∈ [y, b] holds. (See Figure 8.2.)
Then we repeat the procedure with the interval [a, x] or [y, b].

a y x b

Figure 8.2:

We define the points x and y so that the length of the intervals [a, x] and [y, b] be the
same: x− a = b− y = r(b− a) for some 0 < r < 1. Then

x = a+ r(b− a), y = a+ (1− r)(b− a) (8.2)

hold. The assumption x > y implies that 0.5 < r < 1 must be satisfied. We denote the
next interval by [a′, b′]. We specify the next mesh points x′ and y′ by the rule (8.2), and
comparing the functions values f(x′) and f(y′) we determine the next interval. We have
not defined the ratio r yet. In case of the golden section search method, r is defined so
that one of the new mesh points x′ and y′ should coincide with one of the previous mesh
points in order in each steps we should evaluate only one new function value.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

8.2. Golden Section Search Method 161

a y x b

a′ y′ x′ b′

Figure 8.3:

Figure 8.3 demonstrates the situation when in the next step the minimum point is
located in the right interval [y, b]. Then we require that y′ = x be a mesh point in the
next step. Then the following relations are satisfied:

a+ r(b− a) = y′

= a′ + (1− r)(b′ − a′)

= y + (1− r)(b− y)

= a+ (1− r)(b− a) + (1− r)(b− a− (1− r)(b− a)),

and so
r = 1− r + (1− r)(1− (1− r)),

which yields equation
r2 + r − 1 = 0 (8.3)

for the ratio r. Its positive solution is r = (
√
5− 1)/2 ≈ 0.61834. This is the ratio of the

golden section, since r satisfies the equation

r

1− r
=

1

r
.

In the opposite case when the minimum point is located in the interval [a, x], and we
select x′ and y′ so that x′ = y be satisfied. It can be shown easily (see Exercise 3) that
this yields the same equation (8.3).

Algorithm 8.3. Golden section search method

INPUT: f(x) - function to minimze
[a, b] - interval
ε - tolerance

OUTPUT: p - approximation of the minimum point

r ← (
√
5− 1)/2

x← a+ r(b− a)
y ← a+ (1− r)(b− a)
fx← f(x)
fy ← f(y)
while (b− a) > ε do

if fx > fy do
b← x

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

162 8. Minimization of Functions

x← y
fx← fy
y ← a+ (1− r)(b− a)
fy ← f(y)

else do
a← y
y ← x
fy ← fx
x← a+ r(b− a)
fx← f(x)

end do
end do
output((a+ b)/2)

The next result can be shown.

Theorem 8.4. Let f ∈ C[a, b] be a unimodal function. Then the golden section search
method converges to the minimum point of the function f .

It is easy to compute that the length of the interval after n steps is (b− a)rn. Hence
to reach ε tolerance in Algorithm 8.3

n ≥
log ε

b−a

log r
(8.4)

steps are required.

Example 8.5. Find the minimum point of the function f(x) = x2 − 0.8x + 1. It can be
easily checked that its minimum point is p = 0.4. We applied Algorithm 8.3 with the starting
interval [−1, 2] and tolerance ε = 0.005. Formula (8.4) yields that n ≥ 13.29337586 steps
are needed to reach the required precision. The corresponding numerical results can be seen in
Table 8.1. Therefore, the minimum point is located in the interval [0.3977741449, 0.4013328688].
The Algorithm 8.3 is formulated so that its output is the midpoint of the last interval, i.e.,
0.3995535068. □

Exercises

1. Approximate the minimum point of the following functions using the golden section search
method on the given interval:

(a) f(x) = x3 − 3x+ 1, x ∈ [−1, 2], (b) f(x) = | cosx|, x ∈ [0, 2],

(c) f(x) = 1− 10xe−x, x ∈ [0, 2], (d) f(x) = cos(x2 − x), x ∈ [1, 3].

2. Apply the golden section search method for the function f(x) = −1/x2 on the interval
[−1, 1]. What do you observe?

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

8.3. Simplex Method 163

Table 8.1: Golden section search method, f(x) = x2 − 0.8x+ 1

k [ak, bk] yk xk

0 [-1.0000000000, 2.0000000000] 0.1458980338 0.8541019662
1 [-1.0000000000, 0.8541019662] -0.2917960675 0.1458980338
2 [-0.2917960675, 0.8541019662] 0.1458980338 0.4164078650
3 [0.1458980338, 0.8541019662] 0.4164078650 0.5835921350
4 [0.1458980338, 0.5835921350] 0.3130823038 0.4164078650
5 [0.3130823038, 0.5835921350] 0.4164078650 0.4802665738
6 [0.3130823038, 0.4802665738] 0.3769410125 0.4164078650
7 [0.3769410125, 0.4802665738] 0.4164078650 0.4407997213
8 [0.3769410125, 0.4407997213] 0.4013328688 0.4164078650
9 [0.3769410125, 0.4164078650] 0.3920160087 0.4013328688
10 [0.3920160087, 0.4164078650] 0.4013328688 0.4070910050
11 [0.3920160087, 0.4070910050] 0.3977741449 0.4013328688
12 [0.3977741449, 0.4070910050] 0.4013328688 0.4035322811
13 [0.3977741449, 0.4035322811] 0.3999735572 0.4013328688
14 [0.3977741449, 0.4013328688] 0.3991334565 0.3999735572

3. Prove that if [a′, b′] = [a, x] is selected in golden section search then x′ = y is satisfied if r
is a solution of equation (8.3).

4. Prove Theorem 8.4.

5. Check formula (8.4).

8.3. Simplex Method

An n-dimensional simplex is a convex hull of n+1 number of n-dimensional vectors, i.e.,
the closed set

{α0x
(0) + · · ·+ αnx

(n) : 0 ≤ αi ≤ 1, α0 + · · ·+ αn ≤ 1},

where the vectors x1 − x0,x2 − x0, . . . ,xn − x0 are linearly independent. The vectors
x(0),. . . ,x(n) are called the vertices of the simplex. The 1-dimensional simplexes are the line
segments, the 2-dimensional simplexes are the triangles, and the 3-dimensional simplexes
are the tetrahedrons.

The simplex method is used to approximate the minimum point of a function of n
variables. Consider a starting n-dimensional simplex. First we find the “worst” vertex,
i.e., the vertex where the function takes the largest function value. Let this point be the
vector x(j). Then we reflect the simplex over the center of the best n vertices, i.e., to the
point

xc :=
1

n

n∑︂
i=0
i ̸=j

x(i).

The reflected point is given by the formula

xr = 2xc − x(j).

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

164 8. Minimization of Functions

If f(xr) is not smaller than the largest function value of the previous step, i.e., f(x(j)),
then we discard the reflection, and instead of it, we shrink the simplex to half of its size
from its “best” vertex: let x(k) be the best vertex, i.e., the vertex where the function takes
the smallest function value. Then we recompute all the other vertices by the formula

x(i) ← x(k) +
1

2
(x(i) − x(k)), i = 0, 1, . . . , k − 1, k + 1, . . . , n.

We repeat the previous steps for the resulting (reflected or shrinked) simplex.
We can define several different stopping criteria to this method, or we can use combina-

tions of these methods. For example, we can stop the method when the simplex becomes
smaller than a predefined tolerance size. The size of the simplex can be defined, e.g., as
the length of its longest edge, i.e., by the number max{∥x(i) − x(j)∥ : i, j = 0, . . . , n}.
Another option is that we apply the stopping criterion |fk+1 − fk| < ε, where fk denotes
the function value at the center of the kth simplex. A third criterion can be the following:
Let f̄ be the average of the function values at the vertices, and σ be its standard deviation,
i.e.,

f̄ :=
1

n+ 1

n∑︂
i=0

f(x(i)), σ :=

⌜⃓⃓⎷ 1

n+ 1

n∑︂
i=0

(f(x(i))− f̄)2.

We interrupt the iteration when σ becomes smaller than a tolerance. The center of the
simplex can be used as an approximation of the minimum point. Finally, we can apply
conditions (i) or (ii) of Section 4.4 for the sequence of the center points to set up a stopping
criterion.

Example 8.6. Find the minimum point of the function f(x, y) = (x2 − 2y)2 + 2(x− 1)2. It is
easy to see that the (global) minimum point of the function is (1, 0.5), and the minimal function
value is 0. We use the simplex method to approximate the minimum point. We use the starting
simplex corresponding to the vertices (−2, 4), (−1, 4) and (−1.5, 5). The numerical values of
the first 25 steps of the method can be seen in Table 8.2. The center of the 25th simplex is
(0.9063, 0.3542), which is a good approximation of the exact minimum point. The corresponding
function value is 0.0303 which is close to the true minimum 0. In Figure 8.4 the contour lines
(level curves) of the function and the sequence of the simplexes (triangles) can be seen. The
blue dot represents the exact minimum point. □

A variant of the simplex method is the Nelder–Mead method. Here we reflect, expand
or contract the simplex in the following way. Suppose that in each steps the vertices are
indexed so that f(x(0)) ≤ f(x(1)) ≤ · · · ≤ f(x(n)). Then x(n) is the “worst” vertex, so we
reflect it over the center of the remaining points, i.e., over the point

xc =
1

n

n−1∑︂
i=0

x(i).

The reflected point is xr = 2xc − x(n). We evaluate the function value f(xr). We
distinguish three cases: (i) f(x(0)) < f(xr) < f(x(n−1)), (ii) f(xr) ≤ f(x(0)), so xr

would be the new best vertex, and (iii) f(xr) ≥ f(x(n−1)), i.e., xr would be the new worst
vertex.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

8.3. Simplex Method 165

Table 8.2: Simplex method, f(x, y) = (x2 − 2y)2 + 2(x− 1)2

k x(k,1) x(k,2) x(k,3) f(x(k,1)) f(x(k,2)) f(x(k,3))

0 (-1.000, 4.000) (-2.000, 4.000) (-1.500, 5.000) 57.000 34.000 72.563
1 (-2.000, 4.000) (-1.000, 4.000) (-1.500, 3.000) 34.000 57.000 26.563
2 (-1.500, 3.000) (-2.000, 4.000) (-2.500, 3.000) 26.563 34.000 24.563
3 (-2.500, 3.000) (-1.500, 3.000) (-2.000, 2.000) 24.563 26.563 18.000
4 (-2.000, 2.000) (-2.250, 2.500) (-1.750, 2.500) 18.000 21.129 18.879
5 (-2.000, 2.000) (-1.750, 2.500) (-1.500, 2.000) 18.000 18.879 15.563
6 (-1.500, 2.000) (-2.000, 2.000) (-1.750, 1.500) 15.563 18.000 15.129
7 (-1.750, 1.500) (-1.500, 2.000) (-1.250, 1.500) 15.129 15.563 12.191
8 (-1.250, 1.500) (-1.750, 1.500) (-1.500, 1.000) 12.191 15.129 12.563
9 (-1.250, 1.500) (-1.500, 1.000) (-1.000, 1.000) 12.191 12.563 9.000
10 (-1.000, 1.000) (-1.250, 1.500) (-0.750, 1.500) 9.000 12.191 12.066
11 (-1.000, 1.000) (-0.750, 1.500) (-0.500, 1.000) 9.000 12.066 7.563
12 (-0.500, 1.000) (-1.000, 1.000) (-0.750, 0.500) 7.563 9.000 6.316
13 (-0.750, 0.500) (-0.500, 1.000) (-0.250, 0.500) 6.316 7.563 4.004
14 (-0.250, 0.500) (-0.750, 0.500) (-0.500, 0.000) 4.004 6.316 4.563
15 (-0.250, 0.500) (-0.500, 0.000) (0.000, 0.000) 4.004 4.563 2.000
16 (0.000, 0.000) (-0.250, 0.500) (0.250, 0.500) 2.000 4.004 2.004
17 (0.000, 0.000) (0.250, 0.500) (0.500, 0.000) 2.000 2.004 0.563
18 (0.500, 0.000) (0.250, 0.000) (0.375, 0.250) 0.563 1.129 0.910
19 (0.500, 0.000) (0.375, 0.250) (0.625, 0.250) 0.563 0.910 0.293
20 (0.625, 0.250) (0.500, 0.000) (0.750, 0.000) 0.293 0.563 0.441
21 (0.625, 0.250) (0.750, 0.000) (0.875, 0.250) 0.293 0.441 0.102
22 (0.875, 0.250) (0.750, 0.250) (0.813, 0.125) 0.102 0.129 0.239
23 (0.875, 0.250) (0.750, 0.250) (0.813, 0.375) 0.102 0.129 0.078
24 (0.813, 0.375) (0.875, 0.250) (0.938, 0.375) 0.078 0.102 0.024
25 (0.938, 0.375) (0.875, 0.375) (0.906, 0.313) 0.024 0.031 0.056

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

0

1

2

3

4

5

Figure 8.4: Simplex method.

In case (i) we replace x(n) by xr (i.e., we accept the reflection), and continue the
iteration.

In case (ii) we expand the simplex in the direction of xr hoping that we get an even

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

166 8. Minimization of Functions

better point. Let

xe := xc + α(xr − xc),

where α > 1 is a fixed constant (a parameter of the method). If f(xe) < f(x(0)) holds,
then the expansion is considered to be successful, and we replace x(n) by xe. Otherwise
we replace x(n) by xr, i.e., the reflection is performed but we do not expand the simplex.

In case (iii) we think that the reflection is too far from x(n), so we try to contract the
simplex. Let

xz :=

{︃
xc − β(xr − xc), if f(x(n)) < f(xr),
xc + β(xr − xc), if f(x(n)) ≥ f(xr),

where 0 < β < 1 is another parameter. If f(xz) < min{f(x(n)), f(xr)}, then x(n) is
replaced by xz. Otherwise we shrink the simplex to its half size from its best point:

x(i) ← x(0) +
1

2
(x(i) − x(0)), i = 1, . . . , n.

