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Introduction 

 

 

The aim of this booklet is to introduce the students to the world of random phenomena. 

The real world is plenty of random things. Without striving to completeness, for example, think 

for waiting time in the post office, or the working time of a machine, the cost of the repair of an 

instrument, insurance, stock market and rate of exchange, damages caused by computer viruses 

and so on. It is obvious that these random phenomena have economic significance as well; 

consequently their random behaviour has to be handled. The method of handling is served by 

probability theory. 

The concept of probability was developing during centuries. It originates in gambles, for 

example playing cards, games with dice but the idea and the developed methods can be applied 

to economic phenomena, as well. Since medieval ages people realized that random phenomena 

have a certain type of regularity. Roughly spoken, although one can not predict what happens 

during one experiment but it can be predicted what happens during many experiments. The 

mentioned regularities are investigated and formed by formal mathematical apparatus. The 

axiomatic set up of probability was published by Kolmogorov in 1933 and since then the theory 

of probability, as a branch of mathematics, has been growing incredibly. Nevertheless there are 

problems which are very simple to understand but very difficult to solve. Solving techniques 

require lots of mathematical knowledge in analysis, combinatory, differential and integral 

equation. On the other hand computer technique is developing very quickly, as well; hence 

great immense of random experiences can be performed. The behaviour of stochastic 

phenomena can be investigated experimentally, as well. Moreover, difficult probabilistic 

problems can be solved easily by simulation after performing a great amount of computations. 

This booklet introduces the main definitions connected to randomness, highlights the 

concept of distribution, density function, expectation and dispersion. It investigates the most 

important discrete and continuous distributions and shows the connections among them. It 

leads the students from the properties of probability to the central limit theorem. Finally it ends 

in the basis of statistics preparing the reader for further statistical studies. 
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 a. Basic concepts and notations 

 

 

The aim of this chapter 

 

This chapter aims with getting acquainted with the concept of outcome of an 

experiment, events, occurrence of an event, operations with event. We 

introduce   algebra of events.  

 

 

Preliminary knowledge 

 

The applied mathematical apparatus: sets and set operations. 

 

Content 

 

a.1. Experiments, possible outcome, sample space, events 

 

a.2. Operations with events 

 

a.3.  algebra of events 
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a.1. Experiments, possible outcome, sample space, events  

 

The fundamental conception of the probability theory is experiment. 

Experiment is observation of a phenomenon. 

This phenomenon can be an artificial (caused by people) one or a phenomenon in the nature, as 

well. We do not bother whether the experiment originates from home made or natural 

circumstances. We require that the observation should be repeated many times. 

Actually we list some experiments: 

 Measure the water level of a river. 

 Measure air pollution in a town. 

 Measure the falling time of a stone from a tower to the ground. 

 Measure the waiting time at an office. 

 Measure the amount of rainfall at a certain place. 

 Count the number of failures of a machine during a time period. 

 Count the number of complains connected to a certain product of a factory. 

 Count the infected files on a computer at a time point. 

 Count the number of shooting stars at night in August. 

 Count the number of heads if you flip 100 coins. 

 Investigate the result of flipping a coin. 

 Investigate if there is an odd number among three rolls of a die. 

 Investigate the energy consumption of a factory during a time period. 

 Investigate the demand of circulation of banknotes at a bank machine. 

 Investigate the working time of a part of a machine. 

 Investigate the cost of the treatment of a patient in a hospital. 

 Sum the daily income of a supermarket. 

 Sum the amount of claims at an insurance company during a year. 

 List the winning numbers of the lottery. 

 

If one “takes measure”, “counts”, “investigates”, “sums” and so on, one observes a 

phenomenon. 

In some cases the result of the observation is unique. These experiments are called 

deterministic experiment. In other cases the observation may end in more than one results. 

These experiments are called stochastic or random experiments. Probability theory deals with 

stochastic experiments. 

 

If one performs an experiment (trial), he can take into consideration what may happen. The 

possible results are called possible outcomes, or, in other words, elementary events. The set 

of possible outcomes will be called as sample space.  

We denote a possible outcome by , and the sample space by Ω . 

What is considered as “possible outcome” of an experiment? It is optional. First, it depends on 

what we are interested in. If we flip a coin, we are interested if the result is head (H) or tail (T) 

but usually we are not interested in the number of turnings. We can also decide whether the 

result of a measurement should be an integer or a real number. What should be the unit of 

measurement? If you investigate the water level of a river, usually the most important thing is 

the danger of flood. Consequently low-medium-high might be enough as possible outcomes. 

But possible outcomes are influenced by the things that are worth investigating to have such 

cases which are simple to handle. If we are interested in the number of heads during 100 flips, 

we have to decide whether we take into consideration the order of heads and tails or it is 

unnecessary. Therefore, during a probabilistic problem the first task is to formulate possible 

outcomes and determine their set. 

In the examples of previous list, if we measure something, a possible result may be a 

nonnegative real number, therefore 
 0RΩ . If we count something, possible outcomes are 
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nonnegative integer, therefore NΩ  . If we investigate the result of a flip, the possible 

outcomes are head and tail, so  T,HΩ  .This set does not contain numbers. The sample 

space may be an abstract set. If we list the winning numbers of the lottery (5 numbers are 

drawn of 90), a possible outcome is  5,4,3,2,11  , and another one 

is  90,80,50,20,102  . Possible outcomes are sets themselves. Consequently, the sample 

space is a set of sets, which is an abstract set again.  

If an experiment is performed, then one of its possible outcomes will be realized. If we repeat 

the experiment, the result of the observation is a possible outcome which might be different 

from the previous one. This is due the random behaviour. After performing the trial we know 

its result, before making the trial we are only able to take into consideration the possible results. 

 

In practice events are investigated: they occur or not. 

Events are considered as a subset of the sample space. That means, certain possible outcomes 

are in a fixed event, others are not contained in it. We say that the event A occurs during an 

experiment if the outcome in which the trial results is the element of the set A. If the outcome 

observed during the actual experiment is not in A, we say that A does not occur during the 

actual experiment. If the observed outcomes are different during the experiments, the event A 

may occur in one experiment and may not in another one. 

This meaning coincides with the common meaning of occurrence. Let us consider some very 

simple examples. 

E1. Roll a single six-sided die. The possible outcomes are: 1 point is on the upper 

surface, 2 points are on the upper surface, ..., 6 points are on the upper surface. Briefly, 

 6,5,4,3,2,1Ω   i=1,2,3,4,5,6 indicates the possible outcomes by the number of points. Let 

ΩA  ,  5,3,1A  . The elements of A are the odd numbers on the surface. If the result of 

the roll is 11  , then A1  . We say that A occurs during this experiment. On the other 

side, in common parlance we usually say that the result of the roll is odd number. In case the 

result of the experiment is 66  , then A6  , A does not occur during this experiment. 

The roll is not odd. Although A is a set, A expresses the “sentence” that the result of the trial is 

odd. If the trial ends in showing up 66  , we shortly say that the result of the roll is “six”. 

E2. Measure the level of a river. 
 0RΩ . Suppose that if the level of the river is 

more than 800cm, then there is danger of flood. The sentence “there is danger of flood” can be 

expressed by the event (set)   Ωx800:RxA 0  
. If the result of the measurement is 

=805cm, then A . A occurs, and indeed, there is danger of flood. If the result is the 

measurement is  650 cm, then A . We say A does not occur, and really, there is no 

danger of flood in that case. 

E3. Count complains connected to a certain type of product. Now NΩ  . If “too 

much problems” means that the number of complains reaches a level, for example 100, then 

sentence “too much problem” is the set  n100:NnA  . If the number of complaints is 

 160, then A .The event A occurs and there are too much complains. If the number of 

complains is 86 , then A . A does not occurs, and indeed, the result of the trial does not 

mean too much problems. 

 

The event Ω  is called certain or sure event. It occurs sure, as whatever the outcome of the 

experiment is, it is included in Ω  , therefore Ω  occurs. 

The event   (empty set) is called impossible event. It can not occur, as whatever the outcome 

of the experiment is, it is not the element of  . 