Example 8.7. We apply the Nelder–Mead method with parameters α = 1.4 and β = 0.7
for the function f(x, y) = (x2 − 2y)2 + 2(x − 1)2 considered in Example 8.6. We start from
the same initial simplex (−2, 4), (−1, 4) and (−1.5, 5). The first 17 terms of the resulting
sequence of vertices can be seen in Table 8.3 and in Figure 8.5. The center of the 17th triangle
is (1.0071, 0.5929), and the corresponding function value is 0.0295. We can observe that for
this example the Nelder–Mead method converges faster to the minimum point than the simplex
method. □

Table 8.3: Nelder–Mead method, f(x, y) = (x2 − 2y)2 + 2(x− 1)2, α = 1.4, β = 0.7

k x(k,1) x(k,2) x(k,3) f(x(k,1)) f(x(k,2)) f(x(k,3))

0 (-1.000, 4.000) (-2.000, 4.000) (-1.500, 5.000) 57.000 34.000 72.563
1 (-2.000, 4.000) (-1.000, 4.000) (-1.500, 2.600) 34.000 57.000 21.203
2 (-1.500, 2.600) (-2.000, 4.000) (-2.500, 2.600) 21.203 34.000 25.603
3 (-1.500, 2.600) (-2.500, 2.600) (-2.000, 1.200) 21.203 25.603 20.560
4 (-2.000, 1.200) (-1.500, 2.600) (-0.700, 0.920) 20.560 21.203 7.602
5 (-0.700, 0.920) (-2.000, 1.200) (-1.200,-0.480) 7.602 20.560 15.440
6 (-0.700, 0.920) (-1.200,-0.480) (0.520,-1.152) 7.602 15.440 7.088
7 (0.520,-1.152) (-0.700, 0.920) (1.464, 0.394) 7.088 7.602 2.270
8 (1.464, 0.394) (0.520,-1.152) (-0.192, 0.530) 2.270 7.088 3.891
9 (1.464, 0.394) (-0.192, 0.530) (0.555,-0.668) 2.270 3.891 3.097
10 (1.464, 0.394) (0.555,-0.668) (0.168, 0.330) 2.270 3.097 1.783
11 (0.168, 0.330) (1.464, 0.394) (0.999, 1.083) 1.783 2.270 1.362
12 (0.999, 1.083) (0.168, 0.330) (1.200, 0.487) 1.362 1.783 0.296
13 (1.200, 0.487) (0.999, 1.083) (0.448, 0.467) 0.296 1.362 1.147
14 (1.200, 0.487) (0.448, 0.467) (0.648,-0.129) 0.296 1.147 0.707
15 (1.200, 0.487) (0.648,-0.129) (0.591, 0.380) 0.296 0.707 0.505
16 (1.200, 0.487) (0.591, 0.380) (1.068, 0.828) 0.296 0.505 0.274
17 (1.068, 0.828) (1.200, 0.487) (0.754, 0.464) 0.274 0.296 0.251

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

8.4. Gradient Method 167

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

0

1

2

3

4

5

Figure 8.5: Nelder–Mead method with α = 1.8 and β = 0.6.

Exercises

1. Find the minimum point of the functions

(a) f(x, y) = x2 + 5y2, (b) f(x, y) = x2 + (x+ y − 2)2,

(c) f(x, y) = 3x2 + e(x−y)2 , (d) f(x, y) = x2 + cos2(x− y)

with the Nelder–Mead method. Use the method with different parameter values α and β

(including α = 1 = β, i.e., the simplex method).

2. Apply the Nelder–Mead method with some parameter values α > 1 and 0 < β < 1 for the
function f(x) = x2 − y2 using the initial simplex vertices [0, 1], [0,−1], [1, 0]. What do
you observe? What do you observe if you use the simplex method for the same problem?

3. Formulate the simplex method for functions of one variable, and apply it for the problems
given in Exercise 1 of Section 8.2.

4. Consider the following method for minimization of real functions of two variables: let f be

a function of two variables, (p
(0)
1 , p

(0)
2) be a given initial point. Minimize the function of one

variable t ↦→ f(p
(0)
1 +t, p

(0)
2) (for example, with the simplex method defined in the previous

exercise). Let t1 be the minimum point, and define (p
(1)
1 , p

(1)
2) := (p

(0)
1 + t1, p

(0)
2). Then

minimize the function of single variable t ↦→ f(p
(1)
1 , p

(1)
2 + t). Let t2 be its minimum point,

and then we repeat the method above starting from the point (p
(2)
1 , p

(2)
2) := (p

(1)
1 , p

(1)
2 +t2).

So repeatedly, minimizing the function along with x- and y-axes we get the next element
of the sequence. Apply this method for the functions defined in Exercise 1. Compare the
speed of the convergence with that of the Nelder–Mead method.

8.4. Gradient Method

Consider a function f : Rn → R. It is known from calculus that at a point p the most
rapid decrease of the function f is in the direction of the vector −f ′(p):

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

168 8. Minimization of Functions

Theorem 8.8. Let f ∈ C1. Then the directional derivatives

lim
t→0+

f(p+ tu)− f(p)

t
, ∥u∥2 = 1

has a minimum for the direction u = −f ′(p)/∥f ′(p)∥2.

A direction u is called a descent of a function f at the point p if there exists δ > 0
such that f(p + tu) < f(p) for all 0 < t < δ, i.e., the function decreases at the point p
in the direction of u. Theorem 8.8 can be interpreted so that the steepest descent of f at
the point p is in the direction −f ′(p).

The gradient method is based on the previous observation that starting from a point
p(0) we should step forward in the direction of the negative gradient vector. This method
is also called the steepest descent method. We define it as follows:

p(k+1) = p(k) − αkf
′(p(k)), (8.5)

where the scaling parameter αk determines the step size. The gradient method (8.5) has
several variants. The simplest case is when the step size is constant. Let h > 0 be fixed,
and use the factor αk = h/∥f ′(p(k))∥2. Then the distance between the consecutive points
is constant h. Then, in general, the method cannot approximate the exact minimum point
better than h.

Another variant is that we select αk so that

ϕk(αk) = min
t∈R

ϕk(t)

be satisfied, where

ϕk(t) := f
(︂
p(k) − tf ′(p(k))

)︂
. (8.6)

Then in each step we have to minimize a function of a single variable along with the
direction of the negative gradient. This version of the gradient method is called optimal
gradient method.

Using the optimal gradient method we step forward from a point in the direction of the
negative gradient into a point where the line is tangent to the contour line (level curve)
of the function f . This implies that the consecutive directions are perpendicular to each
other. (See Exercise 3.)

It can be shown that the optimal gradient method is locally linearly convergent. But
the asymptotic error constant can be close to 1, so the convergence can be slow.

Example 8.9. We consider again the function f(x, y) = (x2 − 2y)2 + 2(x − 1)2 examined in
Examples 8.6 and 8.7 and we use the gradient method to find its minimum point. First we use
the gradient method with the scaling factor αk = 0.3/∥f ′(p(k))∥2, i.e., with the constant step
size 0.3. The first 21 terms of the sequence can be seen in Figure 8.6 starting from the initial
point (−1, 4) (red circles) and from the initial point (0.5, 3.5) (green circles). The sequences
approximate the minimum point (1, 0.5) (blue dot) slowly, and oscillates around it. Note that,
as it is known in calculus, the gradient vector is always perpendicular to the contour line through
that point, so the gradient method steps in a direction perpendicular to the contour line.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

8.5. Solving Linear Systems with Gradient Method 169

Next we apply the optimal gradient method from the initial points (−1, 4) (red circles) and
(0.5, 3.5) (green circles), respectively. We plotted the first 3 and 12 terms of the corresponding
sequences in Figure 8.7. The first sequence gets very close to the minimizer (blue dot) in two
steps, and then approaches further to the minimum point. The second sequence enters quickly
into the “valley“ of the contour lines containing the minimum point, but there it zigzags slowly
towards the minimum point. □

−2 −1 0 1 2
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 8.6: Gradient method with
constant step size.

−2 −1 0 1 2
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 8.7: Optimal gradient method.

If we cannot or do not want to compute the gradient vector exactly, then we can use
the following variant of the method (8.5):

p(k+1) = p(k) − αkv
(k), (8.7)

where the ith component of the vector v(k) is defined by

v
(k)
i =

1

h

(︂
f(p(k) + he(i))− f(p(k))

)︂
, i = 1, . . . , n,

and here e(i) is the ith unit vector.

Exercises

1. Apply the gradient method for the functions given in Exercise 1 of Section 8.3. Select any
initial point, and use the constant step size αk = h/∥f ′(p(k))∥2 with some h > 0, and also
use the optimal gradient method.

2. Repeat the previous problem using the scale αk = h with some h > 0.

3. Compute the derivative of the function ϕk defined by (8.6). Using the value of the deriva-

tive at t = αk show that the vectors p(k+2) − p(k+1) and p(k+1) − p(k) are orthogonal.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

170 8. Minimization of Functions

8.5. Solving Linear Systems with Gradient Method

Let A ∈ Rn×n be a symmetric matrix, b ∈ Rn, c ∈ R, and consider the quadratic function

g : Rn → R, g(x) :=
1

2
xTAx− bTx+ c. (8.8)

Using the notations A = (aij), x = (x1, . . . , xn)
T , b = (b1, . . . , bn)

T we have the following
form of g:

g(x1, . . . , xn) =
1

2

n∑︂
i=1

n∑︂
j=1

aijxixj −
n∑︂

i=1

bixi + c.

Compute the partial derivative ∂g
∂xi

. Since aij = aji, we get

∂g

∂xi

(x1, . . . , xn) =
1

2

n∑︂
j=1

(aijxj + ajixj)− bi =
n∑︂

j=1

aijxj − bi.

Therefore, in a vectorial form we have

g′(x) =

(︃
∂g

∂x1

(x), . . . ,
∂g

∂xn

(x)

)︃T

= Ax− b. (8.9)

Hence if A is invertible, then g has exactly one critical point, which is the solution of the
linear system Ax = b. Let x̄ be the critical point of g, and x = x̄+∆x.

g(x̄+∆x) =
1

2
(x̄+∆x)TA(x̄+∆x)− bT (x̄+∆x) + c

=
1

2
x̄TAx̄+

1

2
x̄TA∆x+

1

2
(∆x)TAx̄+

1

2
(∆x)TA∆x

− bT x̄− bT∆x+ c.

So using the relations A = AT , x̄TA∆x = (∆x)TAx̄, bT∆x = (∆x)Tb and Ax̄ = b, we
get

g(x̄+∆x) =
1

2
x̄TAx̄− bT x̄+ (∆x)T (Ax̄− b) +

1

2
(∆x)TA∆x+ c

= g(x̄) +
1

2
(∆x)TA∆x.

Therefore,

g(x̄+∆x)− g(x̄) =
1

2
(∆x)TA∆x. (8.10)

If A is positive definite, then g(x̄ + ∆x) − g(x̄) > 0 for all vectors ∆x ̸= 0, hence
x̄ minimizes the function g. Similarly, if A is negative definite, then it follows from
equation (8.10) that g has a maximum at x̄. All positive or negative definite matrices are
invertible by Theorem 3.9. Hence we proved the following result.

Theorem 8.10. Let A be symmetric. Then the gradient vector of the quadratic function
g(x) := 1

2
xTAx− bTx+ c is g′(x) = Ax− b. If A is positive (negative) definite, then g

has a global minimum (maximum), which is taken at the point x = A−1b.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

8.5. Solving Linear Systems with Gradient Method 171

The proof of the previous result yields easily:

Corollary 8.11. If a quadratic function has a local minimum (maximum) at a point,
then there the function has also global minimum (maximum).

If A is a symmetric positive definite matrix, then Theorem 8.10 yields that the linear
system Ax = b can be solved that we define the quadratic function g by (8.8), and we
minimize it by the optimal gradient method. Therefore, we define the iteration

p(k+1) = p(k) − αkv
(k),

where
v(k) = g′(p(k)) = Ap(k) − b.

αk is selected so that it be the minimum point of the scalar function ϕk(t) := g(p(k)−tv(k)).
The function ϕk is a quadratic polynomial, since

ϕk(t) =
1

2

(︁
p(k) − tv(k)

)︁T
A
(︁
p(k) − tv(k)

)︁
− bT

(︁
p(k) − tv(k)

)︁
+ c

= t2
1

2

(︁
v(k)

)︁T
Av(k) − t

(︁
v(k)

)︁T
(Ap(k) − b) + c− bTp(k).

Therefore, its minimum point αk can be given explicitly as

αk =

(︁
v(k)

)︁T
(Ap(k) − b)

(v(k))
T
Av(k)

.

Introducing the residual vector r(k) = b −Ap(k), the method can be summarized in the
following way:

r(k) = b−Ap(k) (8.11)

αk =

(︁
r(k)
)︁T

r(k)

(r(k))
T
Ar(k)

(8.12)

p(k+1) = p(k) + αkr
(k). (8.13)

Example 8.12. Consider the linear system

4x1 + 2x2 − x3 = 0
2x1 + 5x2 = 8
−x1 + 3x3 = 1.

We applied the optimal gradient method (8.11)-(8.13) with the initial point p(0) = (3, 3, 3)T .
Note that the method is applicable since the coefficient matrix of the linear system is symmetric
and positive definite. The first 13 terms of the sequence p(k) are listed in Table 8.4 together
with the error of the approximation. Note, the true solution is (−1, 2, 0). □

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

172 8. Minimization of Functions

Table 8.4: Solving the linear system with gradient method

k p(k) ∥p(k) − p∥2
0 (3.00000000, 3.00000000, 3.00000000) 5.09901951
1 (0.43469388, 0.77673469, 2.14489796) 2.85575065
2 (0.03799038, 1.89938726, 0.41611180) 1.12280719
3 (-0.59954375, 1.61568290, 0.37817223) 0.67162421
4 (-0.75093609, 1.98854968, 0.13393796) 0.28302529
5 (-0.90321440, 1.90857051, 0.10622765) 0.17032651
6 (-0.93575911, 1.99605148, 0.03257991) 0.07213829
7 (-0.97504377, 1.97631917, 0.02650106) 0.04342696
8 (-0.98365956, 1.99904876, 0.00839916) 0.01839730
9 (-0.99365117, 1.99398134, 0.00679190) 0.01107528
10 (-0.99583018, 1.99975420, 0.00213698) 0.00469196
11 (-0.99837993, 1.99846385, 0.00173029) 0.00282459
12 (-0.99893668, 1.99993749, 0.00054530) 0.00119662
13 (-0.99958687, 1.99960829, 0.00044139) 0.00072037

Exercises

1. Show that any quadratic function

g(x) =

n∑︂
i=1

n∑︂
j=1

ãijxixj +

n∑︂
i=1

b̃ixi + c

can be written in the form (8.8). How can g′(x) and g′′(x) be given using a matrix
notation?

2. Prove Corollary 8.11.

3. Check the derivation of formulas (8.11)-(8.13).

4. Apply the gradient method for finding the minimum point of the functions:

(a) f(x, y) = 2x2 − 12x+ 3y2 + 30y, (b) f(x, y) = 2x2 − 4xy + 3y2 − 2y

5. Solve the following linear systems with gradient method:

(a)
4x1 − 3x2 = 4
−3x1 + 3x2 = 3 (b)

6x1 + 3x2 − 2x3 = 6
3x1 + 5x2 − x3 = −4
−2x1 − x2 + 3x3 = −2

6. Let f(x, y) = 1
2x

2 + 9
2y

2. Show that the optimal gradient method started from the initial

point p(0) = (9, 1)T generates the sequence

p(k) =

(︃
9

(−1)k
)︃
0.8k.

What is the asymptotic error constant of this sequence? Give a function and initial value
such that the asymptotic error constant of the sequence generated by the optimal gradient
method is a predefined constant 0 < α < 1.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

8.6. Newton’s Method for Minimization 173

8.6. Newton’s Method for Minimization

Consider a function f : Rn → R, and fix a vector p(0). If f ∈ C3, then in a neighbourhood
of p(0) the function f can be approximated by its second-order Taylor polynomial

g(x) := f(p(0)) + f ′(p(0))T (x− p(0)) +
1

2
(x− p(0))Tf ′′(p(0))(x− p(0)), (8.14)

where f ′(p(0)) is the gradient vector of f , and f ′′(p(0)) is the Hessian matrix of f at
p(0). Suppose that f ′′(p(0)) is positive definite. Then, by Theorem 8.10, g has a global
minimum at the point

p(1) = p(0) −
(︁
f ′′(p(0))

)︁−1
f ′(p(0)).