 

Further examples for events: 

 



 

 

 

Probability theory and mathematical statistics– Basic concepts and notations 5 

E4. Flip twice a coin. Take into consideration of the order of the results of separate 

flip. Now         T,T,H,T,T,H,H,HΩ  , where the outcome )T,H( represents that the 

first flip is head, the second one is tail. 

The event “there at least one head among the flips” is the set       .H,T(,T,H,H,HA   

The event “there at most one head among the flips” is the set       T,T,H,T,T,HB  . 

The event “there is no head among the flips” is the set   T,TC  . 

The event “there is no tail among the flips” is the set   H,HD  .The event “the first flip is 

tail among the flips” is the set     T,T,H,TE  . 

The event “the flips are different” is the set     H,T,T,HF  . 

The event “the flips are the same” is the set     T,T,H,HG  . 

 

We note that the number of subsets of sample space Ω  is 1642  , consequently there are 16 

events in this example including certain and impossible event, as well. 

 

E5. Roll twice a die. Take into consideration the order of rolls. In that case 

                 6,6,...,1,2,6,1,5,1,4,1,3,1,2,1,1,1Ω   egerintarej,i,6j1,6i1:j,i  . 

The event “there is no 6 between the rolls” is  

                5,5,...,1,5),....5,2(,...,1,2,5,1,4,1,3,1,2,1,1,1A  . 

The event “the sum of the rolls is 6” is           1,5,2,4,3,3,4,2,5,1B  . 

The event “ the maximum of the rolls is 3” is           1,3,2,3,3,3,3,2,3,1C  . 

The event “the minimum of the rolls is at most 5” is         6,6,5,6,6,5,5,5D  . 

 

As the number of possible outcomes is 3666  , therefore the number of events is 
1036 1087.62  . 

 

E6. Pick one card from a pack of Hungarian cards containing 32 playing cards. 

Now, 









hearts,... ofseven  ,hearts, often .,hearts,... of king,hearts,... ofupper 

.,hearts,... of under,bells of ace,acorns of ace,leaves of ace,hearts of ace
Ω . 

The event “the picked card is heart” is 










hearts ofseven  hearts, ofeight  hearts, of ninehearts, often 

hearts, of kinghearts, ofunder hearts, ofupper ,hearts of ace
A . 

The event “the picked card is ace” is 

 bells of ace,acorns of ace,leaves of ace,hearts of aceB  . 

The event “the picked card is ace and heart” is  hearts of aceC  . 

 

E7. Pick two cards from a pack of Hungarian playing cards without replacing the 

chosen card. Do not take into consideration the order of the card.  

In this case the sample space is  

   
  









,.....acorns often acorns, ofn seve

,....,hearts ofupper hearts, of ace,leaves of acehearts, of ace
Ω , 

containing all the sets of two different elements of cards. 

The event “both cards are ace” is  

   
   
   
















acorns of acebells, of ace,acorns of aceleaves, of ace

,bells of aceleaves, of ace,acorns of acehearts, of ace

,bells of acehearts, of ace,leaves of ace hearts, of ace

A . 

The event” both cards are hearts” is 
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    ,....hearts ofupper hearts, of ace,hearts of kinghearts, of aceB  . 

If we want to express the event the “first card is heart”, it can not be expressed actually, 

because we do not take into consideration the order of cards. If we want to express this event, 

we have to modify the sample space as follows:  

    ,....hearts of aceleaves, of ace,leaves of acehearts, of aceΩmod  . 

The outcome  leaves of acehearts, of ace  means that the first card is the ace of hearts; the 

second one is the ace of leaves. The outcome  hearts of aceleaves, of ace  means that the first 

card is the ace of leaves; the second one is the ace of hearts. To clarify the difference, we 

emphasize that outcome  leaves of ace hearts, of ace  means that one of the picked playing 

cards is ace of hearts, the other one is ace of leaves. In the sample space modΩ , the event “first 

card is heart” can be written easily. This is an example in which the formulation of the sample 

space depends on the question of the problem, not only on the trial. 

E8. Choose a number from the interval  1,0 . In that case  1,0Ω  . 

The event “first digital of the number is 6” is  7.0,6.0A  . 

The event “second digital is zero” is  

       91.0,9.0...21.0,2.011.0,1.001.0,0C  . The event “all of the digital of the 

number are the same” is 









...

9.0,...,2.0,1.0,0B . 

In this example the number of all possible outcomes and the number of events are infinity. 

 

a.2. Operations with events 

 

As events are sets, the operations with events mean operations on sets. In this subsection we 

interpret the set operations by the terminology of events. 

 

 Union (or sum) of events 

First recall that union of two or more sets contains all the elements of the sets.  

Let A and B be events, that is ΩA   and ΩB . Now ΩBA   holds as well. BA  

occurs if BA  holds, consequently A  or B . If A , then A occurs, if B , 

then B occurs. Summarizing, occurrence of BA  means that A or B occurs. At least one of 

them must occur. That means either A and B or both events occur. We emphasize that „OR” is 

not an exclusive choice but a concessive one. Union of events can be expressed by the word 

OR. 

 Intersection (or production) of events 

First recall that intersection of two or more sets contains all the common elements of the sets.  

Let A and B be events, that is ΩA   and ΩB . Now ΩBA   holds, as well. BA  

occurs, if BA  holds, consequently A  and B . If A , then A occurs, if B  

then B occurs. Summarizing, occurrence of BA  means that both A and B occur. Intersection 

of events can be expressed by the word AND. 

Two events are called mutually exclusive if their intersection is the impossible event. That 

means if either of them holds the other one can not occur. 

 Difference of two events 

First recall that the difference of sets A and B contains all of elements of A which are not 

contained by B.  

Let A and B be events, that is ΩA   and ΩB . Now ΩB\A   hold, as well. B\A  occurs 

if B\A  holds, consequently A  and B . If A , then A occurs. If B  then B 

does not occur. Summarizing, occurrence of B\A  means that A occurs but B does not. 

 Complement of an event 
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Note that the complement of a set A is the set of all elements in Ω  which are not in A. We 

denote it by A . 

Let A be an events, that is ΩA  . ΩA  holds, as well. A  holds, if A . If A , 

then A does not occur. Consequently, A  can be expressed by the word NOT A. 

 

Remarks 

 

 Operations on events have all the properties of operations on set: union, intersection are 

commutative, associative, the union and intersection is distributive. 

 Further often used equalitiy is the following one: 

BAB\A  , and the de Morgan’s equalities: 

BABA  , and for infinite many sets 









1i

i

1i

i AA  

BABA  , and for infinitely many sets 









1i

i

1i

i AA . 

 

Actually we present some examples how to express complicated events by the help of simple 

ones and operations. 

 

E1. Choose one from the students of the Pannon University. Let A be the event that 

the student is a students of economics, let B be the event that the student lives in a student 

hostel. In that case the sample space is the set of all the students of the university, one of its 

subset is the set of those students who are students of economics; another of its subset is 

formed by the students living in a student hostel. If the chosen student belongs to the subset 

mentioned first, then the event A occurs. Actually, for example, the following events can be 

described by A, B and operations: 

The chosen student is student of economics but does not live in a student hostel: B\ABA  . 

He/she is not student of economics and he does not live in a student hostel: BA . 

He/she is not student of economics or does not live in a student hostel: BA . 

He/she is student of economics or does not live in a student hostel: BA . 

He/she is not student of economics and he/she lives in a student hostel or he is student of 

economics and does not live in a student hostel: )B\A(A)\B(  . 

He/she is student of economics and he lives in a student hostel or he/she is not student of 

economics and he/she does not live in a student hostel:    BABA  . 

 

E2. In a machine two parts may fail: part x and part y. Let A be the event that part x 

fails, let B the event that part y fails.  

If both parts fail, then BA  holds. 

At least one of them fails: BA  holds. 

Part x fails but part y does not: B\A  holds. 

Either of them fails:    A\BB\A   holds. 

Neither of them fails: BA  holds. 

At least of them does not fail: BA  holds. 

 

We note that in this case the sample space can be defined as follows: 

Ω        n,n,f,nn,f,f,f , and possible outcome  n,f  represents that part x fails and part y 

does not. 

E3. Let us investigate the arrival time of a person to a meeting. Let us suppose that the 

arrival time is a point in ]15,5[ . (-1 represents that he arrives 1 minute earlier than the 
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scheduled time, 5 represents that he arrives 5 minutes late). Let A be the event that he is late, B 

the event that the difference of the scheduled time of meeting and the arrival time is less than 2 

minutes (briefly small difference). Now A= )0,5[ , )2,2(B  . 

The event that he is late but small difference is BA . 

He is not late or not small difference is: BA . 

Both events or neither of them hold:    BABA  . 

He is late but not small difference is: BA . 

He is not late or not small difference is: BA . 

 

a.3.   algebra of events 

 

Definition Let the set of all possible outcomes be fixed and denoted by Ω . The set A  

containing some of all the subsets of Ω is called   algebra, if the following properties hold: 

1. AΩ . 

2. If AA , then AA  holds, as well. 

3. If AiA , ....3,2,1i  , then A





1i

iA  holds as well. 

Remarks 

   A  as Ω  and Ω  A . 

 Applying the properties of operations one can see that if AiA , then A





1i

iA . As a 

proof, take into consideration that if AiA , then AiA , consequently. ,A
1i

i A.




 . 

Therefore, A













1i

i

1i

i

1i

i AAA . 

 If AA  and AB , then A \ AB  holds as well. As a proof, take into 

consideration that BAB\A  . If AB , then AB holds as well, and ABA  is also 

satisfied. 

 

Strictly, the elements of the   algebra A  are called events. The above properties express that 

if some sets are events, then their union, intersection, difference and complement are events, as 

well. 

In probability theory we would like determine the probability of events characterizing by it the 

relative frequency of the occurrence during many experiments. 
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b. Probability 

 

 

The aim of this chapter 

 

The aim of this chapter is getting acquainted with the basic properties of the 

probability. We present the relative frequency, introduce the axioms of 

probability and we derive the consequences of the axioms. Classical and 

geometrical probability are also introduced and applied for sampling 

problems. 

 

Preliminary knowledge 

 

The applied mathematical apparatus: sets and set operation. Combinatorial 

counting problems. Co-ordinate geometry. Basic knowledge in any computer 

program language. 

 

 

Content 

 

b.1. Frequency, relative frequency 

 

b.2. Axioms of the probability 

 

b.3. Consequences of axioms 

 

b.4. Classical probability 

 

b.5. Geometrical probability 
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b.1. Frequency, relative frequency 

 

The aim of the probability theory is to characterize an event by a number which expresses 

its relative frequency. More precisely, the events which occur frequently during many 

experiments are characterized by a large number. The events which are rare are characterized 

by a small number. If one performs n experiments and count how many times the event A 

occurs, one gets the frequency of A denoted by )n(k A . It is obvious, that nk0 A  . If we 

are interested in the proportion of occurrences of A and the number of trials, we have to divide 

)n(k A .by n, that is take the relative frequency. 
n

)n(k A . It is easy to see that 1
n

)n(k 
0 A  . 

Moreover, n)n(kΩ  , therefore 1
n

)n(k Ω  . If A and B are events for which BA , then 

)n(k)n(k)n(k BABA  , consequently 
n

)n(k

n

)n(k

n

)n(k BABA  . The value of relative 

frequency depends on the actual series of experiments, hence it changes if we repeat the series 

of experiments. During the centuries, people recognized that the relative frequency has a kind 

of stability. As if it had a limit. To present this phenomenon let us consider the following 

example. 

 

Let the experiment be flipping a coin many times. Let A be the event that the result is head 

during one flip. 

In Table b.1, one can see the frequency and relative frequency of event in the function of the 

number of experiments (n). 

 

Result 

of the 

trial 

 

T 

 

T 

 

T 

 

H 

 

T 

 

T 

 

H 

 

T 

 

H 

 

H 

(n)k A  0 0 0 1 1 1 2 2 3 4 

n 1 2 3 4 5 6 7 8 9 10 

n

(n)k A  
0 0 0 0.25 0.2 0.17 0.27 0.25 0.33 0.4 

Table b.1 Frequency and relative frequency of heads in the function of the number of 

experiences 

 

Draw the graph of relative frequency 
n

(n)kA  in the function of n. We can see the graph in the 

following figures: Fig.b.1, Fig.b.2, Fig.b.3 show oscillations. On the top of all, if we performed 

the series of experiments once again, we presumably would get other results for relative 

frequencies. If we increase the number of experiments the graph changes. Although there are 

fluctuations at the beginning of the graph, later they disappear, the graph looks almost constant. 
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Fig.b.1 Relative frequency of heads in the function of the number of experiences (n=10) 

 

 

 

Fig.b.2 Relative frequency of heads in the function of the number of experiences 

(n=1000) 

 

The mentioned phenomenon becomes more and more expressive if we increase the number of 

experiments, as Fig. b.3 shows, as well. 
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Fig.b.3 Relative frequency of heads in the function of the number of experiences 

(n=10000) 

 

If we look at Fig.b.3 thoroughly, we can realize that for large values of experiments, the 

relative frequency is almost constant function. Although fluctuations in the number of heads 

exist, they are small as compared to the number of experiences. This phenomenon was drafted 

during the centuries by the statement “relative frequency has a kind of stability”. This 

phenomenon is expressed mathematically by the “law of large numbers”. 

 

b.2. Axioms of probability 

 

If we would like to characterize the relative frequency by the probability, the probability should 

have the same properties as the relative frequency. Therefore, we require the properties for 

probability presented previously for the relative frequency. 

 

Definition Let A  be a   algebra. The function R:P A  is called probability measure if 

the following three requirements (axioms) hold: 

 

I) )A(P0 . 

II) 1)Ω(P  . 

III)  If AiA , ,...3,2,1i  for which  ji AA  ji  , then  























1i

i

1i

i APAP  . 

 

Remarks  

 The above axioms I), II) and III) are called as Kolmogorov’ axioms of probability. 

They were published in 1933. 
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 Probability measure maps the  algebra of events to the set of real numbers. The 

elements of A  (events) have probability. As P maps to R , )A(P  is a real number. The 

number )A(P  is called the probability of the event A.  

 We define probability by its property. It means that every function is probability measure 

that satisfies I), II) and III). 

 Property I), II) and III) correspond to the properties of relative frequency. The property 

1)A(P   is not requirement; it can be proved from the axioms. Additive property is presented 

for two events in case of relative frequency, but it is required for countable infinitely many 

events in axiom III) in case of probability. 

 Property I) expresses that the probability of any event is a nonnegative number. 

 Property II) expresses that the probability of the sure event equals 1. 

 Property III) expresses additive property of the probability for countable infinitely many 

mutually exclusive events. 

 As A  is a   algebra, the property III) is well defined. If AiA , ,...3,2,1i  hold, then 

A












 




1i

iA  is also satisfied, consequently it has probability. 

 

If a function P satisfies axiom I), II) and III), it satisfies many other properties, as well. These 

properties are called as consequences of axioms. These properties serve to express probabilities 

of “composed” events by the help of probabilities of “simple” events. 

 

b3. Consequences of the axioms 

 

We list the consequences of the axioms and we present their proofs. During this we do not use 

any heuristic evidences, we insist on strict mathematical inferences. 

 

C1. .0)(P   

  and  . That means that the impossible event can be written as 

the union of infinitely many pair-wise mutually exclusive events. Consequently, axiom III) can 

be applied and .)(P)(P
1i






  Recalling that 








n

1i

i

1i
n

i xlimx , we can conclude that 

)(Pnlim)(P)(P
n

1i








 . If )(P0   holds, then the limit is infinite, which is a 

contradiction, as )(P   is a real number. If 0)(P  , then 0)(Pn   also holds for any 

value of n, therefore the limit is 0. In that case 0)(P)(P0
1i

 




 holds, as well. Finally, 

)(P   can not be negative, remember axiom I). Hence 0)(P   must be satisfied. 