Then we consider p(1) as an approximation of the minimum point of f , and we repeat the
previous process from the point p(1). We can define the iteration:

p(k+1) = p(k) −
(︁
f ′′(p(k))

)︁−1
f ′(p(k)), (8.15)

which is called Newton’s method for minimization. It is easy to see that it is equivalent
to the Newton’s method for solving the nonlinear system f ′(x) = 0. Therefore, we get
the following result immediately.

Theorem 8.13. Let f : Rn → R, f ∈ C3, f ′(p) = 0 and f ′′(p) be positive definite.
Then f has a local minimum at p, and the Newton’s iteration (8.15) locally quadratically
converges to p.

Proof. We apply Theorem 8.1 to obtain that f has a local minimum at p. Since iteration
(8.15) is equivalent to solving the system f ′(x) = 0 for x = p using Newton’s method,
Theorem 2.56 yields the local quadratic convergence of iteration (8.15) to p. □

Example 8.14. We apply Newton’s method for the function f(x, y) = (x2 − 2y)2 + 2(x− 1)2

of Examples 8.6, 8.7. and 8.9. The first 5 terms of the sequence starting from (−1, 4)T can be
seen in Table 8.5. We observe quick convergence to the minimum point (1, 0.5)T . The numerical
results indicate that the order of convergence is quadratic. We note that the Newton’s iteration
starting from (1, 3)T gives back the exact minimum point in one step. □

Table 8.5: Newton’s method, f(x, y) = (x2 − 2y)2 + 2(x− 1)2

k p(k) f(p(k)) ∥p(k) − p∥2 ∥p(k)−p∥2
∥p(k−1)−p∥22

0 (-1.00000000, 4.00000000) 57.00000000 4.03112887
1 (-1.33333333, 0.83333333) 10.90123457 2.35702260 0.14504754
2 (0.76666667,-1.91111111) 19.55698889 2.42237512 0.43602752
3 (0.80979667, 0.32695523) 0.07235807 0.25714159 0.04382173
4 (0.99964684, 0.48162536) 0.00129935 0.01837803 0.27794212
5 (0.99998771, 0.49998766) 0.00000000 0.00001742 0.05156519

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

174 8. Minimization of Functions

Example 8.15. Consider the function f(x, y) = 0.1(x2 − 2y)4 + (x − 1)2. It is easy to see
that the minimum point of this function is also (1, 0.5)T . It can be checked that the Hessian of
the function at the minimum point is f ′′(1, 0.5) = 0, so it is not positive definite. Despite of
it, the Newton’s method converges for this function starting from (−1, 4)T , as it can be seen in
Table 8.6. But the convergence in this case is only linear.

□

Table 8.6: Newton’s method, f(x, y) = 0.1(x2 − 2y)4 + (x− 1)2

k p(k) f(p(k)) ∥p(k) − p∥2 ∥p(k)−p∥2
∥p(k−1)−p∥2

0 (-1.00000000, 4.00000000) 244.10000000 4.03112887
1 (-1.01468429, 2.84801762) 51.47734819 3.09388745 0.76749902
2 (-1.06550085, 2.12183854) 13.60182932 2.62614813 0.84881825
3 (-1.25304590, 1.80360379) 6.79822461 2.60299802 0.99118476
4 (-2.19917836, 2.64963726) 10.23933318 3.85430701 1.48071838
5 (1.13216300,-4.75372475) 1355.09401353 5.25538684 1.36351018
6 (1.13190045,-2.95581491) 267.68684927 3.45833116 0.65805454
7 (1.13102026,-1.75800646) 52.89017856 2.26180447 0.65401616
8 (1.12811546,-0.96208855) 10.46057564 1.46769088 0.64890263
9 (1.11900871,-0.43955842) 2.07752857 0.94706552 0.64527588
10 (1.09458417,-0.11167347) 0.41720946 0.61894313 0.65353781
11 (1.05056809, 0.07705747) 0.08386326 0.42595483 0.68819704
12 (1.01290080, 0.19574848) 0.01637137 0.30452490 0.71492300
13 (1.00119582, 0.28963767) 0.00320655 0.21036572 0.69079974
14 (1.00003517, 0.35899525) 0.00063312 0.14100475 0.67028386
15 (1.00000031, 0.40597370) 0.00012506 0.09402630 0.66683071
16 (1.00000000, 0.43731559) 0.00002470 0.06268441 0.66666888
17 (1.00000000, 0.45821040) 0.00000488 0.04178960 0.66666668
18 (1.00000000, 0.47214026) 0.00000096 0.02785974 0.66666667
19 (1.00000000, 0.48142684) 0.00000019 0.01857316 0.66666667
20 (1.00000000, 0.48761789) 0.00000004 0.01238211 0.66666667

Exercises

1. Apply the Newton’s method for minimization for the functions defined in Exercise 1 of
Section 8.3.

2. Show that for quadratic functions where the Hessian is positive definite, the Newton’s
method gives back the minimum point of the function exactly in one step.

3. Show that if the conditions of Theorem 8.13 hold and p(0) is close enough to p, then the
sequence (8.15) is defined for all k, i.e., f ′′(p(k)) is invertible.

8.7. Quasi-Newton Method for Minimization

Similarly to the previous section, we approximate the function f : Rn → R in a neigh-
bourhood of p(k) by the quadratic function

g(x) := f(p(k)) +
(︁
v(k)

)︁T
(x− p(k)) +

1

2
(x− p(k))TA(k)(x− p(k)). (8.16)

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

8.7. Quasi-Newton Method for Minimization 175

If v(k) ≈ f ′(p(k)) and A(k) ≈ f ′′(p(k)), then (8.16) approximates the second-order Taylor
polynomial of f around p(k), so it can be considered as an approximation of f in a small
neighbourhood of p(k). We hope that the minimum point of g will approximate that of
f . If A(k) is positive definite, then Theorem 8.10 yields that the minimum point of g is

p(k+1) = p(k) −
(︁
A(k)

)︁−1
v(k). (8.17)

Such iterations are called quasi-Newton methods for minimization.
We can define A(k) and v(k) as a numerical approximation of the Hessian matrix

f ′′(p(k)) and the gradient vector f ′(p(k)): A(k) = (a
(k)
ij) and v(k) = (v

(k)
1 , . . . , v

(k)
n)T , where

a
(k)
ij =

1

h2

(︁
f(p(k) + he(i) + he(j))− f(p(k) + he(i))− f(p(k) + he(j)) + f(p(k))

)︁
(8.18)

and

v
(k)
i =

1

h

(︂
f(p(k) + he(i))− f(p(k))

)︂
,

i, j = 1, . . . , n (e(i) is the ith unit vector, h > 0 is fixed small step size). Here we used
the first-order forward difference formula to approximate the first partial derivatives of f ,
and formulas (7.19)–(7.20) to approximate the second partial derivatives. This way we
do not need to now the exact values of the gradient vector and the Hessian matrix, but
in each step of the iteration we need to perform n2 number of function evaluations.

Next we consider the case when in (8.17) we have the exact gradient value v(k) =
f ′(p(k)), and hence we examine quasi-Newton methods of the form

p(k+1) = p(k) −
(︁
A(k)

)︁−1
f ′(p(k)). (8.19)

Here we assume that we can evaluate the gradient vector of the function, so the question is
only how to approximate the Hessian matrix. One possibility is to use Broyden’s method
defined in Section 2.13 to approximate solutions of the system f ′(x) = 0:

A(k)s(k) = −f ′(p(k)), (8.20)

p(k+1) = p(k) + s(k), (8.21)

y(k) = f ′(p(k+1))− f ′(p(k)), (8.22)

A(k+1) = A(k) +
(y(k) −A(k)s(k))(s(k))T

∥s(k)∥22
. (8.23)

Example 8.16. We apply Broyden’s method defined by (8.20)–(8.23) for minimizing the
function f(x, y) = (x2 − 2y)2 + 2(x− 1)2. We start the sequence from the initial point (2, 2)T ,

and the matrix A(0) is defined as a second-order difference approximation (8.18) of the Hessian
matrix f ′′(2, 2) using step size h = 0.05. The first 10 elements of the sequence can be seen in
Table 8.7. □

The problem with the iteration (8.23) is that since A(k) is an approximation of the
Hessian f ′′(p), it is natural to require that A(k) be positive definite for all k. It is also
needed to argue that the quadratic function (8.16) has a minimum for all k. The numerical

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

176 8. Minimization of Functions

Table 8.7: Broyden’s method for minimization, f(x, y) = (x2 − 2y)2 + 2(x− 1)2

k p(k) f(p(k)) ∥p(k) − p∥2 ∥p(k)−p∥2
∥p(k−1)−p∥2

0 (2.00000000, 2.00000000) 2.00000e+00 1.80277564
1 (1.28952043, 0.56127886) 4.59574e-01 0.29593441 0.16415488
2 (1.35039835, 0.89916410) 2.46195e-01 0.53114121 1.79479368
3 (1.24875073, 0.73204681) 1.32833e-01 0.34018032 0.64047058
4 (1.12570322, 0.59780553) 3.67287e-02 0.15927091 0.46819553
5 (1.05911935, 0.54518730) 7.97359e-03 0.07441095 0.46719737
6 (0.99939685, 0.49649610) 3.43894e-05 0.00355544 0.04778109
7 (1.01133354, 0.50962433) 2.69479e-04 0.01486866 4.18194987
8 (1.00464762, 0.50384065) 4.58758e-05 0.00602918 0.40549562
9 (1.00047293, 0.50036811) 4.91375e-07 0.00059931 0.09940111
10 (1.00008014, 0.50006497) 1.37638e-08 0.00010316 0.17213595

experience also gives that those quasi-Newton methods of the form (8.19) are the most
efficient where A(k) is a positive definite approximation of the Hessian. But the matrix
sequence A(k) generated by the Broyden’s method is not even symmetric.

Our first goal is to modify the Broyden’s method so that it should generate a symmetric
matrix for all k. Suppose A(k) is symmetric, and let

B(k+1,1) = A(k) +
(y(k) −A(k)s(k))(s(k))T

∥s(k)∥22
be the matrix computed by the Broyden iteration. It can be shown (see Exercise 2) that
the closest symmetric matrix to A (in some sense) is the matrix 1

2
(A +AT). Therefore,

it is natural to modify B(k+1,1) in the following way

B(k+1,2) =
1

2

(︂
B(k+1,1) +B(k+1,1)T

)︂
(8.24)

= A(k) +
1

2

(y(k) −A(k)s(k))(s(k))T + s(k)(y(k) −A(k)s(k))T

∥s(k)∥22
.

But now the problem is that the matrix B(k+1,2) does not satisfy the secant equation
A(k+1)s(k) = y(k) which was the motivation of the Broyden’s method. We correct it by
applying relation (8.23) again: let

B(k+1,3) = B(k+1,2) +
(y(k) −B(k+1,2)s(k))(s(k))T

∥s(k)∥22
. (8.25)

This is again a non-symmetric matrix, so we repeat the above procedure again: define the
matrices B(k+1,2i) and B(k+1,2i+1) from the previous term of the sequence using formulas
(8.24) and (8.25), respectively, for i = 2, 3, It can be shown that the matrix sequence
B(k+1,i) converges to the symmetric matrix

A(k+1) = A(k) +
(y(k) −A(k)s(k))(s(k))T + s(k)(y(k) −A(k)s(k))T

∥s(k)∥22

− (y(k) −A(k)s(k))T s(k)

∥s(k)∥42
s(k)(s(k))T . (8.26)

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

8.7. Quasi-Newton Method for Minimization 177

This is a correction iteration which preserves the symmetric property of the matrix, and
also it satisfies the secant equation A(k+1)s(k) = y(k). This iteration is called Powell-
symmetric-Broyden update, or shortly, PSB update. The following result can be shown:

Theorem 8.17. Let f ∈ C3, f ′(p) = 0, f ′′(p) be positive definite. Then there exist
ε, δ > 0 such that the iteration (8.20)–(8.22), (8.26) is defined for all k, and it converges
superlinearly to p if ∥p(0) − p∥2 < ε and ∥A(0) − f ′′(p)∥2 < δ.

Example 8.18. Here we apply the quasi-Newton method (8.19) with the PSB update for the
function f(x, y) = (x2−2y)2+2(x−1)2. We started the computation from the same initial value
that was used in Example 8.16. The corresponding numerical values can be seen in Table 8.8.
The approximation here is better than that of for the Broyden’s method. □

Table 8.8: Quasi-Newton method (8.19) with the PSB update

k p(k) f(p(k)) ∥p(k) − p∥2 ∥p(k)−p∥2
∥p(k−1)−p∥2

0 (2.00000000, 2.00000000) 2.00000e+00 1.80277564
1 (1.28952043, 0.56127886) 4.59574e-01 0.29593441 0.16415488
2 (1.25102079, 0.70409379) 1.50630e-01 0.32352080 1.09321792
3 (1.19910219, 0.73444653) 8.02473e-02 0.30758228 0.95073416
4 (1.14966546, 0.69907469) 5.06393e-02 0.24905919 0.80973192
5 (1.00399514, 0.50473229) 3.40491e-05 0.00619320 0.02486638
6 (0.99975498, 0.49938607) 6.64526e-07 0.00066102 0.10673251
7 (1.00003118, 0.49997474) 1.46839e-08 0.00004012 0.06070113
8 (1.00001593, 0.50000889) 7.05953e-10 0.00001824 0.45466117
9 (1.00000627, 0.50000724) 8.24492e-11 0.00000958 0.52515860

10 (1.00000015, 0.50000024) 7.49020e-14 0.00000028 0.02901243

The PSB update does not satisfy the goal formulated earlier that A(k) be positive
definite for all k if A(0) is positive definite. According to Theorem 5.6, if a matrix A is
positive definite, then it has a Cholesky factorization A = LLT , where L is non-singular.
Otherwise, if a matrix A has the form A = MMT where M is non-singular, then A is
positive definite, since xTMMTx = ∥MTx∥22 ≥ 0, and here equality holds if and only if
MTx = 0, and hence x = 0.

Let A(k) = M(k)(M(k))T where M(k) is invertible (but not necessary lower triangular).
We look for the next Hessian approximation A(k+1) in the form A(k+1) = M(k+1)(M(k+1))T

where we require that A(k+1) satisfies the secant equation A(k+1)s(k) = y(k). Then it im-
plies (y(k))T s(k) = (s(k))TA(k+1)s(k), hence if A(k+1) is positive definite, then the inequality

(y(k))T s(k) > 0 (8.27)

holds. We show that the secant equation has a positive definite solution assuming (8.27)
holds.