 

C2. (finite additive property) If AiA , n,,2,1i   and  ji AA , ji  , then  

)A(P)A(P)A(P)AA(P n1

n

1i

in1  


 . 

We trace this property to axiom III). Let 1nA , 2nA ,. Now we have infinitely 

many events and  ji AA , ,2,1i  , ,2,1j , .ji  If ni   and nj , this is our 

assumption, if in   or jn   holds, then iA  or jA , consequently their intersection is 
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the impossible event. Now axiom III) can be applied and 

  










)(P)(P)A(P)A(P)A(P)A(P
n

1i

i

1i

i

1i

i

n

1i

i  

As 0)(P  , we get 



n

1i

i

n

1i

i )A(P)A(P   and the proof is completed. 

 

C3. Let AA  and AB . If BA , then )B(P)A(P)BA(P  . 

This is the previous property for 2n   with notation AA1   and BA2  . We emphasize it 

because the additive property is frequently used in this form. 

 

C4. Let AA . )A(P1)A(P   

This connection is really very simple and it is frequently applied in the real world. 

It can be proved as follows: AAΩ  , and AA . Applying C3 we can see, that 

)A(P)A(P)Ω(P  . Taking into consideration axiom II) 1)Ω(P  , we get )A(P)A(P1  . 

Arranging the equality, it is easy to get C4. We mention that A  is   algebra, consequently if 

AA  then AA , which means that A  has also probability. 

 

C5. Let AA  and AB . If AB , then )B(P)A(P)B\A(P  .  

This formula expresses the probability of the difference of A and B by the help of the 

probability A and B. 

Take into consideration that AB  implies the equality   BB\AA  , moreover 

  BB \A . Consequently C3 can be applied and results in      BPB\APAP  . 

Arranging the formula we get C5. 

 

C6. Let AA  and AB . If AB , then )A(P)B(P  . 

Recall C5, and take into consideration axiom I). These formulas imply 

).B(P)A(P)B\A(P0   Non-negativity of )B(P)A(P   means C6. 

 

C7. Let AB . 1)B(P  . 

This inequality is straightforward consequence of C6 with ΩA  . 

The formula expresses that the probability of any event is less than or equal to 1. This property 

coincides with the property of relative frequency 1
n

)n(k A  . 

 

C8. Let AA  and AB . )BA(P)A(P)B\A(P  . 

It is obvious that    BAB\AA   and      BAB\A . 

Using C3 they imply      BAPB\APAP  . Subtracting  BAP   from both sides we 

get C8. 

We emphasize that in this formula there is no extra condition for the event A and B, but C5 

contains condition AB . Consequently C8 is a more general statement than C6. We mention 

that if AB , then BBA  , therefore C6 coincides with C8. 

 

C9. Let AA  and AB . )BA(P)B(P)A(P)BA(P  . 

This formula expresses the probability of the union by the help of the probability of the events 

and the probability of their intersection. 

To prove it, take into consideration the identity   BB\ABA  . Now   BB\A . 

Applying C3 we get    B(PB\AP)BA(P  . Now C8 implies the identity 

  )B(PBA(P)AP)BA(P   and the proof is completed. 
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We note that C9 does not require any assumption on the events A and B. C3 holds for mutually 

exclusive events. If BA , then 0)BA(P   and 

)B(P)A(P)BA(P)B(P)A(P)BA(P   coinciding with C3. 

We emphasize that probability is not additive function. It is only in case of mutually exclusive 

events. 

 

C10. Let AA  and AB . )B(P)A(P)BA(P  . 

This formula is straightforward consequence of C9 taking into account that )BA(P0  . If 

we do not subtract the nonnegative quantity )BA(P   from )B(P)A(P  , we increase it, 

consequently C10 holds. We note that C10 is not an equality, it serves an inequality for the 

probability of union. 

 

C11. Let AA , AB  and AC . 

Now, 

)CBA(P)CB(P)CA(P)BA(P)C(P)B(P)A(P)CBA(P  .

This formula is generalization of C9 for three events. 

It can be proved as follows. Let BAX   and CY  . Now YXCBA  . Applying 

three times C9, first for X and Y, secondly for BA  thirdly for  CA  and CB  we get 

      C)BA(P)C(P)BA(P)YX(P)Y(P)X(PYXPCBAP

      )BA(P)C(P)B(P)A(PCBCAP)C(P)BA(P)B(P)A(P

    )CA(P)BA(P)C(P)B(P)A(P)CBCA(P)CB(PCAP

)CBA(P)CB(P  . 

We note that if  CACBBA , then  CBA , and  

  0)CBCA(P)CB(PCAP)BA(P  . Hence in this case C11 is 

simplified to )C(P)B(P)A(P)CBA(P   coinciding with C2. 

 

C12. Let ,n,2,1iAi   A, . 

  )AA(P1)AAA(P)AA(P)A(PAP n1

1n

nkji1

kji

nji1

ji

n

1i

i

n

1i

i 












 



 

The formula can be proved by mathematical induction following the steps of the proof of C11 

but actually we omit it. 

It states that the probability of the union can be determined by the help of the probability of the 

events, the probability of the intersections of two, three,…., and all the events. 

 

The relevance of the consequences is the following: if we check that the axioms are satisfied 

then we can use the formulas C1-C12, as well. By the help of them we are able to express the 

probability of “composite” events if we determine the probability of “simple” events. 

 

Actually we present examples how to apply C1-C12, if we know the probability of some 

events. Further examples will be listed in the next subsection as well. 

 

E1. In a factory two types of products are manufactured: Type I and Type II. 

Choosing one product, let A be the event that it is of Type I.. According to quality, the products 

are ranged into two groups: standard and substandard groups. Let B be the event that the 

chosen product is of standard quality. If we suppose that 7.0)A(P  , 9.0)B(P   and 

65.0)BA(P  , give the probability of the following events: 

The chosen product is of Type II.: 3.0)A(P1)A(P  . (apply C4) 

The chosen product is of substandard quality: 1.0)B(P1)B(P  .(apply C4) 
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The chosen product is of Type I and it is of substandard quality: 

05.065.07.0)BA(P)A(P)B\A(P)BA(P  . (apply C8) 

The chosen product is of Type II and it is of standard quality: 

0.250.65-0.9B)P(A-P(B)A)\B(P)AB(P  . (apply C8) 

The chosen product is of Type I or it is of standard quality: 

.95.065.09.07.0)BA(P)B(P)A(P)BA(P   (apply C10) 

The chosen product is of Type II or it is of substandard quality:  

35.065.01)BA(P1)BA(P)BA(P  .(apply the de Morgan’s equality and 

C4) 

The chosen product is of Type II and it is of substandard quality: 

05.095.01)BA(P1)BA(P)BA(P  . (apply the de Morgan equality and 

C4) 

The chosen product is of Type I and of standard quality or it is of Type II and of substandard 

quality. 

             )BABA(PBAPBAP)BABA(P 7.0005.065.0  . 

(apply C10, and C1 as      BABA ).  

The chosen product is of Type I and of substandard quality or it is of Type II and of standard 

quality. 

             )BABA(PBAPBAP)BABA(P A)\P(BB)\A(P  =

 )BA(P)B(P)BA(P)A(P 3.065.09.065.07.0  . (apply C10, C8 and C1 

taking into account that      BABA .) 

 

E2. Choose a person from the population of a town. Let A be the event that the chosen 

person is unemployed, let B be the event that the chosen person can speak English fluently. If 

09.0)A(P  , 25.0)B(P   and 02.0)BA(P  , then determine the probability of the 

following events: 

The chosen person is not unemployed: 91.0)A(P  . (apply C4) 

The chosen person can not speak English fluently and he is unemployed: 

0.070.02-0.09B)P(A)A(PB)\A(P)AB(P  . (apply C8) 

The chosen person can speak fluently English and he is not unemployed: 

23.002.025.0)AB(P)B(P)AB(P  . (apply C8) 

The chosen person can speak fluently English or he is not unemployed: 

77.007.009.025.01)AB(P)A(P)B(P)AB(P   (apply C10 and C8) 

The chosen person can not speak fluently English or he is unemployed: 

93.023.025.009.01)BA(P)B(P)A(P)BA(P   (apply C10 and C8) 

The chosen person is not unemployed or can not speak fluently English: 

98.002.01)BA(P1)BA(P)BA(P   (apply the de Morgan’s equality and 

C4) 

The chosen person is not unemployed and can not speak fluently English: 

  )BA(P)B(P)A(P1)BA(P1)BA(P)BA(P  

  68.002.025.009.01   (apply the de Morgan’s equality C4 and C10) 

 

E3. Game two types of races. Let A be the event that you win on the race of first type, let B be 

the event that you win on the race of second type. Suppose 01.0)A(P  , P(B)=0.03, 

002.0)BA(P  . Determine the probability of the following events: 

You win on the race at least one of types: 

038.0002.003.001.0)BA(P)B(P)A(P)BA(P   (apply C10) 
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You win on neither of them: 

  962.0038.01)BA(P)B(P)A(P1)BA(P)BA(P   (apply C4 and C10) 

You do not win on at least one of them: 

998.0002.01)BA(P1)BA(P)BA(P   (apply the de Morgan’s equality and 

C4) 

You win on the first type race but do not win on the second type race: 

008.0002.001.0)BA(P)A(P)BA(P  . (apply C8) 

You win on the first type race or do not win on the second type race: 

    978.0002.001.003.0101.0)BA(P)B(P)A(P)BA(P  .(Apply C10, 

C4 and C8) 

You win on both of them or you win on neither of them: 

     )BABA(P)BA(P)BA(P)BABA(P  

964.00962.0002.0  . (apply C10 and de Morgan’s equality) 

You win on one of them but not on the other one: 

           )A\BB\AP(-A)\B(PB\A(P)A\BB\A(P  

036.0002.003.0002.001.0)BA(P)B(P)BA(P)A(P   (apply C10) 

b.4. Classical probability 

 

In this subsection we present the often used classical probability. We prove that it satisfies 

axioms I), II) and III.). 

 

Definition Let Ω  be a finite, non empty set, let .nΩ  Let Ω2A , the set of all the subsets of 

Ω . The classical probability is defined as follows:
Ω

A
:)A(P  . 

 

Theorem Classical probability satisfies axioms I), II) and III). 

Proof First we note that A  is   algebra, consequently P maps the elements of a   algebra to 

the set of real numbers. Since A0   and nΩ  , 0
Ω

A
:)A(P   is satisfied, as well. 

1
Ω

Ω
:)Ω(P  . 

Finally, if ΩA i  , 1,2,i with  ji AA , ji  , then iA  except from finite indices 

i , as Ω  has only finite different subsets. If iA  k,...,2,1i  , and  ji AA  ji  , then 





k

1i

i

k

1i

i AA , therefore 
Ω

A

Ω

A
k

1i

i

k

1i

i 





. We can conclude 

that 









n

1i

i

k

1i

i

k

1i

ik

1i

i )A(P
Ω

A

Ω

A

)A(P


 . If we supplement the events iA  by empty sets, 

neither union nor the sum of the elements of the sets change. This means that axiom III) holds, 

as well. 

Remarks 
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 In the case of classical probability  
 

n

1

Ω
)(P 


 , for any Ω . This formula 

expresses that all outcomes have the same probability. Conversely, if    xP  , for any Ω , 

then xn(P)Ω(P1
1

i

i 


 , which implies 
n

1
x  . Furthermore, 

  .
Ω

A

n

1
)(P)(P)A(P

AAA

 


  Consequently, if all the outcomes are equally 

probable, we can use the classical probability. 

 In many cases, the number of elements of Ω  and A  can be determined by 

combinatorial methods. 

 

Examples 

E1. Roll once a fair die. Compute the probability that the result is odd, even, prime, 

can be divided by 3, prime and odd, prime or odd, prime but not odd. 

A fair die is one for which each face appears with equal likelihood. The assumption “fair” 

contains the information that each outcome has the same chance, consequently we can apply 

classical probability. We usually suppose that the die is fair. If we do not assume it, we will 

emphasize it. 

Returning to our example,  6,5,4,3,2,1Ω  . 6Ω  . 
6

1
)i(P  , i=1,2,3,4,5,6. 

A=the result is odd = 5,3,1 , 3A  , 5.0
6

3

Ω

A
)A(P  . 

B=the result is even= 6,4,2 , 3B  , 5.0
6

3

Ω

B
)B(P  . 

C=the result is prime= 5,3,2 , 3C  , 5.0
6

3

Ω

C
)C(P  . 

D=the result can be divided by 3= 6,3 , 2D  , 333.0
6

2

Ω

D
)D(P  . 

E=the result is prime and odd = 5,3 , 2E  , 333.0
6

2
)E(P  . 

F=the result is prime or odd = 5,3,2,1 , 4F  , 667.0
6

4
)F(P  . 

G= the result is prime but not odd = 2 , 1G  , 167.0
6

1
)G(P  . 

We draw the attention that P(F) can be computed also by the following way: ACF  , 

consequently 
6

4

6

2

6

3

6

3
)AC(P)PA)C(P)F(P  . 

Similarly, A\CACG  , 
6

1

6

2

6

3
C)P(A-P(C)A)\C(P  . 

 

We note that these latest computations are unnecessary in this very simple example but can be 

very useful in complicated examples. 

 

E2. Roll twice a fair die. Compute the probability of the following events: there is no six 

between the rolls, there is at least one six between the rolls, there is one six between the rolls, 

the sum of the rolls is 5, the difference of the rolls is 4, both rolls are different. 



 

 

 

Probability theory and mathematical statistics– Probability  

 

19 

  egersintj,i,6j1,6i1:j,iΩ  . The outcome (i,j) can be interpreted as the result of the 

first roll and the result of the second roll. For example (1,1) denotes the outcome, when the first 

roll is 1, and the second roll is also 1. (3,1) denotes the outcome that the first roll is 3, the 

second one is 1. (1,3) means that the first roll is 1, and the second roll is 3, which differs from 

(3,1). If the die is fair, then (i,j) has the same probability as another pair, whatever are the 

values of i and j (integers between 1 and 6). Consequently, each outcome has equal probability. 

66Ω  . 

A=there is no “six” among the rolls =     )5,5),...(2,5(),1,5),.....((5,2(),...,1,2(),5,1,....(2,1,1,1 . 

2555A  , 
36

25
)A(P  . 

B= there is at least one „six” between the rolls  

=                       6,6,5,6,4,6,3,6,2,6,1,6,6,5,6,4,6,3,6,2,6,1 . 11B  , 
36

11
)B(P  . 

Another way for solving this exercise if we realize that AB  . Therefore, 

36

11

36

25
1)A(P1)B(P  . 

C= there is one „six” between the rolls  

                    5,6,4,6,3,6,2,6,1,6,6,5,6,4,6,3,6,2,6,1 . 10C  , 278.0
36

10
)C(P  . 

D=the sum of the rolls is 5 =         1,4,2,3,3,2,4,1 . 4D  , 111.0
9

1

36

4
)D(P  . 

E=the difference between the two rolls is 4=         1,5,2,6,6,2,5,1 . 4E  , 
36

4
)E(P  

.111.0  

F=the results of the rolls are different =         6,5,5,6,....1,2,2,1 . F 30, 833.0
36

30
)F(P  . 

 

Roughly spoken, the key of the solution is that we are able to list all the elements of the events 

and we can count them on the finger. 

Of course, if the number of possible outcomes is large, this way is impracticable.  

 

E3. Roll a fair die repeatedly five times. Compute the probability of the following 

events: there is no „six” among the rolls, there is at least one „six” among the rolls, the there is 

one „six” among the rolls, all the rolls are different, all the rolls are different and there is at 

least one „six” among the rolls, there is at least one „six” or all the rolls are different, there is at 

least one „six” and there are equal rolls. 