We introduce the notation v(k) := (M(k+1))T s(k). Then the secant equation has the
form

(M(k+1))T s(k) = v(k), (8.28)

M(k+1)v(k) = y(k). (8.29)

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

178 8. Minimization of Functions

We would like to compute the matrix M(k+1) by updating the matrix M(k). Therefore,
using the derivation of the Broyden’s method and using (8.29), it is natural to look for
the matrix M(k+1) in the form

M(k+1) = M(k) +
(y(k) −M(k)v(k))(v(k))T

∥v(k)∥22
. (8.30)

Then M(k+1) satisfies equation (8.29), and its difference from the matrix M(k) is the
smallest in the sense that for all z ⊥ v(k) it follows M(k+1)z = M(k)z. Substituting
M(k+1) back to equation (8.28) we get

v(k) = (M(k))T s(k) +

(︁
(y(k) −M(k)v(k))(v(k))T

)︁T
∥v(k)∥22

s(k)

= (M(k))T s(k) +
v(k)(y(k) −M(k)v(k))T

∥v(k)∥22
s(k)

= (M(k))T s(k) +
(y(k) −M(k)v(k))T s(k)

∥v(k)∥22
v(k).

It yields (M(k))T s(k) = αv(k), where

α = 1− (y(k) −M(k)v(k))T s(k)

∥v(k)∥22

= 1− (y(k))T s(k)

∥v(k)∥22
+

(v(k))T (M(k))T s(k)

∥v(k)∥22

= 1− α2 (y(k))T s(k)

(s(k))TM(k)(M(k))T s(k)
+ α,

and so

α2 =
(s(k))TM(k)(M(k))T s(k)

(y(k))T s(k)
=

(s(k))TA(k)s(k)

(y(k))T s(k)
. (8.31)

We have that the numerator is positive since A(k) is positive definite, therefore, α can be
obtained from equation (8.31), and

v(k) =
1

α
(M(k))T s(k) =

(︃
(y(k))T s(k)

(s(k))TA(k)s(k)

)︃1/2

(M(k))T s(k).

Substituting it back to equation (8.30) we get

M(k+1) = M(k) +
(y(k) − 1

α
M(k)(M(k))T s(k)) 1

α
(s(k))TM(k)

1
α2∥(M(k))T s(k)∥22

= M(k) + α
y(k)(s(k))TM(k)

(s(k))TA(k)s(k)
− A(k)s(k)(s(k))TM(k)

(s(k))TA(k)s(k)
.

Little computation gives (see Exercise 4) that

A(k+1) = A(k) +
y(k)(y(k))T

(y(k))T s(k)
− A(k)s(k)(s(k))TA(k)

(s(k))TA(k)s(k)
. (8.32)

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

8.7. Quasi-Newton Method for Minimization 179

We have to show that the iteration generates a positive definite matrix. Since A(k+1) =
M(k+1)(M(k+1))T , it is enough to show that M(k+1) is invertible. By our assumption, the
matrix M(k) is positive definite, and hence it is invertible. If we assume that (8.27) holds,
then the invertibility of M(k+1) follows easily from (8.30) and Theorem 2.58. The details
are left to the reader (Exercise 5).

The formula (8.32) was introduced by Broyden, Flecher, Goldfarb and Shanno in 1970,
therefore, it is called BFGS update. This is the best known iteration for the approximation
of the Hessian. The initial value of the iteration can be the matrix f ′′(p(0)) or its numerical
approximation by the second-order difference formula (8.18). If p(0) is close enough to p
and f ′′(p) is positive definite, then f ′′(p(0)) and so A(0) is also positive definite.

Finally, consider condition (8.27). Applying Lagrange’s Mean Value Theorem (Theo-
rem 2.40), relations (8.21) and (8.22), we get

(y(k))T s(k) =
(︁
f ′(p(k+1))− f ′(p(k))

)︁T
(p(k+1) − p(k))

=
n∑︂

i=1

(︃
∂fi(p

(k+1))

∂xi

− ∂fi(p
(k))

∂xi

)︃
(p

(k+1)
i − p

(k)
i)

=
n∑︂

i=1

(︄
n∑︂

j=1

∂2fi(ξ
(k,i))

∂xi ∂xj

(p
(k+1)
j − p

(k)
j)

)︄
(p

(k+1)
i − p

(k)
i).

If the iterates p(k) are close enough to p during the iteration, then the vectors ξ(k,i) are
also close to p, and hence the continuity of f ′′ yields

(y(k))T s(k) ≈
n∑︂

i=1

(︄
n∑︂

j=1

∂2fi(p)

∂xi ∂xj

(p
(k+1)
j − p

(k)
j)

)︄
(p

(k+1)
i − p

(k)
i)

= (p(k+1) − p(k))Tf ′′(p)(p(k+1) − p(k)),

which is positive, since f ′′(p) is positive definite. Therefore, this condition is automatically
satisfied for large k if the sequence converges to p. Clearly, if (8.27) does not hold, then
iteration (8.32) can be defined, but in this case A(k+1) is only positive semidefinite, not
positive definite.

The following result can be proved.

Theorem 8.19. Let f ∈ C3, f ′(p) = 0, and f ′′(p) be positive definite. Then there exist
ε, δ > 0 such that the iteration (8.20)–(8.22), (8.32) is defined for all k, and it converges
superlinearly to p, assuming ∥p(0) − p∥2 < ε and ∥A(0) − f ′′(p)∥2 < δ.

Example 8.20. We applied the quasi-Newton method (8.19) with the BFGS update for the
function f(x, y) = (x2−2y)2+2(x−1)2. We used the same initial condition as in Example 8.16.
The numerical results are listed in Table 8.9. We have got a very precise approximation in 8
steps. □

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

180 8. Minimization of Functions

Table 8.9: Quasi-Newton method (8.19) with the BFGS update

k p(k) f(p(k)) ∥p(k) − p∥2 ∥p(k)−p∥2
∥p(k−1)−p∥2

0 (2.00000000, 2.00000000) 2.00000e+00 1.80277564
1 (1.28952043, 0.56127886) 4.59574e-01 0.29593441 0.16415488
2 (1.23976784, 0.70438005) 1.31429e-01 0.31505527 1.06461181
3 (1.02721672, 0.49403232) 5.98519e-03 0.02786330 0.08843939
4 (1.00995636, 0.51197836) 2.13820e-04 0.01557595 0.55901316
5 (0.99954439, 0.49921815) 8.41172e-07 0.00090492 0.05809714
6 (1.00000534, 0.50000495) 5.76547e-11 0.00000728 0.00804964
7 (1.00000005, 0.50000002) 9.15800e-15 0.00000005 0.00708494
8 (1.00000000, 0.50000000) 8.60000e-19 0.00000000 0.01827989

It can be proved by mathematical induction that the inverses B(k) := (A(k))−1 of the
matrices A(k) generated by the BFGS update satisfy the recursion

B(k+1) = B(k) +

(︃
1 +

(y(k))TB(k)y(k)

(s(k))Ty(k)

)︃
s(k)(s(k))T

(s(k))Ty(k)

− s(k)(y(k))TB(k) +B(k)y(k)(s(k))T

(s(k))Ty(k)
. (8.33)

Using this formula, (8.20) can be replaced by

s(k) = −B(k)f ′(p(k)), (8.34)

so during the iteration we do not need to compute matrix inverses or solving linear systems.

Similarly to the derivation of the BFGS update, we can obtain the definition of the
DFP update. Again, we are looking for the approximation of the Hessian in the form
A(k+1) = M(k+1)(M(k+1))T , but instead of the iterates (8.28)–(8.29) we use the equivalent
iteration

(M(k+1))−1y(k) = v(k)(︂
M(k+1)T

)︂−1

v(k) = s(k).

Its solution is considered in the form(︁
M(k+1)

)︁−1
=
(︁
M(k)

)︁−1
+

(︁
s(k) − (M(k))−1v(k)

)︁
(v(k))T

∥v(k)∥22
.

Then we get

v(k) =

(︃
(y(k))T s(k)

(y(k))T (A(k))−1y(k)

)︃1/2

(M(k))−1y(k),

assuming (8.27) holds. From this and Theorem 2.58 we get

A(k+1) = A(k) +
(y(k) −A(k)s(k))(y(k))T + y(k)(y(k) −A(k)s(k))T

(y(k))T s(k)

− (y(k) −A(k)s(k))T s(k)

((y(k))T s(k))2
y(k)(y(k))T . (8.35)

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

8.7. Quasi-Newton Method for Minimization 181

This formula is called the DFP update, since it was established by Davidon (1959) and
Flecher, Powell (1963). This iteration satisfies a result analogous to Theorem 8.19.

It can be checked that the inverse of the matrix A(k) generated by the DFP update
can be computed by the recursion:

(A(k+1))−1 = (A(k))−1 +
s(k)(s(k))T

(s(k))Ty(k)
− (A(k))−1y(k)(y(k))T (A(k))−1

(y(k))T (A(k))−1y(k)
. (8.36)

Example 8.21. Here we used the DFP update in the problem investigated in Examples 8.16
and 8.20. This method converges with a speed similar to the BFGS update. The numerical
results can be seen in Table 8.10. □

Table 8.10: Quasi-Newton method (8.19) with DFP update

k p(k) f(p(k)) ∥p(k) − p∥2 ∥p(k)−p∥2
∥p(k−1)−p∥2

0 (2.00000000, 2.00000000) 2.00000e+00 1.80277564
1 (1.28952043, 0.56127886) 4.59574e-01 0.29593441 0.16415488
2 (1.25682024, 0.70394625) 1.61396e-01 0.32794924 1.10818219
3 (1.09891338, 0.59229507) 2.00977e-02 0.13528576 0.41252041
4 (1.01148073, 0.50204318) 6.24877e-04 0.01166112 0.08619621
5 (1.00103666, 0.50022718) 4.77384e-06 0.00106126 0.09100838
6 (1.00001771, 0.50001111) 8.01068e-10 0.00002090 0.01969409
7 (0.99999976, 0.49999958) 2.45621e-13 0.00000049 0.02332123
8 (1.00000001, 0.50000002) 4.22000e-16 0.00000002 0.03601757

Exercises

1. Apply the quasi-Newton methods introduced in this section to the problems of Exercise 1
of Section 8.3.

2. Let A ∈ Rn×n. Define

∥A∥F :=

⌜⃓⃓⎷ n∑︂
i=1

n∑︂
j=1

a2ij ,

which is the so-called Frobenius norm of the matrix A. (This is not a matrix norm
generated by a vector norm.) Prove that the unique solution of the minimization problem

min{∥B−A∥F : B ∈ Rn×n, B symmetric}
is the matrix B = 1

2(A+AT).

3. Show that the matrix defined by (8.26) is symmetric and it satisfies the secant equation

A(k+1)s(k) = y(k).

4. Check the derivation of formula (8.32).

5. Prove that the matrix M(k+1) is invertible if relation (8.27) holds.

6. Show recursion (8.33).

7. Work out the details for the derivation of the DFP update.

8. Prove recursion (8.36).

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

Chapter 9

Method of Least Squares

Suppose that a physical process can be described by a real function g, where we know
or assume the formula of the function but we do not know the values of some parameters
in the formula. We put the parameters into a vector a, and the notation g(x; a) will
emphasize the dependence of g on the parameters a. Suppose we have measurements yi
(i = 0, 1, . . . , n) of the function values at the mesh points xi. For example, we know or
assume that g is a quadratic polynomial, then g is determined by its three coefficients. If
we have more than 3 measurements, then, in general, there is no unique parabola whose
graph goes through all the measurement points, since due to measurement error, the data
points are typically not located on the graph of g. Therefore, our goal is to find the
parameter values for which the corresponding function g differs from the measurements
with the “smallest error”. This problem is called curve fitting. It is not obvious how
to measure the error of the curve fitting. Depending on its definition, we get different
mathematical problems.

It is possible to measure the error of the curve fitting using the formulas

F1(a) := max{|g(xi; a)− yi| : i = 0, 1, . . . , n}

or

F2(a) :=
n∑︂

i=0

|g(xi; a)− yi|.

Both looks natural, since if these errors are small, then the difference between g(xi) and
the measurements yi will be small at every singular point. The problem is that if we
wanted to minimize F1(a) or F2(a) with respect to a, then it is difficult to compute, since
none of the above functions are differentiable. This technicality can be eliminated if we
consider the error formula

F (a) :=
n∑︂

i=0

(g(xi; a)− yi)
2,

the so-called least square error. Here the mathematical problem is to minimize F (a), and
consider the graph of the function g(x; ā) corresponding to the minimum point ā of F(a)
as the best fitted curve to the data points. This is called the method of least squares.

In this chapter we investigate some basic cases of the method of least squares. We study
the curve fitting first for lines, and next for polynomial functions. Finally, we consider
this method for some other special nonlinear functions using the method of linearization.

184 9. Method of Least Squares

9.1. Line Fitting

Given data points (xi, yi), i = 0, 1, . . . , n, where at least some of the mesh points xi are
different. We are looking for a linear function of the form g(x) = ax+ b which minimizes
the least square error

F (a, b) :=
n∑︂

i=0

(axi + b− yi)
2. (9.1)

The function F is continuously partially differentiable with respect to a and b, and

∂F

∂a
(a, b) = 2

n∑︂
i=0

(axi + b− yi)xi,

∂F

∂b
(a, b) = 2

n∑︂
i=0

(axi + b− yi).

(9.2)

Making the partial derivatives in (9.2) equal to 0, and rearranging the system we get the
so-called Gaussian normal equations :

a
n∑︂

i=0

x2
i + b

n∑︂
i=0

xi =
n∑︂

i=0

xiyi,

a
n∑︂

i=0

xi + b(n+ 1) =
n∑︂

i=0

yi.

(9.3)

It is worth to mention that the coefficient of b in the second equation is n + 1, which is
the number of data points. This is a linear system for solving a and b. This system is
solvable if the determinant of its coefficient matrix

d := det

(︃ ∑︁n
i=0 x

2
i

∑︁n
i=0 xi∑︁n

i=0 xi n+ 1

)︃
= (n+ 1)

n∑︂
i=0

x2
i −

(︄
n∑︂

i=0

xi

)︄2

is nonzero. The Cauchy–Bunyakovsky–Schwarz inequality (Theorem 2.42) yields(︄
n∑︂

i=0

xi

)︄2

=

(︄
n∑︂

i=0

1 · xi

)︄2

≤
n∑︂

i=0

1
n∑︂

i=0

x2
i = (n+ 1)

n∑︂
i=0

x2
i ,

therefore, d ≥ 0 holds. If we assume that there are at least two distinct mesh points xi,
then Theorem 2.42 implies that the strict inequality d > 0 holds. Hence system (9.3) has
a unique solution which can be given in the following form:

ā =
(n+ 1) (

∑︁n
i=0 xiyi)− (

∑︁n
i=0 xi) (

∑︁n
i=0 yi)

(n+ 1) (
∑︁n

i=0 x
2
i)− (

∑︁n
i=0 xi)

2 ,

b̄ =
(
∑︁n

i=0 x
2
i) (
∑︁n

i=0 yi)− (
∑︁n

i=0 xiyi) (
∑︁n

i=0 xi)

(n+ 1) (
∑︁n

i=0 x
2
i)− (

∑︁n
i=0 xi)

2 .

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

9.1. Line Fitting 185

According to Theorem 8.2, the function F has a local extremum at (ā, b̄) if

D(ā, b̄) :=
∂2F

∂a2
(ā, b̄) · ∂

2F

∂b2
(ā, b̄)−

(︃
∂2F

∂a ∂b
(ā, b̄)

)︃2

> 0.

It is easy to compute that

∂2F

∂a2
(ā, b̄) = 2

n∑︂
i=0

x2
i ,

∂2F

∂b2
(ā, b̄) = 2(n+ 1),

∂2F

∂a ∂b
(ā, b̄) = 2

n∑︂
i=0

xi.

Hence

D(ā, b̄) = 4(n+ 1)
n∑︂

i=0

x2
i − 4

(︄
n∑︂

i=0

xi

)︄2

= 4d,

which we know that it is positive. Since ∂2F
∂a2

(ā, b̄) > 0, Theorem 8.2 yields that F has a
local minimum at (ā, b̄), and hence Corollary 8.11 implies that it is also a global minimum.
We have proved the following result.

Theorem 9.1. Given data points (xi, yi) (i = 0, 1, . . . , n) such that there exist i and j
with xi ̸= xj. Then the problem

min
(a,b)∈R2

n∑︂
i=0

(axi + b− yi)
2

has a unique solution, which satisfies the Gaussian normal equations (9.3).

Example 9.2. Given the following data:

xi -1.0 1.0 2.5 3.0 4.0 4.5 6.0

yi 0.0 1.2 1.9 2.5 3.1 3.2 4.5

Find a line of best fit to the data points. In case we do the calculation by hand, we copy the
data to the first two columns of the Table 9.1. Then we fill out the third and fourth columns
of the table, and finally, in the last line, we compute the sum of the numbers located above in
that column. This last line is used to write down the Gaussian normal equations (9.3):

67.25a + 20.0b = 67.25
20.0a + 7b = 16.4.

Its solution is a = 0.630243 and b = 0.542163. The graph of the corresponding line y =
0.630243x + 0.542163 and the given data points can be seen in Figure 9.1. The error of the
fitting is

6∑︂
i=0

(0.630243xi + 0.542163− yi)
2 = 0.124691.

□

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

186 9. Method of Least Squares

Table 9.1: Line fitting

xi yi x2i xiyi

-1.0 0.0 1.00 0.00
1.0 1.2 1.00 1.20
2.5 1.9 6.25 4.75
3.0 2.5 9.00 7.50
4.0 3.1 16.00 12.40
4.5 3.2 20.25 14.40
6.0 4.5 36.00 27.00

20.0 16.4 89.50 67.25

−1 0 1 2 3 4 5 6
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 9.1: Line fitting: y = 0.630243x+ 0.542163

Exercises

1. Find the line of best fit to the following data, and compute the error of the fitting:

(a)
xi 0.0 1.0 1.5 2.0 3.0

yi -1.8 1.3 2.5 3.9 8.3

(b)
xi -1.0 1.0 2.0 3.0 4.0 5.0 6.0

yi 4.2 2.1 1.3 2.1 2.8 -2.1 -3.0

(c)
xi -1.0 1.0 3.0 5.0 9.0 10.0 13.0

yi -0.1 3.4 7.3 15.1 29.1 35.6 56.3

9.2. Polynomial Curve Fitting

In this section we study the problem of polynomial curve fitting. Given data points (xi, yi)
(i = 0, 1, . . . , n). We find a polynomial of degree m of best fit to the data points, i.e.,
we are looking for parameters am, am−1, . . ., a0 which minimize the least square error
function

F (am, am−1, . . . , a1, a0) :=
n∑︂

i=0

(amx
m
i + am−1x

m−1
i + · · ·+ a1xi + a0 − yi)

2,

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

9.2. Polynomial Curve Fitting 187

a function of m + 1 variables. If n ≤ m, then there is a polynomial of degree m which
interpolates the given data (the minimal value of F is 0). So the coefficients can be
obtained by polynomial interpolation. Therefore, we assume for the rest of this section
that m < n, and in this case F can be positive at every point.

Using Theorem 8.2 we get that F can have an extremum at a point where all partial
derivatives are equal to 0. Easy computation gives

∂F

∂am
(am, am−1, . . . , a0) = 2

m∑︂
i=0

(amx
m
i + am−1x

m−1
i + · · ·+ a0 − yi)x

m
i ,

∂F

∂am−1

(am, am−1, . . . , a0) = 2
m∑︂
i=0

(amx
m
i + am−1x

m−1
i + · · ·+ a0 − yi)x

m−1
i ,

...
...

∂F

∂a0
(am, am−1, . . . , a0) = 2

m∑︂
i=0

(amx
m
i + am−1x

m−1
i + · · ·+ a0 − yi).

Making the partial derivatives equal to 0 and rearranging the resulting system, we get
the normal equations

am

n∑︂
i=0

x2m
i + am−1

n∑︂
i=0

x2m−1
i + · · · + a1

n∑︂
i=0

xm+1
i + a0

n∑︂
i=0

xm
i =

n∑︂
i=0

xm
i yi

am

n∑︂
i=0

x2m−1
i + am−1

n∑︂
i=0

x2m−2
i + · · · + a1

n∑︂
i=0

xm
i + a0

n∑︂
i=0

xm−1
i =

n∑︂
i=0

xm−1
i yi

...
...

am

n∑︂
i=0

xm+1
i + am−1

n∑︂
i=0

xm
i + · · · + a1

n∑︂
i=0

x2
i + a0

n∑︂
i=0

xi =
n∑︂

i=0

xiyi

am

n∑︂
i=0

xm
i + am−1

n∑︂
i=0

xm−1
i + · · · + a1

n∑︂
i=0

xi + a0(n+ 1) =
n∑︂

i=0

yi

(9.4)

We prove that the linear system (9.4) has a unique solution. For this it is enough to show
that the coefficient matrix

A :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑︂
i=0

x2m
i

n∑︂
i=0

x2m−1
i · · ·

n∑︂
i=0

xm+1
i

n∑︂
i=0

xm
i

n∑︂
i=0

x2m−1
i

n∑︂
i=0

x2m−2
i · · ·

n∑︂
i=0

xm
i

n∑︂
i=0

xm−1
i

...
...

...
...

n∑︂
i=0

xm
i

n∑︂
i=0

xm−1
i · · ·

n∑︂
i=0

xi

n∑︂
i=0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is invertible. It is enough to show by Theorem 3.9 that A is positive definite. The jk-th
element of the matrix A is given by formula

∑︁n
i=0 x

2m+2−j−k
i , where j, k = 1, 2, . . . ,m+1.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

188 9. Method of Least Squares

Let z = (z1, z2, . . . , zm+1) ∈ Rm+1. Simple calculations give

zTAz =
m+1∑︂
j=1

m+1∑︂
k=1

n∑︂
i=0

x2m+2−j−k
i zjzk

=
n∑︂

i=0

m+1∑︂
j=1

m+1∑︂
k=1

xm+1−j
i zjx

m+1−k
i zk

=
n∑︂

i=0

(︄
m+1∑︂
j=1

xm+1−j
i zj

)︄2

.

Suppose that zTAz = 0. Then we have that
∑︁m+1

j=1 xm+1−j
i zj = 0 for all i = 0, 1, . . . , n.

So if there are m + 1 distinct mesh points, then the polynomial p(x) :=
∑︁m+1

j=1 zjx
m+1−j

of degree at most m has m + 1 distinct roots. Therefore, the Fundamental theorem of
algebra (Theorem 2.9) yields that p must be identically equal to 0, i.e., zj = 0 for all
j = 1, 2, . . . ,m + 1. Hence we get that A is positive definite, and so system (9.4) has a
unique solution denoted by ā. Since

∂2F

∂aj ∂ak
(ā) = 2

n∑︂
i=0

xj+k
i ,

we get F ′′(ā) = 2A. Therefore, it follows from Theorem 8.1 that F has a local minimum
at ā, and since F is a quadratic function, it is also a global minimum. We can summarize
our result in the next theorem.

Theorem 9.3. Let m < n, and given data point (xi, yi) (i = 0, 1, . . . , n) such that there
exist at least m+ 1 distinct mesh points xi. Then the problem

min
(am,...,a0)∈Rm+1

n∑︂
i=0

(amx
m
i + am−1x

m−1
i + · · ·+ a1xi + a0 − yi)

2

has a unique solution which satisfies the normal equations (9.4).

Example 9.4. Find a parabola of best fit to the data

xi -1.0 -0.5 0.0 1.0 2.0 3.0 3.5

yi 1.6 1.7 1.9 1.5 0.6 -0.1 -1.0

We list the data in the first two columns of Table 9.2, and fill out the rest of the columns. In
the last line we compute the sum of the numbers in the respective columns, and we use these
numbers in the normal equations (9.4):

249.1250a + 77.750b + 27.50c = −7.225
77.750a + 27.50b + 8.0c = −3.55
27.50a + 8.0b + 7c = 6.2.

Its solution is a = −0.196021, b = −0.084748 and c = 1.752653. The graph of the corresponding
parabola and the given data point can be seen in Figure 9.2. The error of the fitting is

6∑︂
i=0

(−0.196021x2i − 0.084748xi + 1.752653− yi)
2 = 0.0964456.

□

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

9.3. Special Nonlinear Curve Fitting 189

Table 9.2: Parabola fitting

xi yi x4i x3i x2i x2i yi xiyi

-1.0 1.4 1.0000 -1.000 1.00 1.400 -1.40
0.0 1.9 0.0000 0.000 0.00 0.000 0.00
0.5 1.6 0.0625 0.125 0.25 0.400 0.80
1.0 1.7 1.0000 1.000 1.00 1.700 1.70
2.0 0.2 16.0000 8.000 4.00 0.800 0.40
2.5 -0.1 39.0625 15.625 6.25 -0.625 -0.25
3.0 -2.0 81.0000 27.000 9.00 -18.000 -6.00

8.0 4.7 138.1250 50.750 21.50 -14.325 -4.75

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

1.5

2

Figure 9.2: Parabola fitting: y = −0.196021x2 − 0.084748x+ 1.752653

Exercises

1. Find a parabola of best fit to the given data, and compute the error of the fitting:

(a)
xi -2.0 -1.0 1.0 2.0 3.0

yi -2.1 1.4 0.5 -2.5 -7.2

(b)
xi 1.0 2.0 3.0 4.0 5.0 6.0

yi 2.5 1.2 -2.0 3.9 6.2 8.3

9.3. Special Nonlinear Curve Fitting

The method of the previous sections can be extended easily to nonlinear functions where
the unknown parameters appear linearly in the formula, because in this case the resulting
normal equations will be linear systems. But in the general case the normal equations
can be nonlinear too. Consider an example. Suppose we would like to fit an exponential
function of the form beax to given data (xi, yi) (i = 0, 1, . . . , n). The least square error in
this case will define the function

F (a, b) =
n∑︂

i=0

(beaxi − yi)
2,

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

190 9. Method of Least Squares

whose critical points are the solutions of the nonlinear system

2
n∑︂

i=0

(beaxi − yi)be
axixi = 0

2
n∑︂

i=0

(beaxi − yi)e
axi = 0.

We cannot solve this system analytically, and it is not easy to analyse whether this system
has a unique solution or several solutions, or in the latter case, which solution minimizes
the error function. Certainly, we can solve the system numerically, or we can minimize F
by a numerical method.

But now we define the method of linearization for this special example. We observe
that if we take the natural logarithm of both sides of the equation y = beax, then we get
the relation ln y = ln b + ax, where ln y depends linearly on x. We introduce the new
variables: X := x, Y := ln y, A := a and B := ln b. So we can fit a line of the form
Y = AX + B to the data points (xi, ln yi). Let Ā and B̄ be the solution of this linear
fitting. Then the function b̄eāx can be considered as the best fit to the points (xi, yi),
where ā = Ā, b̄ = eB̄. Note that this linearization does not give us the solution of the
original nonlinear fitting problem. But its solution can be computed easily, so it is used
frequently in practice.

Example 9.5. Fit an exponential function beax to the data

xi 0.0 1.0 1.5 2.0 3.0 4.0

yi 0.3 0.7 0.9 1.2 1.8 2.7

using linearization. The linearized data can be seen in Table 9.3. The corresponding Gaussian
normal equations are

32.25A + 11.5B = 5.586294
11.5A + 6B = 0.097352,

which gives A = 0.528951 and B = −0.997597. So the solution of the linearized fitting is
0.3687650.528951x. Its graph and the data point can be seen in Figure 9.3. The error of the linear
fitting is

5∑︂
i=0

(0.528951xi − 0.997597− ln yi)
2 = 0.095396,

and the error of the nonlinear fitting is

5∑︂
i=0

(0.3687650.528951xi − yi)
2 = 0.165543.

□

Example 9.6. Fit a power function of the form bxa to the given data

xi 0.5 1.0 1.5 2.5 3.0

yi 0.7 1.1 1.6 2.1 2.3

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

9.3. Special Nonlinear Curve Fitting 191

Table 9.3: Fitting an exponential function beax

xi yi ln yi x2i xi ln yi

0.0 0.3 -1.203973 0.00 0.000000
1.0 0.7 -0.356675 1.00 -0.356675
1.5 0.9 -0.105361 2.25 -0.158041
2.0 1.2 0.182322 4.00 0.364643
3.0 1.8 0.587787 9.00 1.763360
4.0 2.7 0.993252 16.00 3.973007

11.5 0.097352 32.25 5.586294

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

Figure 9.3: Fitting an exponential function beax: y = 0.3687650.528951x

Here we can also use the method of linearization: consider the relation ln y = a lnx+ ln b which
follows from the equation y = bxa. Then ln y depends linearly on lnx. Therefore, we fit a
line to the data points (lnxi, ln yi). The computation is shown in Table 9.4, the corresponding
Gaussian normal equations are:

2.691393A + 1.727221B = 2.032673
1.727221A + 5B = 1.783485.

Its solution is A = 0.676257, B = 0.123088, and hence the original parameters are a = A =
0.676257 and b = eB = e0.123088 = 1.130984. The error of the linear fitting is

4∑︂
i=0

(0.676257 lnxi + 0.123088− ln yi)
2 = 0.007279,

and the error of the original nonlinear fitting is

4∑︂
i=0

(1.130984x0.676257i − yi)
2 = 0.019616.

□

Exercises

1. Fit an exponential function beax to the given data, and compute the error of the fitting:

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

192 9. Method of Least Squares

Table 9.4: Fitting of a power function bxa

xi yi lnxi ln yi (lnxi)
2 lnxi ln yi

0.5 0.7 -0.693147 -0.356675 0.480453 0.247228
1.0 1.1 0.000000 0.095310 0.000000 0.000000
1.5 1.6 0.405465 0.470004 0.164402 0.190570
2.5 2.1 0.916291 0.741937 0.839589 0.679830
3.0 2.3 1.098612 0.832909 1.206949 0.915044

1.727221 1.783485 2.691393 2.032673

0.5 1 1.5 2 2.5 3
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Figure 9.4: Fitting of a power function bxa: y = 1.130984x0.676257

(a)
xi -2.0 -1.0 1.0 2.0 3.0

yi 0.6 0.9 1.6 2.3 2.9

(b)
xi 1.0 1.5 2.0 2.5 3.0 3.5

yi 1.3 1.6 1.9 2.2 3.0 4.1

2. Fit a power function bxa for the given data, and compute the error of the fitting:

(a)
xi 1.0 3.0 4.0 5.0 6.0 9.0

yi 1.6 1.9 2.2 2.3 3.4 4.9

(b)
xi 1.0 2.0 3.0 4.0 5.0

yi 0.7 2.8 7.5 14.8 25.6

3. Solve the previous exercises using numerical minimization of the nonlinear least square
error by Newton’s method.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

Chapter 10

Ordinary Differential Equations

In this chapter we study numerical solution techniques of ordinary differential equa-
tions (ODEs). We define the Euler’s, Taylor’s and Runge–Kutta methods.