 5,4,3,2,1j,egersint,6i1:)i,i,i,i,i(Ω j54321  . Now 1i  denotes the result of the first 

roll, ji  denotes the result of the jth roll. If the die is fair, then all the outcomes are equally 

likely. 7776666666Ω 5  .  

A=there is no “„six”” among the rolls =  5,4,3,2,1j,egersint,5i1:)i,i,i,i,i( j54321  . 

31255A 5  . 402.0
7776

3125
)A(P  . 

B=there is at least one „six” among the rolls = A . 598.0402.01)A(P1)B(P  . 

C=there is exactly one “six” among the rolls =     )5,5,5,5,6(,...,6,2,1,1,1,.6,1,1,1,1 . 

312555551
1

5
C 








 . 402.0

7776

3125
)C(P  . 
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D=all the rolls are different =       2,3,4,5,6,...,6,4,3,2,1,5,4,3,2,1 . 72023456D  , 

093.0
7776

720
)D(P  . 

E= all the rolls are different and there is at least one “six” among the rolls = A\DAD  . 

)DA(P)D(P)E(P  . As we need the value of )AD(P  , we have to compute it now. The 

set AD  contains all the elements of Ω  in which there is no “six” and the rolls are different. 

12012345DA  , 015.0
7776

120
)DA(P  . Finally, 

078.0015.0093.0)DA(P)D(P)E(P  . 

F= there is at least one “six” or all the rolls are different = DA . 

Applying )DA(P)D(P)A(P)DA(P   we get  

  676.0015.0093.0402.01)AD(P)D(P)D(P)A(P1)DA(P)F(P  . 

G=there is at least one “six” and there are equal rolls= DADA  . 

 
  .502.0480.01015.0093.0402.01

)DA(P)D(P)A(P1)DA(P1)DA(P)G(P




 

 

E4. Choose two numbers without replacement from a box containing the integer numbers 

1,2,3,4,5,6,7,8,9. Compute the probability that both of them is odd, both of them is even, the 

sum of them is at least 15, one of them is less then 4 and the other is greater then 7, the 

difference of the numbers is 3. 

If we take into consideration  the order of drawn numbers, then the possible outcomes are 

 21 i,i  21 ii  , 9i1 1  , 9i1 2  ,  21 i,i  are integers. 

  egersint,9i1,9i1,ii:i,iΩ 212121  . .7289Ω   If we draw each number being 

in the box with equal probability, all possible outcomes have the same chance. Consequently, 

classical probability can be applied. Now contract those outcomes which differ only in the 

order. For example,  2,1  and  1,2  can be contracted to  2,1 . 

Actually,   egersint,9ii1:i,i*Ω 2121  . As two possible outcomes were contracted, 

consequently each possible outcome (without order) has equal chance in this model, as well. 

Roughly spoken, one can decide whether he wants to take into consideration the order or no, 

classical probability can be applied in both cases. 36
2

89

!7!2

!9

2

9
*Ω 














 . 

Consider the event: both of them are odd: 

If we take into consideration the order, then  

A=                         6,8,4,8,2,8,8,6,4,6,2,6,8,4,6,4,2,4,8,2,6,2,4,2(  

1234A  , 167.0
72

12
)A(P  . 

If we do not take into consideration the order, then 

            6,8,4,8,4,6,2,8,2,6,2,4A* . 6
2

4
*A 








 , 167.0

36

6
*)A(P  . 

Finally, we can realize that we get the same result in both cases. 

Both of them are even:  

            7,9,...,1,3,9,1,7,1,5,1,3,1B , 2045B  , 278.0
72

20
)B(P  . 

      7,9,...,1,5,1,3*B  , 10
2

5
*B 








 , 278.0

36

10
*)B(P  . 

The sum of them is at least 15: 
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                8,9,7,9,6,9,9,8,7,8,9,7,8,7,9,6C  , 8C  , 111.0
72

8
)C(P  . 

        9,8,9,7,7,8,6,9*C  , 4*C  , 111.0
36

4
*)C(P  . 

One of them is less than 4 and the other one is greater than 7: 

                        3,9,9,3,3,8,8,3,2,9,9,2(,2,8,8,2,1,9,9,1,1,8,8,1D  , 23212D  , 

167.0
72

12
)D(P  . 

  egersint,9i8,3i1:i,i*D 2121  . 623*D  , 167.0
36

6
*)D(P  . 

The difference of the numbers is 3: 

                        9,6,6,9,5,8,8,5,4,7,7,4,3,6,6,3,2,5,5,2,1,4,4,1E  , 12E  , 

167.0
72

12
)E(P  . 

            6,9,5,8,4,7,3,6,2,5,1,4*E  , 6*E  , 167.0
36

6
)*E(P  . 

 

E5. Pick 4 cards without replacement from a pack of French cards containing 13 clubs (♣), 

diamonds (♦), hearts (♥) and spades (♠). Compute the probability that there is at least one of 

spades or there is at least one of hearts, there is no spade or there is no heart, there is at least 

one of spades but there is no heart, there are 2 spades, 1 hearts and 1 other, there are more 

hearts than spades. 

If we do not take into consideration the order of the picked cards, then 

  ,......Ω spades of 8 spades, of king diamonds, of 7 hearts, of ace* . 270725
4

52
*Ω 








 . 

Actually the appropriate possible outcomes can not be listed and it is difficult to count them. 

The operations on the events and the consequences of axioms help us to answer the questions. 

Let *X be the event that there is no spade, *Y  the event that there is no heart among the 

picked cards. Now, *Y9139
4

39
*X 








 , 304.0

270725

9139
)*Y(P)*X(P  . 

A= there is at least one of spades or there is at least one of hearts: 

*Y*X*Y*XA  , consequently Y*)*X(P1)A(P  . We need the value of 

Y*)*X(P  . *Y*X   means that there is no spade and at the same time there is no heart, 

therefore all of the picked cards are diamonds or clubs. 14950
4

26
*Y*X 








 , 

055.0
270725

14950
Y*)*X(P  , 945.0055.01)A(P  . 

B=there is no spade or there is no heart: 

** YXB  , 

  553.0055.0304.0304.0XXX(P)B(P  Y*)*P(-P(Y*)*)P(Y*)* . 

There is at least one of spades but there is no heart: 

C= * X\*YY**X  , 249.0055.0304.0)*Y*X(P)*Y(P)C(P  . 

D= there are 2 spades, 1 hearts and 1 other card. 

26364
1

26

1

13

2

13
D 
























 , 097.0

270725

26364
)D(P  . 

E=there are more spade than hearts = there is at least one of spades and there is no heart or 

there are 2 spades and 0 or 1 hearts or there are 3 spades and 0 or 1 heart or each card is of 

spades. These events are mutually exclusive therefore their probabilities can be summed up. 
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0
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13

4

52
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26

1

13

2

26

0

13

2

13

)C(P)E(P . 

The reader is kindly asked to compute it numerically. 

 

b.5. Geometrical probability 

 

In this subsection we deal with geometrical probability. It is important to understand the 

concept of continuous random variable. 

 

Definition Let Ω be a subset of R , 2R , 3R  or nR , n4  , and let   be the usual measure on the 

line, plane, space,… Let us assume that 0)Ω(  , and  )Ω( . Let A  be those subsets of 

Ω that have measure. Now geometrical probability is defined by 
)Ω(

)A(
:)A(P



 . 

 

Remarks 

 Axioms I) hold as )A(0  , and )Ω(0  .  

 Axiom II) is the consequence of the definition 1
)Ω(

)Ω(
:)Ω(P 



 . 

 Axiom III) follows from the measure-property of  . Measures hold that 












1i

i

1i

i )A()A(  supposing ji,AA ji  . Therefore, under the same assumption 


 



































1i

i

1i

i1i

i

1i

i

1i

i )A(P
)Ω(

)A(

)Ω(

)A(

)Ω(

)A(

)A(P


 . 

 Usual measure on R , 2R , 3R  is the length, area, volume, respectively. The concept of 

them can be generalized. For further knowledge on measures can be found in the book of 

Halmos. 

 Definition 
)Ω(

)A(
)A(P




  expresses that the probability of an event is proportional to its 

measure. In the case of classical probability the “measure” is the number of the elements of Ω . 