10.1. Review of Differential Equations

In this chapter we investigate approximate solutions of the initial value problem (IVP)

y′ = f(t, y), y(t0) = y0 (10.1)

on a finite time interval [t0, T]. For simplicity we study the case when y = y(t) is a real
function, i.e., we assume that

f : [t0, T]× R→ R, y0 ∈ R.

The methods we define can be generalized to the system case: then the unknown variable
y = y(t) denotes a vector of m dimension, and the system has the form

y′ = f(t,y), y(t0) = y(0), (10.2)

where
f : [t0, T]× Rm → Rm, y(0) ∈ Rm.

We introduce the following definition: The function f : [t0, T] × R → R is called
Lipschitz continuous in its second variable with the Lipschitz constant L if

|f(t, y)− f(t, ỹ)| ≤ L|y − ỹ| for all t ∈ [t0, T] and y, ỹ ∈ R. (10.3)

This notion can be easily generalized to the system case if instead of the absolute value
we use a vector norm in the previous definition.

It is known from the theory of ODEs that the existence of solution of the IVPs (10.1)
or (10.2) follows if the functions f or f are continuous. To get the uniqueness of the
solutions, we have to assume also the Lipschitz continuity of f or f in its second variable.
Therefore, we have the following result (formulated for the scalar case):

Theorem 10.1. Suppose that f : [t0, T] × R → R is continuous and it is Lipschitz
continuous in its second variable. Then the IVP (10.1) has a unique solution on the
interval [0, T] for all initial value y0 ∈ R.

194 10. Ordinary Differential Equations

We note that the Lipschitz continuity of f in Theorem 10.1 and also in later results,
i.e., the assumption that inequality (10.3) holds for all y, ȳ ∈ R is a strong condition
on f . Instead of it we could assume the so-called local Lipschitz continuity : for every
interval [a, b] for which y0 ∈ (a, b) there exists a constant L > 0 (which depends on [a, b])
such that (10.3) holds for all t ∈ [t0, T], y, ȳ ∈ [a, b]. This property holds for most of the
functions which are important in applications. For example, it is enough to assume that
f be continuously differentiable with respect to its second derivative. Then it implies
that f is locally Lipschitz continuous in its second variable (see Exercise 3). But from
the local Lipschitz continuity it does not follow that the solution of the IVP (10.1) exists
on [t0, T]. It follows only that there exists a 0 < T̄ ≤ T such that the IVP (10.1) has a
unique solution on the interval [t0, T̄] (see Exercise 4). To avoid this technical problem we
will assume in later results that f is globally Lipschitz continuous in its second variable,
i.e., (10.3) holds.

It is known that the scalar mth-order IVP

y(m) = f(t, y, y′, . . . , y(m−1)), y(t0) = y0, y′(t0) = y1, . . . , y(m−1)(t0) = ym−1

is equivalent to an IVP of the form (10.2), where

y = (y, y′, . . . , y(m−1))T , and y(0) = (y0, y1, . . . , ym−1)
T .

So for simplicity, later we will study only scalar IVPs of the form (10.1), but most of the
results can be generalized to the system case and to mth-order IVPs too.

Exercises

1. Reformulate the following higher order scalar IVPs as an equivalent system of the form
(10.2):

(a) y′′ + 5y′ = e2t−1, y(0) = 3, y′(0) = −1,

(b) y′′ − t2y′ + ty = 0, y(1) = 1, y′(1) = 0,

(c) y′′′ + 4y′′ − 2y′ + 5y = t3, y(−1) = 2, y′(−1) = −3.

2. Show that the IVP y′ =
√︁
|y|, y(0) = 0 has two solutions y(t) = 0 and y(t) = t2/4.

Show that the function f(y) =
√︁
|y| is not Lipschitz continuous in y.

3. Prove that if the function f : [t0, T] × R → R is continuously differentiable in its second
variable, then f is locally Lipschitz continuous in its second variable.

4. Show that the IVP y′ = y2, y(0) = 1 has no solution on the interval [0, T] for T ≥ 1.
Show that the function g(y) = y2 is not globally Lipschitz continuous in y, but it is locally
Lipschitz continuous.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

10.2. Euler’s Method 195

10.2. Euler’s Method

Consider the IVP (10.1). In this section we investigate the simplest numerical approxi-
mation method for solving ODEs, the Euler’s method. Given a finite interval [t0, T], and
equidistant mesh points t0 < t1 < · · · < tn = T , where h = (T − t0)/n, and ti = t0 + ih
(i = 0, . . . , n−1). Note that the Euler’s method can be easily extended for non-equidistant
mesh points, but for simplicity, here we study only the case of the equidistant mesh. The
function values y(ti) are approximated by the so-called Euler sequence zi defined by

zi+1 = zi + hf(ti, zi), (i = 0, 1, 2, . . . , n− 1), z0 = y0. (10.4)

We show three different methods to derive the formula of the Euler’s method, and then
we investigate the truncation error of the approximation. We assume that the function f
is continuous.

Method (i): Suppose that y(t) is the solution of the IVP (10.1). Since y(t) satisfies the
initial condition, we have that y(t0) = y0, and hence z0 is the exact solution value at t0.
We estimate y(t) by its first-order Taylor polynomial around t0: y(t) ≈ y(t0)+y′(t0)(t−t0).
Then at t = t1 we get

y(t1) ≈ y(t0) + y′(t0)h. (10.5)

This formula involves the derivative of the solution at t0, but equation (10.1) yields
y′(t0) = f(t0, y(t0)). Since y(t0) = y0 = z0, we can compute y′(t0) with the help of t0 and
z0: y

′(t0) = f(t0, z0). Hence relation (10.5) implies y(t1) ≈ z1 := z0+hf(t0, z0). Therefore,
z1 approximates the value of the solution at t1. Suppose now that zi approximates y(ti).
Then following the previous idea, y(ti+1) ≈ y(ti) + y′(ti)h, and since y(ti) ≈ zi and
y′(ti) = f(ti, y(ti)) ≈ f(ti, zi), we get y(ti+1) ≈ zi+1, where zi+1 is defined by formula
(10.4).

Method (ii): The solution satisfies relation y′(ti) = f(ti, y(ti)). Applying the first-order
difference formula we get

y′(ti) ≈
y(ti+1)− y(ti)

h
,

and therefore,
y(ti+1)− y(ti)

h
≈ f(ti, y(ti)).

Rearranging this equation we get y(ti+1) ≈ y(ti)+hf(ti, y(ti)). Assuming that y(ti) ≈ zi,
the expression zi+1 defined by (10.4) satisfies y(ti+1) ≈ zi+1.

Method (iii): Integrating both sides of the equation y′(t) = f(t, y(t)) from ti to ti+1

we get

y(ti+1)− y(ti) =

∫︂ ti+1

ti

f(s, y(s)) ds,

and hence

y(ti+1) = y(ti) +

∫︂ ti+1

ti

f(s, y(s)) ds. (10.6)

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

196 10. Ordinary Differential Equations

We do not know y(s), and therefore, we cannot integrate f(s, y(s)) exactly. We use the
following simple approximation formula for the definite integral:∫︂ b

a

g(s) ds ≈ g(a)(b− a). (10.7)

This formula can be applied here, since it uses only a function value at the left end point of
the interval, which is assumed to be known. With this formula we have

∫︁ ti+1

ti
f(s, y(s)) ds ≈

hf(ti, y(ti)), and hence
y(ti+1) ≈ y(ti) + hf(ti, y(ti)),

which gives again formula (10.4).

The geometric interpretation of method (i) is the following: we take the point (ti, zi)
obtained in the ith step, and consider the tangent line to the solution which goes through
this point, and we move to the point on the tangent line with first coordinate ti+1.

Example 10.2. Consider the IVP

y′ = 2y − 10t2 + 2t, y(0) = 1. (10.8)

We can easily check that the exact solution of the problem is y(t) = 5t2 + 4t + 2 − e2t. Fix a
step size h > 0, and consider the equidistant mesh points ti = ih. The Euler sequence is defined
by the recursion

zi+1 = zi + h
(︂
2zi − 10t2i + 2ti

)︂
, i = 0, 1, 2, . . . , z0 = 1.

We printed the first several terms of the sequence and the error of the approximation ei =
|y(ti)− zi| in Table 10.1 corresponding to step sizes h = 0.2, 0.1 and 0.05. We can observe that
the error decreases as h decreases. Moreover, the numerical values indicate that the error is
linear in h: when the step size is reduced to its half, the error also reduces approximately to its
half. □

Table 10.1: Euler’s method

h = 0.2 h = 0.1 h = 0.05
ti y(ti) i zi ei i zi ei i zi ei

0.0 1.0000 0 1.0000 0.0000 0 1.0000 0.0000 0 1.0000 0.0000
0.2 1.0652 1 1.1000 0.0348 2 1.0830 0.0178 4 1.0742 0.0090
0.4 1.0614 2 1.1340 0.0726 4 1.0986 0.0372 8 1.0802 0.0188
0.6 0.9899 3 1.1034 0.1135 6 1.0481 0.0583 12 1.0194 0.0295
0.8 0.8518 4 1.0097 0.1579 8 0.9329 0.0811 16 0.8930 0.0411
1.0 0.6487 5 0.8547 0.2060 10 0.7547 0.1060 20 0.7025 0.0538

Next we investigate the convergence of the Euler’s method. We need the following
definition: The local truncation error of the Euler’s method at the ith mesh point is
defined by the number

τi+1 :=
y(ti+1)− y(ti)

h
− f(ti, y(ti)), (i = 0, 1, . . . , n− 1), (10.9)

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

10.2. Euler’s Method 197

where y(t) is the solution of the IVP (10.1).
Rearranging equation (10.9) we have

y(ti+1) = y(ti) + hf(ti, y(ti)) + τi+1h. (10.10)

This yields that the error at the (i + 1)st step is τi+1h, if at the ith step the error is 0,
i.e., we made the step from the exact solution value.

Consider the first Taylor approximation of y(t) around ti:

y(t) = y(ti) + y′(ti)(t− ti) +
1

2
y′′(ξ)(t− ti)

2.

From this relation, equation y′(ti) = f(ti, y(ti)) and relation (10.10) it follows that the
local truncation error of the Euler’s method equals to

τi+1 =
h

2
y′′(ξ), (10.11)

where ξ ∈ (ti, ti+1).
We need the following result.

Theorem 10.3. Let a, b be positive reals, x0, x1, x2, . . . , xn be a finite sequence of reals,
for which x0 ≥ −b/a and

xi+1 ≤ (1 + a)xi + b, i = 0, 1, . . . , n− 1.

Then

xi ≤ eia
(︃
b

a
+ x0

)︃
− b

a

holds for i = 0, 1, . . . , n.

Proof. Applying the conditions and simple manipulations we get

xi ≤ (1 + a)xi−1 + b

≤ (1 + a)((1 + a)xi−2 + b) + b

...

≤ (1 + a)((1 + a)(· · · ((1 + a)x0 + b) · · ·) + b) + b

= (1 + a)ix0 + (1 + (1 + a) + (1 + a)2 + · · ·+ (1 + a)i−1)b

= (1 + a)ix0 +
(1 + a)i − 1

a
b

= (1 + a)i
(︃
b

a
+ x0

)︃
− b

a
. (10.12)

It follows from 1 + x ≤ ex that (1 + x)i ≤ eix, which, together with (10.12), implies the
statement of the theorem. □

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

198 10. Ordinary Differential Equations

Theorem 10.4. Let f : [t0, T] × R → R be continuous and Lipschitz continuous in its
second variable with the Lipschitz constant L, and let z0, z1, . . . , zn be the Euler sequence,
and τ = max{|τi+1| : i = 0, 1, . . . , n− 1}. Then

|y(ti)− zi| ≤
(︁
eL(T−t0) − 1

)︁ τ
L
, (i = 0, 1, . . . , n). (10.13)

Proof. Subtracting equations (10.10) and (10.4) we get

y(ti+1)− zi+1 = y(ti)− zi + h
(︂
f(ti, y(ti))− f(ti, zi)

)︂
+ τi+1h.

Then the triangle inequality, Lipschitz continuity of f , the definition of τ yields

|y(ti+1)− zi+1| ≤ |y(ti)− zi|+ h
⃓⃓⃓
f(ti, y(ti))− f(ti, zi)

⃓⃓⃓
+ |τi+1|h

≤ |y(ti)− zi|+ Lh|y(ti)− zi|+ |τi+1|h
≤ (1 + Lh)|y(ti)− zi|+ τh.

Using Theorem 10.3 with xi = |y(ti)−zi|, a = Lh, b = τh, the last inequality and relations
x0 = 0 and nh = tn − t0 = T − t0 imply (10.13). □

The previous theorem gives the error estimate

|y(ti)− zi| ≤ K1τ, i = 0, 1, . . . , n, (10.14)

where K1 is a constant. Hence the error of the Euler sequence is small if the local
truncation error is small. Formula (10.11) implies that τi+1 can be estimated by

|τi+1| ≤
M2

2
h, i = 0, 1, . . . , n− 1 (10.15)

where M2 = max{|y′′(t)| : t ∈ [t0, T]} (assuming that the solution is twice differentiable).
This means that if h is small, then the error is small.

The solution is differentiable and satisfies equation y′(t) = f(t, y(t)). So if we assume
that f is continuously partially differentiable with respect to both variables, then y is
twice continuously differentiable, and

y′′(t) =
∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t))y′(t).

Here we can use again (10.1) to substitute y′(t):

y′′(t) =
∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t))f(t, y(t)). (10.16)

Therefore, if f and the partial derivatives of f are bounded, then (10.16) gives an explicit
estimate of M2.

Summarizing the above considerations, we get the next result.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

10.3. Effect of Rounding in the Euler’s Method 199

Theorem 10.5. Let f : [t0, T] × R → R be continuous and Lipschitz continuity in its
second variable, and continuously partially differentiable with respect to both variables.
Then the Euler’s method converges linearly to the solution of the IVP (10.1), i.e., there
exists a constant K > 0 such that

|y(ti)− zi| ≤ Kh, i = 0, 1, . . . , n.

Exercises

1. Compute the first 10 terms of the Euler sequence and compute the error of the approxi-
mation (using the given exact solution) for the following IVPs:

(a) ty′ − y = 2t, y(1) = 1, h = 0.1, the solution: y(t) = 2t ln t+ t,

(b) y′ − 2y = 6, y(0) = 2, h = 0.1, y(t) = −3 + 5e2t,

(c) y′ − 2
t y = 1, y(1) = 1, h = 0.2, y(t) = 2t2 − t,

(d) y′ = t
1+y , y(1) = 2, h = 0.1, y(t) =

√
t2 + 8− 1.