Actually the number of the elements of Ω  can be infinity. 

 If 1)Ω(  , then )A()A(P  . The consequences of axioms are frequently used 

properties of measure. See for example C8 and C9. 

 The proof of the fact that the set of those subsets of Ω  that have measure is a   algebra 

requires many mathematical knowledge, we do not deal with it actually. 

 Random numbers of computers are numbers chosen from interval [0,1] by geometrical 

probability approximately. That is the probability that the number is situated in a subset of ]1,0[  

is proportional to the length of the subset. As the length of the interval ]1,0[  equals 1, 

probability coincides with the length of the set itself. 

 

Examples 

E1. Choose a point from the interval  ,0  by the geometrical probability. Compute 

the probability that the second digital of the point equals 4. 

  ,0Ω , lenght  is abbreviated by  .  )Ω( . 
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A= the second digital is 4 =       ,14.3...15.0,14.005.0,04.0 . 

3116.014.301.031)A(  , 0992.0
)A(

)A(P 



 . 

E2. Fire on a circle with radius R. The probability that the hit is situated in a subset 

of the circle is proportional to the area of the subset. Compute the probability that we have 10, 

9 scores. 

Ω  is the circle with radius R.  2R)Ω()Ω(area .Let A be the event that the hit is 10 

scores. 10 scores means that the hit is inside the inner circle lined black, which is a circle with 

radius 
10

R
. Consequently, 










2

10

R
)A( , 

100

1

R

10

R

)A(P
2

2













 . 

 
Fig.b.4 Events A and B 

 

Let B be the event that the hit is 9 scores. It means that the hit is not in the inner part but in the 

following segment. As the hits are between concentric circles, 




















100

R3

10

R

10

R2
)B(

222

. Consequently, 
100

3
)B(P  . 

Compute the probability that the distance of the hit and the centre of the circle equals 
2

R
. 

Let C be the event that the distance between the hit and centre of the circle equals 
2

R
. The 

points whose distance from the centre equals 
2

R
 are situated on the curve of the circle of 

2

R
 

radius drawn by red line in Fig.b.5.The area of the curve is zero, as it cab be covered by the 

section which is the difference of the open circle with radius RΔ
2

R
 , and the circle with 

radius 
2

R
, for any positive value of RΔ . 
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Fig.b.5 Event 2/RC  and event 








 RΔ
2

R
)0,(d

2

R
:  

Consequently,   


















2

22

RΔRΔR
2

R
RΔ

2

R
)C( , which tends to zero if 

RΔ  tends to zero. That implies 0)C(  . Therefore, 0
R

)C(
)C(P

2





 .  

We draw the attention that despite of C , 0)C(P   holds. Moreover, if we use the notation 

 x)O,Q(d:QCx  , then 0)C(P x  , for any value of Rx0  . Now 
Rx0

xCΩ


 holds. 

Moreover, if yx  , then  yx CC . 1)Ω(P   but  )C(P)Ω(P x . The reason of this 

paradox phenomenon is that the set  Rx0:x   is not finite and is not countable. This is a 

very important thing to understand the concept of continuous random variables. 

 

E3. Choose two numbers independently of each other from the interval  1,1  by 

geometrical probability. Compute the probability that the sum of the numbers is between 0.5 

and 1.5.  

To choose two numbers from the interval  1,1  by geometrical probability independently of 

each others means to choose one point from Cartesian coordinate system, namely from the 

square    1,1x1,1   by geometrical probability. If the first number equals x, the second number 

equals y, then let the two dimensional point be denoted by )y,x(Q . Roughly spoken, let the 

first number be put on the x axis, the second number be put on y axis. Now    1,1x1,1Ω  , 

4)Ω(  . Let A be the event that the sum of the numbers is between 0.5 and 1.5. We seek the 

points )y,x(Q  for which 5.1yx5.0  . 
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Fig.b.6. The set of all possible outcomes Ω  and the set of appropriate points 

 

These points are in the section between the red straight lines given by 5.0yx   and 

5.1yx   presented in Fig.b.6. 

1
2

2

1

2

2

3

)A(
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 , 
4

1
)A(P  . 

Compute the probability that the sum of the numbers equals 1. 

Let B be the event that the sum of numbers equals 1. The points of B are the points of the 

straight line given by 1yx   (see Fig.b.7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.b.7. The set of points given by the equation 1yx   

 

0)B(  , consequently, 0)B(P  . 

 

E4. Choose two numbers independently from each other by geometrical probability 

from the interval ]1,0[ . Compute the probability that the square of the second number is less 

than the first one or the square of the first one is greater than the second one. 

   1,0x1,0Ω  , 1)Ω(  . We seek those points )y,x(Q  for which 2xy   or 2yx  , that is 

yx  . The appropriate points are bellow the curve given by 2xy  , furthermore above the 

curve given by xy   (see Figure b.8.) 
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Fig.b.8. Those points for which 2xy   or 2yx   holds 

 

 

If A is the set of appropriate points, then  
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0

1

0

2 



























   and  

667.0
1

667.0
)A(P  . 

 

E5. Use the random number generator of your computer and generate N=1000, 

N=10000, N=100000, N=1000000 random numbers. Divide the interval ]1,0[  into 10 equal 

parts, and count the ratio of the random numbers situated in the sub-intervals 






 

10

1i
,

10

i
, 

i=0,1,2,…,9. Draw the figures! 

 

Relative frequencies of random numbers being in the above intervals are shown in Figs.b.9. 

b.10. b11. and b.12. for the simulated random numbers N=1000, 10000, 100000, 1000000, 

respectively. Pictures shows that increasing the number of simulations, the relative frequencies 

become more and more similar, the random numbers are situated more and more uniformly. If 

the probability of being in the interval is really 
10

1
, then relative frequencies are closer and 

closer to this probability. 
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Figure b.9. Relative frequencies of random numbers in case of N=1000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure b.10 Relative frequencies of random numbers in case of N=10000 
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Figure b.11. Relative frequencies of random numbers in case of N=100000 
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Figure b.12. Relative frequencies of random numbers in case of N=1000000 

 

 

E6. Approximate the probability of event A in E3) by relative frequency of the 

event A applying N=1000, 10000, 100000, 1000000 simulations. Give the difference between 

the approximate values and the exact probability. 

First we mention that if a number is chosen from [0,1] by the geometrical probability, then its 

double is chosen from [0,2] by geometrical probability and the double and minus 1 is chosen 

from the interval [-1,1] by geometrical probability. 

 

The relative frequencies of A and their differences from the exact probability 0.25 can be seen 

Table b.2. One can realize that if the number of simulations increases, the difference decreases. 

 

 N=1000 N=10000 N=100000 N=1000000 

Relative 

frequency 

0.2670 0.2584 0.2517 0.2502 

Difference  0.0170 0.0084 0.0017 0.0002 

 

Table b.2. Relative frequencies of the event and their differences from the exact probability 

 

The relative frequencies of the event that the sum is in 






 


5

1i
2,

5

i
2 , 19,...,0i   can be 

seen in Figs.b.13,b.14. One can see that the shapes of the graphs are getting similar to a roof. 

 

 

 

Fig.b.13. The relative frequencies of the event that the sum is in 
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Fig.b.14. The relative frequencies of the event that the sum is in 
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c. Conditional probability and independence 

 

 

The aim of this chapter 

 

The aim of this chapter is to get acquainted with the concept of conditional 

probability and its properties. We present the possibilities for computing non-

conditional probabilities applying conditional ones. We also define 

independence of events. 

 

Preliminary knowledge 

 

Properties of probability. 

 

Content 

 

c.1. Conditional probability. 

 

c.2. Theorem of total probability and Bayes’ theorem. 

 

c.3. Independence of events 
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c.1. Conditional probability 

 

In many practical cases we have some information. We would like to know the probability of 

an event and we know something. This “knowledge” has effect on the probability of the event; 

it may increase or decrease the probability of its occurrence. 

What is the essence of the conditional probability? How can we express that we have some 

information? 