2. Formulate the Euler’s method for systems of differential equations.

3. Solve the following system of differential equations using Euler’s method, and give the
error of the approximation (using the given solution):

(a)
y′1 = 2y1 − 3y2,
y′2 = −y1 + 4y2,

}︃
t ∈ [0, 2], y1(0) = 1, y2(0) = −5,

h = 0.1, y1(t) = −3et + 4e5t, y2(t) = −4e5t − et.

(b)
y′1 = 2y1 − 3y2,
y′2 = 3y1 + 2y2,

}︃
t ∈ [0, 1], y1(0) = 1, y2(0) = 0,

h = 0.1, y1(t) = e2t cos 3t, y2(t) = e2t sin 3t.

4. Give the equivalent system of differential equations for the following scalar differential
equations. Compute the approximate solution of the system using Euler’s method, and
give the error of the approximation (using the given solution).

(a) y′′−3y′+2y = 2, t ∈ [0, 1] y(0) = 1, y′(0) = −1, h = 0.1, y(t) = 1+et−e2t,

(b) y′′ − 2y′ + 5y = 0, t ∈ [0, 2], y(1) = 1, y′(0) = 3, h = 0.2, y(t) = et sin 2t+
et cos 2t.

5. Let ti = t0 + ih be an equidistant mesh of the interval [t0, T], {zi} be the corresponding
Euler sequence, and z(t;h) be the linear spline function which interpolates the values zi:
z(ti;h) = zi, i = 0, 1, . . . , n. Prove that

sup
t∈[t0,T]

|y(t)− z(t;h)| → 0, as h→ 0.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

200 10. Ordinary Differential Equations

10.3. Effect of Rounding in the Euler’s Method

In practice in the application of the Euler’s (or any other) method the rounding error
can effect the numerical result of the computation. First, when we store the initial value
y0 in the computer, there can occur a rounding error when we replace the number with
a machine number. In each step of the computation, we may also observe rounding
error in the output. Let zi denote the exact value of the Euler sequence, and wi be the
numerically computed value of the sequence. Furthermore, let w0 be the machine number
stored instead of y0. Define δ0 := y0−w0, and let δi be the rounding error in the ith step.
Then we have that

wi+1 = wi + hf(ti, wi) + δi+1, i = 0, 1, 2, . . . , n− 1. (10.17)

Subtracting equations (10.17) and (10.4) we get

wi+1 − zi+1 = wi − zi + h(f(ti, wi)− f(ti, zi)) + δi+1.

Suppose f is Lipschitz continuous in its second variable with the Lipschitz constant L.
Let δ := max{|δ1|, |δ2|, . . . , |δn|}. Then the triangle inequality yields

|wi+1 − zi+1| ≤ |wi − zi|+ h|f(ti, wi)− f(ti, zi)|+ |δi+1|
≤ |wi − zi|+ hL|wi − zi|+ δ, i = 0, 1, 2,

Hence Theorem 10.3 gives the next result.

Theorem 10.6. Let f : [t0, T] × R → R be continuous, Lipschitz continuous in its
second variable with the Lipschitz constant L, and be continuously partially differentiable
with respect to both variables. Then

|y(ti)− wi| ≤
eL(T−t0) − 1

L

(︃
hM2

2
+

δ

h

)︃
+ |δ0|eL(T−t0), i = 0, 1, . . . , n,

where M2 := max{|y′′(t)| : t ∈ [t0, T]} and δ := max{|δ1|, |δ2|, . . . , |δn|}.

The factor hM2

2
+ δ

h
in Theorem 10.6 is no longer linear in h, moreover

lim
h→0+

(︃
hM2

2
+

δ

h

)︃
=∞.

Hence if h is too small, then the effect of rounding in the Euler’s method can be significant.
If the step size is much bigger than the rounding error, then the effect of the rounding is
small in the output.

Exercises

1. Work out the details of Theorem 10.6.

2. Draw the graph of the function g(h) = hM2
2 + δ

h which appears in Theorem 10.6. What is
its minimum point?

3. Using the optimal step size obtained in the previous exercise compute for the problem of
Example 10.2 assuming δ = 0.00001.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

10.4. Taylor’s Method 201

10.4. Taylor’s Method

The results of Section 10.2 can be repeated for more general methods. Motivated by
the Euler’s method, we define the following general one step method to approximate the
solutions of the IVP (10.1):

zi+1 = zi + hF (ti, zi;h), i = 0, 1, . . . , n− 1, z0 = y0, (10.18)

where F : [t0, T]× R× [0, H]→ R for some H > 0. (For the Euler’s method F (t, z;h) =
f(t, z).) In this section we formulate the methods for the case of equidistant mesh points,
but the methods can be generalized for the case of non-uniform mesh points too, i.e., for
zi+1 = zi + hiF (ti, zi;hi).

Similarly to the Euler’s method, we define the local truncation error for the method
(10.18) at the ith mesh point by

τi+1 :=
y(ti+1)− y(ti)

h
− F (ti, y(ti);h), i = 0, 1, . . . , n− 1, (10.19)

where y(t) is the exact solution of the IVP (10.1).
Clearly, Theorem 10.4 can be extended to the general one step method (10.18) if F

is continuous and Lipschitz continuous in its second variable. The computations after
Theorem 10.4 can also be generalized, and inequality (10.14) holds too. If we also assume
that (10.15) holds too (it is not automatic), then it yields a result similar to Theorem 10.5.
We can prove the following result.

Theorem 10.7. Let F : [t0, T]×R×[0, H]→ R be continuous and Lipschitz continuous in
its second variable, and be continuously differentiable with respect to its first two variables.
Suppose the local truncation error of (10.18) is of order α, i.e., there exists a constant
K2 > 0 such

|τi+1| ≤ K2h
α

for all i = 0, 1, . . . , n − 1. Then the approximate solution (10.18) converges to the exact
solution of the IVP (10.1) in order α, i.e., there exists a constant K > 0 such that

|y(ti)− zi| ≤ Khα, i = 0, 1, . . . , n.

How can we select F so that the conditions of Theorem 10.7 be satisfied? It is natural
from method (i) presented for the Euler’s method to consider higher order Taylor polyno-
mial approximation of the solution (assuming it is sufficiently many times differentiable):

y(t) = y(ti) + y′(ti)(t− ti) +
1

2
y′′(ti)(t− ti)

2 + . . .+
1

α!
y(α)(ti)(t− ti)

α

+
1

(α + 1)!
y(α+1)(ξi)(t− ti)

α+1,

where ξi ∈ ⟨t, ti⟩. How can we compute higher order derivatives of y? We know that
y′(t) = f(t, y(t)). Computing the derivatives of both sides we get relation (10.16). If
we compute the derivatives of the right hand side of (10.16) and using relation y′(t) =

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

202 10. Ordinary Differential Equations

f(t, y(t)) we get an expression for y′′′(t) in terms of t, y(t), f and the partial derivatives
of f . We introduce the notation

f (i)(t, y(t)) :=
di

d ti

(︂
f(t, y(t))

)︂
, (10.20)

(i.e., f (i)(t, y(t)) denotes the ith derivative of the composite function f(t, y(t)) with respect
to t). f (i)(t, z) denotes the formula which we get when in the formula of f (i)(t, y(t)) we
replace y(t) with z. Using this notation we get y(i)(t) = f (i−1)(t, y(t)), and hence

y(ti+1) = y(ti) + f(ti, y(ti))h+
1

2
f (1)(ti, y(ti))h

2 + . . .+
1

α!
f (α−1)(ti, y(ti))h

α

+
1

(α + 1)!
f (α)(ξi, y(ξi))h

α+1.

Suppose f ∈ Cα, and define F by

F (t, z;h) := f(t, z) +
1

2
f (1)(t, z)h+ . . .+

1

α!
f (α−1)(t, z)hα−1. (10.21)

Then

τi+1 =
1

(α + 1)!
f (α)(ξi, y(ξi))h

α,

and hence the local truncation error is of order α in h. The method defined by (10.18)
and (10.21) is called Taylor’s method of order α.

Example 10.8. Consider again the problem of Example (10.8), and apply the second-order

Taylor’s method for it. First compute f (1):

f (1)(t, y(t)) =
d

dt

(︁
2y(t)− 10t2 + 2t

)︁
= 2y′(t)− 20t+ 2

= (4y(t)− 20t2 + 4t)− 20t+ 2 = 4y(t)− 20t2 − 16t+ 2.

Hence the numerical method is defined by

zi+1 = zi + h
(︂
2zi − 10t2i + 2ti

)︂
+

h2

2

(︂
4zi − 20t2i − 16ti + 2

)︂
, i = 0, 1, 2, . . . , z0 = 1.

In Table 10.2 we listed the numerical values of first few terms of this method and the error of the
approximation corresponding to step sizes h = 0.2 and 0.1. We can see that when the step size
reduces to its half, then the error reduces to its quarter, which demonstrates that the method
is of order 2. Comparing to the errors presented in Table 10.1 we can see that the errors here
are better than that in the Euler’s method.

Next we apply the third-order Taylor’s method for the same problem. Simple calculations
yield

f (2)(t, y(t)) =
d

dt

(︁
4y(t)− 20t2 − 16t+ 2

)︁
= 4y′(t)− 40t− 16 = 8y(t)− 40t2 − 32t− 16.

Hence the third-order Taylor’s method is defined by:

zi+1 = zi + h
(︂
2zi − 10t2i + 2ti

)︂
+

h2

2

(︂
4zi − 20t2i − 16ti + 2

)︂
+

h3

6
(8zi − 40t2i − 32ti − 16),

for i = 0, 1, 2, . . ., and z0 = 1. The numerical results can be seen in Table 10.3. We observe
smaller error then in the previous example. □

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

10.5. Runge–Kutta Method 203

Table 10.2: Second-order Taylor’s method

h = 0.2 h = 0.1
ti y(ti) i zi |y(ti)− zi| i zi |y(ti)− zi|
0.0 1.00000 0 1.00000 0.0000e-01 0 1.00000 0.0000e-01
0.2 1.50818 1 1.52000 1.1825e-02 2 1.51160 3.4247e-03
0.4 2.17446 2 2.20960 3.5141e-02 4 2.18467 1.0206e-02
0.6 2.87988 3 2.95821 7.8325e-02 6 2.90270 2.2813e-02
0.8 3.44697 4 3.60215 1.5518e-01 8 3.49229 4.5325e-02
1.0 3.61094 5 3.89918 2.8823e-01 10 3.69537 8.4425e-02

Table 10.3: Third-order Taylor’s method

h = 0.2 h = 0.1
ti y(ti) i zi |y(ti)− zi| i zi |y(ti)− zi|
0.0 1.00000 0 1.00000 0.0000e-01 0 1.00000 0.0000e-01
0.2 1.50818 1 1.50933 1.1580e-03 2 1.50834 1.6959e-04
0.4 2.17446 2 2.17791 3.4538e-03 4 2.17497 5.0596e-04
0.6 2.87988 3 2.88761 7.7257e-03 6 2.88102 1.1321e-03
0.8 3.44697 4 3.46233 1.5361e-02 8 3.44922 2.2518e-03
1.0 3.61094 5 3.63958 2.8634e-02 10 3.61514 4.1989e-03

Exercises

1. Solve the IVPs presented in Exercise 1 of Section 10.2 using the second- and third-order
Taylor’ method.

2. Formulate and apply the fourth- and fifth-order Taylor’s method for the IVP (10.8).

10.5. Runge–Kutta Method

The difficulty in the application of the Taylor’s method is the computation of the deriva-
tives f (i). Here we can get complicated formulas which can require a lot of computational
time, which may result in the accumulation of the rounding errors too. The Runge–Kutta
methods will preserve the high convergence rates of the Taylor’s method, but reduce the
computational complexity. The idea is presented for the second-order case:

Let f ∈ C2, consider the formula of the second-order Taylor’s method

F (t, z;h) = f(t, z) +
h

2

(︃
∂f

∂t
(t, z) +

∂f

∂y
(t, z)f(t, z)

)︃
.

Here, as usual, ∂f
∂y

denotes the partial derivative of f with respect to its second variable.
Compare this formula to the following Taylor formula:

f(t+ a, z + b) = f(t, z) +
∂f

∂t
(t, z)a+

∂f

∂y
(t, z)b+ E(t, z, a, b),

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

204 10. Ordinary Differential Equations

where the error is of second order

E(t, z, a, b) =
1

2

(︃
∂2f

∂t2
(ξ, η)a2 + 2

∂2f

∂t ∂y
(ξ, η)ab+

∂2f

∂y2
(ξ, η)b2

)︃
(10.22)

for some ξ ∈ ⟨t, t+ a⟩ and η ∈ ⟨z, z + b⟩. If we use the parameters a = h/2 and b =
f(t, z)h/2, we get

f

(︃
t+

h

2
, z +

h

2
f(t, z)

)︃
= F (t, z;h) + E

(︃
t, z,

h

2
,
h

2
f(t, z)

)︃
,

so the essential part of f
(︁
t+ h

2
, z + h

2
f(t, z)

)︁
coincides with F (t, z;h). But the significant

difference is that it is much simpler to evaluate f
(︁
t+ h

2
, z + h

2
f(t, z)

)︁
than F (t, z;h). This

motivates to define the approximation sequence

zi+1 = zi + hf

(︃
ti +

h

2
, zi +

h

2
f(ti, zi)

)︃
, i = 0, 1, 2, . . . , z0 = y0. (10.23)

This is called the midpoint method. Let τi+1 and τ̄i+1 be the local truncation error of the
midpoint and the second-order Taylor’s methods, respectively. Then

τi+1 =
y(ti+1)− y(ti)

h
− f

(︃
ti +

h

2
, y(ti) +

h

2
f(ti, y(ti))

)︃
=

y(ti+1)− y(ti)

h
− F (ti, y(ti);h)− E

(︃
ti, y(ti),

h

2
,
h

2
f(ti, y(ti))

)︃
= τ̄i+1 − E

(︃
ti, y(ti),

h

2
,
h

2
f(ti, y(ti))

)︃
.

We know from the previous section that |τ̄i+1| ≤ K̄h2, and (10.22) and f ∈ C2 imply
that there exists K̃ such that

⃓⃓
E
(︁
ti, y(ti),

h
2
, h
2
f(ti, y(ti))

)︁⃓⃓
≤ K̃h2. But then |τi+1| ≤

(K̄ + K̃)h2 holds, and therefore, the method (10.23) converges quadratically, assuming
that the Lipschitz continuity needed in Theorem 10.7 also holds. This is clearly satisfied
if f is Lipschitz continuous in its second variable. (See Exercise 2.)

Now we define F in the following way:

F (t, z;h) :=

p∑︂
j=1

γjGj(t, z;h),

G1(t, z;h) := f(t, z), (10.24)

Gj(t, z;h) := f

(︄
t+ αjh, z + h

j−1∑︂
k=1

βjkGk(t, z;h)

)︄
, j = 2, 3, . . . , p.

The class of methods defined by formulas (10.18) and (10.24) is called (explicit) Runge–
Kutta methods. The goal is to select the parameters so that we get high order local
truncation errors.

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

10.5. Runge–Kutta Method 205

Consider now the case when p = 2. Then

F (t, z;h) = γ1f (t, z) + γ2f(t+ α1h, z + β11hf(t, z)) .

(If γ1 = 0, γ2 = 1, α1 = β11 = 1/2, then we get back the midpoint method.) We try to
select parameters so that we get third-order local truncation error. We apply the second
Taylor formula for the right hand side:

F (t, z;h) = (γ1 + γ2)f(t, z) + hγ2

(︂
α1

∂f

∂t
(t, z) + β11f(t, z)

∂f

∂y
(t, z)

)︂
+

h2

2
γ2

(︂
α2
1

∂2f

∂t2
(t, z) + 2α1β11f(t, z)

∂2f

∂t ∂y
(t, z) (10.25)

+ β2
11(f(t, z))

2 ∂
2f

∂y2
(t, z)

)︂
+ E(t, z, α1h, β11hf(t, z)),

where E is a third-order error term. Compare it to the formula of the third-order Taylor’s
method

F̃ (t, z;h) = f(t, z) +
h

2

(︃
∂f

∂t
(t, z) +

∂f

∂y
(t, z)f(t, z)

)︃
+

h2

6

(︂∂2f

∂t2
(t, z) + 2f(t, z)

∂2f

∂t ∂y
(t, z) (10.26)

+ (f(t, z))2
∂2f

∂y2
(t, z) +

∂f

∂t
(t, z)

∂f

∂y
(t, z) +

(︃
∂f

∂y
(t, z)

)︃2

f(t, z)
)︂
.

We can see that all the terms of F with at most second order appear in the formula of F̃ .

But the opposite case is not true: the terms ∂f
∂t
(t, z)∂f

∂y
(t, z) and

(︂
∂f
∂y
(t, z)

)︂2
f(t, z) which

appear in (10.26) have no corresponding term in (10.25). This means that we cannot
replace all second-order terms of the Taylor’s method with the second-order terms of F ,
so the local truncation error can only be quadratic. But we try to identify as many terms
of (10.25) and (10.26) as possible. Therefore, we assume

γ1 + γ2 = 1, γ2α1 =
1

2
, γ2β11 =

1

2
, (10.27)

and
γ2
2
α2
1 =

1

6
, γ2α2β11 =

1

3
,

γ2
2
β2
11 =

1

6
. (10.28)

For example, γ1 = γ2 = 1/2 and α1 = β11 = 1 satisfy (10.27), but not (10.28). But since
all the first-order terms are identified, we get a second-order method. The corresponding
method

zi+1 = zi +
h

2

(︂
f(ti, zi) + f(ti+1, zi + hf(ti, zi))

)︂
, i = 0, 1, 2, . . . , z0 = y0 (10.29)

is called modified Euler method.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

206 10. Ordinary Differential Equations

If we use the parameter values γ1 = 1/4, γ2 = 3/4 and α1 = β11 = 2/3, then both
(10.27) and (10.28) are satisfied. The corresponding method, the so-called Heun’s method
is defined by

zi+1 = zi +
h

4

(︃
f(ti, zi) + 3f

(︃
ti +

2h

3
, zi +

2

3
hf(ti, zi)

)︃)︃
, i = 0, 1, 2, . . . ,

z0 = y0. (10.30)

Both methods are so-called second-order Runge–Kutta methods (since their local trunca-
tion error is of second order).

The geometric meaning of the modified Euler method is the following: Suppose the
point (ti, zi) is given in the ith step of the method. If we used the Euler’s method, then we
would take one step along with a line through this point with slope f(ti, zi), and we would
move to the point (ti+1, wi+1) where wi+1 := zi + hf(ti, zi). The slope of the tangent line
to the graph of the exact solution at this point is f(ti+1, wi+1). We compute the average
of the two slopes, and move one step along with a line of such averaged slope starting
from the point f(ti, zi). See Figure 10.1.

(t
i+1

, z
i+1

)

(t
i+1

,w
i+1

)

(t
i i

), z

Figure 10.1: Geometric interpretation of the modified Euler method

Following the idea presented above, we can define several other Runge-Kutta methods.
It can be shown that for different parameter values p the corresponding methods of the
form can have at most the order of the local truncation error given in the following table:

p 1 2 3 4 5 6 7 8 9 10

maximal order of the method 1 2 3 4 4 5 6 6 7 7

One of the most popular ODE approximation method of the form (10.24) is the “clas-

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

10.5. Runge–Kutta Method 207

sical” Runge–Kutta method:

z0 = y0,

wi,1 = f(ti, zi),

wi,2 = f

(︃
ti +

h

2
, zi +

h

2
wi,1

)︃
,

wi,3 = f

(︃
ti +

h

2
, zi +

h

2
wi,2

)︃
, (10.31)

wi,4 = f (ti+1, zi + hwi,3) ,

zi+1 = zi +
h

6
(wi,1 + 2wi,2 + 2wi,3 + wi,4), i = 0, 1, 2,

It can be shown that this method has a fourth-order local truncation error (if f ∈ C5).
The derivation of the method and the proof of its order is not presented here.

Example 10.9. For the IVP (10.8) we applied the modified Euler, Heun and the classical
fourth-order Runge–Kutta methods using step size h = 0.1. The numerical results are presented
in Table 10.4. □

Table 10.4: Runge–Kutta methods

modified Euler Heun classical
ti y(ti) zi |y(ti)− zi| zi |y(ti)− zi| zi |y(ti)− zi|
0.0 1.0000 1.0000 0.0000e-01 1.0000 0.0000e-01 1.0000 0.0000e-01
0.2 1.5082 1.5005 7.6753e-03 1.5042 3.9753e-03 1.5082 1.1773e-05
0.4 2.1745 2.1570 1.7415e-02 2.1663 8.2078e-03 2.1744 2.6024e-05
0.6 2.8799 2.8505 2.9398e-02 2.8679 1.1995e-02 2.8798 4.2338e-05
0.8 3.4470 3.4035 4.3486e-02 3.4331 1.3882e-02 3.4469 5.9304e-05
1.0 3.6109 3.5521 5.8862e-02 3.5998 1.1100e-02 3.6109 7.3610e-05

Exercises

1. Solve the IVPs presented in Exercise 1 of Section 10.2 using the midpoint, modified Euler,
Heun and the classical fourth-order Runge–Kutta methods.

2. Prove that if f is Lipschitz continuous in its second variable, then the function

F (t, z;h) =
1

2
f

(︃
t+

h

2
, z +

h

2
f(t, z)

)︃
of the midpoint method is also Lipschitz continuous in its second variable.

3. Similarly to the method (iii) of the Euler’s method, derive formula (10.29).

4. Show that the midpoint method, the modified Euler and Heun method gives back the
same approximation for all step sizes for the IVP

y′ = 2− t− y, y(0) = 1.

5. Find a geometric interpretation to the classical fourth-order Runge–Kutta method.

6. Show that if f depends only on t, then the classical fourth-order Runge–Kutta method
reduces to the Simpson’s rule.

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

References

[1] K. E. Atkinson, An Introduction to Numerical Analysis, Wiley, New York, 1978.

[2] R. L. Burden, J. D. Faires, Numerical Analysis, Brooks/Cole, Cengage Learning,
2011.

[3] J. E. Dennis Jr., R. B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Classics in Applied Mathematics (Book 16), Society for
Industrial and Applied Mathematics, 1987.

[4] E. Isaacson, H. B. Keller, Analysis of Numerical Methods, Wiley, New York, 1966.

[5] A. Ralston, P. Rabinowitz, A First Course in Numerical Analysis, Dover Books on
Mathematics, Dover Publications, 2001.

[6] L. Ridgway Scott, Numerical Analysis, Princeton University Press, 2011.

[7] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, New York,
1980.

Index

1-norm, 48
C[a, b], Cm[a, b], 23
Cm, 45, 47
O(nk), 71
cond(A), condp(A), 100
cond∗(A), 104
det(A), 65
ρ(A), 68
Rn×n, 50
⟨a, b⟩, 23
AT , 65
I, 65
xT , 65
4-digit arithmetic, 15, 19, 20

absolute error, 13
algorithm

number of arithmetic operations, 7
space complexity, 9
stable, 7
time complexity, 7
unstable, 7

approximation
absolute error, 13
error, 13
number of exact digits, 13

asymptotic error constant, 38
augmented matrix, 72, 73

backward difference
first-order, 138
second-order, 140

band matrix, 85
BFGS update, 179
binary, 9
bisection method, 29
Broyden, 177, 179
Broyden’s method, 59, 175
Bunyakovsky, 48

Cantor’s Intersection Theorem, 24
Cauchy sequence, 52

Cauchy’s criterion, 52
Cauchy–Bunyakovsky–Schwarz inequality, 48
chain rule, 46
Cholesky factorization, 110
chopping, 12
Cobweb diagram, 25
complete pivoting, 78
condition number, 100
contraction, 27, 55
contraction principle, 27, 55
convergence

global, 28
linear, 38
local, 28
matrix, 51
order, 38
quadratic, 38
superlinear, 38
vector, 49

correct problem, 7
curve fitting, 183

Davidon, 181
deflation, 44
degree of precision, 146
descent, 168
DFP update, 180, 181
diagonally dominant matrix, 67
difference

n+ 1-point, 139
backward, 140
centered, 139
central, 139, 140
first-order, 138
forward, 140
fourth-order, 140
order n, 139
second-order, 139
two-point, 138

divided differences, 119
Doolittle’s method, 107
double precision, 11

212 Index

eigenvalue, 68

eigenvector, 68

elimination

Gauss–Jordan, 82

Gaussian, 73

partial pivoting, 76

error, 13

computational, 5

inherited, 5

measurement, 5

modeling, 5

relative, 13

rounding, 6

truncation, 6

Euclidean norm, 48

Euler sequence, 195

Euler’s method, 195

modified, 205

exponent, 10

extrapolation, 114

factorization

Cholesky, 110

Fibonacci sequence, 37

first-order

backward difference, 138

forward difference, 138

fixed point, 25, 55

fixed-point iteration, 25, 89

fixed-point theorem, 26, 55

Flecher, 179, 181

floating point, 11

forward difference

first-order, 138

second-order, 140

Frobenius-norm, 181

Fundamental Theorem of Algebra, 24

Gastinel, 104

Gauss-Jordan elimination, 82

Gaussian elimination, 73

Gaussian normal equations, 184

Gaussian quadrature, 154

geometric series, 90

golden section, 161

golden section search method, 160

Goldfarb, 179

gradient, 45

gradient method, 168
optimal, 168

Gram–Schmidt orthogonalization, 155

Halley iteration, 43
Hermite polynomial, 126
Hessian, 45
Heun’s method, 206
Horner’s method, 8

ill-conditioned problem, 7
implicit scaling, 79
Intermediate Value Theorem, 23
interpolating polynomial, 117

Hermite, 126
Lagrange, 113
Newton, 122

interpolation, 113, 114
Hermite, 125
Lagrange, 113
Newton, 122
spline, 130

iteration, 24
fixed-point, 25
Gauss–Seidel, 96
Jacobi, 94
linear, 89
multistep, 25
Newton, 33, 173
one-step, 25
stopping criteria, 44, 99

iterative refinement, 100

Lagrange basis polynomials, 113
Lagrange interpolation, 113

bivariate, 117
two-dimensional, 117

Lagrange polynomial, 113, 117
Lagrange’s Mean Value Theorem, 24, 47, 53
Lagrange’s method, 137, 146
least square error, 183
least squares, 183
Legendre polynomial, 155
linear approximation, 47
linearization, 190
Lipschitz

constant, 27
continuous, 27
property, 27

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

Index 213

Lipschitz constant, 193

Lipschitz continuity

local, 194

Lipschitz continuous, 193

local truncation error, 196, 201

loss of significance, 17

machine epsilon, 13

machine number, 11

mantissa, 10

matrix

band, 85

characteristic equation, 68

Cholesky factorization, 110

convergence, 51

diagonally dominant, 67

Doolittle’s method, 107

eigenvalue, 68

eigenvector, 68

Hilbert, 104

ill-conditioned, 100

inverse, 65

LU factorization, 107

negative definite, 67

negative semi-definite, 67

nonsingular, 65

norm, 50, 181

permutation, 66

positive definite, 67

positive semi-definite, 67

principal minor, 67

similar, 68

singular, 65

spectral condition number, 104

spectral radius, 68

triangular, 66

tridiagonal, 84

well-conditioned, 100

maximal pivoting, 78

Mean Value Theorem for integrals, 24

mesh points, 113

method

backward substitution, 70

method of false position, 30

midpoint method, 204

midpoint rule, 146

Morrison, 61

multiple root, 40

Nelder–Mead method, 164
Neumann-series, 90
Newton’s method, 33

for minimization, 173
Newton–Cotes formula, 146, 150

closed, 146
open, 146

Newton–Raphson method, 33
node points, 113
norm

1, 48
p, 48
Euclidean, 48
infinity, 48
matrix, 50
maximum, 48
vector, 47, 48

normal equations, 184, 187
normal form, 10
number of arithmetic operations, 7

Olver iteration, 43
orthogonal functions, 154
overflow, 12

p-norm, 48
partial pivoting, 76

implicit scaling, 79
pivot elements, 73
pivoting

complete, 78
maximal, 78
partial, 76
scaled partial, 79

Powell, 181
Powell-symmetric-Broyden update, 177
problem

correct, 7
ill-conditioned, 7
stable, 7
unstable, 7
well-conditioned, 7

PSB update, 177

quadrature, 146
degree of precision, 146
Gaussian, 154

quasi-Newton method
for minimization, 175

F. Hartung, University of Pannonia www.tankonyvtar.hu

www.tankonyvtar.hu

214 Index

quasi-Newton methods, 59

rectangle rule, 146
recursion, 24
Regula Falsi, 30
relative error, 13
residual vector, 99
Richardson’s extrapolation, 145
Rolle’s Theorem, 23

generalized, 115
Rosenberg, 98
rounding, 12
Runge–Kutta method, 203, 204, 206, 207

scaled partial pivoting, 79
Schwarz, 48
secant equation, 60, 177
secant method, 35, 59
second-order difference

backward, 140
central, 139
forward, 140

Shanno, 179
Sherman, 61
sign-magnitude representation, 9
significant digits, 15
similar matrix, 68
similarity transformation, 68
simplex, 163
simplex method, 163
Simpson’s rule, 150, 207

composite, 150
simultaneous linear systems, 85
single precision, 11
space complexity, 9
spectral radius, 68
spline

clamped, 133
natural, 130

spline function, 130
stability, 6
stable

algorithm, 7
stable problem, 7
stair step diagram, 25
steepest descent method, 168
Stein, 98

Taylor’s formula, 45, 46

Taylor’s method, 140, 202
Taylor’s Theorem, 24
three-point

endpoint formula, 140
midpoint formula, 139

time complexity, 7
trapezoidal rule, 147

composite, 148
triangle inequality, 47, 50
two’s-complement representation, 9

underflow, 12
unimodal function, 160
unstable

algorithm, 7

Vandermonde determinant, 69
vector

convergence, 49
distance, 49
length, 49
norm, 47

well-conditioned problem, 7
Woodbury, 61

www.tankonyvtar.hu F. Hartung, University of Pannonia

www.tankonyvtar.hu

	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	

	
	
	

	
	
	
	
	
	

	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	

	
	
	
	
	
	

	
	