Let Ω  be the set of possible outcomes, A  the set of events, let P  be the probability. Let 

AB,A . If we know that B occurs (this is our extra information), then the outcome which is 

the result of our experiment is the element of B . Our word is restricted to B. If A  occurs, then 

the outcome is common element of A  and B , therefore it is in BA . The probability of the 

intersection should be compared to the “measure” of the condition, i.e. )B(P . Naturally, 

)B(P0  has to be satisfied. 

Definition The conditional probability of event A given B is defined as 

)B(P

)BA(P
:B)|A(P


 , if )B(P0 . 

 

Remarks 

 Notice that definition of conditional probability implies the form 

)B(P)B|A(P)BA(P  , called multiplicative formulae. 

 The generalization of the above form is the following statement: if 

)AA...A(P0 n1n1    holds, then 

)A...A|A(P...)AA|A(P)A|A(P)A(P)A...AA(P 1n1n213121n21  . 

It can be easily seen if we notice that )AA(P)A|A(P)A(P 21121  ,  

)AAA(P)AA(P)AA|A(P 32121213  , and finally,  

)AA...A(P)A...A(P)A...A|A(P n1n11n11n1n   . 

 If we apply classical probability, then  

B

BA

Ω

B

Ω

BA

)B(P

)BA(P
)B|A(P









 . Roughly spoken: there are some elements in B, 

these are our “new (restricted) world”. Some of them are in A, as well. The ratio of the number 

of the elements of A in our “new world” and the number of the elements of the “new world” is 

the conditional probability of A. 

 

Theorem Let the event B be fixed with )B(P0 . The conditional probability given B satisfies 

the axioms of probability I), II), III). 

Proof: 

I) )B|A(P0 , as )BA(P0  , and )B(P0 . 

II) ,1)B|Ω(P   as 1
)B(P

)B(P

)B(P

)BΩ(P
:B)|Ω(P 


 . 

III) If ,...3,2,1i,Ai A  ji AA , ji  , then 









1i

i

1i

i )B|A(P)B|A(P  . 

The proof can be performed by the following way: notice that if  ji AA , then 

     BABA ji  hold as well. Now 
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.)B|A(P
)B(P

)BA(P

)B(P

)BA(P

)B(P

BAP

)B(P

BAP

)B|A(P
1i

i

1i

i1i

i
1i

i

1i

i

1i

i 
 


















































































 

This theorem assures that we can conclude all of the consequences of axioms.We can state the 

following consequences corresponding to C1,…, C12 without any further proof. 

 0)B|(P  . 

 If n,...,2,1i,Ai A  for which  ji AA , ji  , then 



n

1i

i

n

1i

i )B|A(P)B|A(P  . 

 If AC , then )B|A(P)B|C(P   

 1ΒΑP  . 

 )B|A(P1)B|A(P  . 

 B)|CP(AB|P(AB)|C\A(P  .  

 )B|CA(P)B|C(P)B|A(P)B|CA(P  . 

 ))B|C(P)B|A(P)B|CA(P  . 

  )B|D(P)B|C(P)B|A(P)B|DCA(P  

)B|DCA(P)B|DA(P)B|CD(P)B|CA(P  . 

 















 nji1

ji

n

1i

i

n

1i

i )B|AA(P)B|A(PB|AP   

  )B|AA(P1)B|AAA(P n1

1n

nkji1

kji 




  . 

 

These formulas help us to compute conditional probabilities of “composite” events using 

conditional probabilities of “simple” events. 

 

Examples 

E1. Roll twice a fair die. Given that there is at least one “six” among the results, 

compute the probability that the difference of the result equals 3.  

Let A be the event that the difference is 3, B the event that there is at least one “six”. 

The first question is the conditional probability )A|B(P . By definition, 
)A(P

)BA(P
)A|B(P


 . 

 )6,3(),3,6(BA  , 
36

2
)BA(P  ,  

                      5,6,4,6,3,6,2,6,1,6,6,6,6,5,6,4,6,3,,6,2,6,1A  , 
36

11
)A(P  . 

.
11

2

36

11
36

2

)A(P

)BA(P
)A|B(P 


  Roughly spoken, our world is restricted to A, it contains 11 

elements. Two of them have difference 3. If all possible elements are equally probable in the 

entire set Ω , then all possible outcomes are equally probable in A, as well. Consequently, the 

conditional probability is 
11

2
. 

Given that the difference of the results is 3, compute the probability that there is at least one 

“six”.  
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The second question is the conditional probability )B|A(P . By definition, 

)B(P

)BA(P
)B|A(P


 .  )3,6(),6,3(),2,5(),5,2(),1,4(),4,1(B , 

36

6
)B(P  . 

Consequently, 
3

1

36

6
36

2

)B(P

)BA(P
)B|A(P 


 . 

Roughly spoken, our world is restricted to the set B. Two elements are appropriate among 

them. If all possible elements are equally probable in the entire set Ω , then all possible 

outcomes are equally probable in B, as well. Consequently the classical probability can be 

applied, which concludes that the conditional probability equals 
3

1

6

2
 . 

 

E2. Roll a fair die 0 times, repeatedly. Given that there is at least one “six”, 

compute the probability that there is at least one “one”. 

Let A be the event that there is no “six” among the results, and B the event that there is no 

“one” among the results. The question is the conditional probability )A|B(P . 

 
)A(P1

BA(P)B(P)A(P1

)A(P1

)BA(P1

)A(P

)BA(P

)A(P

)BA(P
)A|B(P















 . 

Now we can see that we have to compute the values ),A(P )B(P  and )BA(P  . 

161.0
6

5
)A(P

10

10

 , 161.0
6

5
)B(P

10

10

 , 017.0
6

4
)BA(P

10

10

 . 

   
828.0

839.0

695.0

161.01

017.0161.0161.01

)A(P1

BA(P)B(P)A(P1
)A|B(P 









 . 

E3. Choose two numbers independently in the interval [0,1] by geometrical 

probability. Given that the difference of the numbers is less than 0.3, compute the probability 

that the sum of the numbers is at least 1.5. 

Let A be the event that the difference of the numbers is less than 0.3. The appropriate points in 

the square ]1,0[x]1,0[  are situated between the straight lines given by the equation 3.0yx   

and 3.0xy  . It is easy to see that 51.07.01)A(P 2  . BA  contains those points of A 

which are above the straight line given by x+y=1.5. This part is denoted by horizontal lines in 

Fig.c.1. The cross-points are )9.0,6.0(Q1  and )6.0,9.0(Q2 . The area of the appropriate points 

is 105.0045.006.0
2

3.0
1.01.03.03.0)A(

2
2222 




 





  , 105.0)BA(P  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.c.1. The points satisfying conditions yx5.1   and 3.0yx   

0 1
0

1

x-y=0.3
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206.0
51.0

105.0

)A(P

)BA(P
)A|B(P 


 . 

 

E4. Order the numbers of the set  10,...,4,3,2,1  and suppose that all arrangements 

are equally probable. Given that the number “1” is not on its proper place, compute the 

probability that the number 10 is on its proper place. 

Let iA  the event that the number “i” is in its proper place. The question is the conditional 

probability )A|A(P 110 . Now  

)A(P1

)AA(P)A(P

)A(P

)A\A(P

)A(P

)AA(P
)A|A(P

1

11010

1

110

1

110
110







 .  

We can see that we need the values )A(P 1 , )A(P 10  and )AA(P 110  . 

 kjifii,10,...,2,1j,egersint,10i1:)i,...,i,i(Ω kjj1021  , for example  

 10,9,8,7,6,5,4,3,2,1 , )7,1,8,10,9,7,4,3,2,5(  and so on. 3628800!10Ω  . 

  kjifii,10,...,2j,egersint,10i2:i,....,i,1A kjj1021  , !9A1  , 1.0
!10

!9
)A(P 1  . 

Similarly, 1.0
!10

!9
)A(P 10  . 

  kjifii,9,...,2j,egersint,10i1:10,....,i,1AA kjj2101  , !8AA 101   as 

numbers 1 and 10 have to be on their proper places, 011.0
910

1

!10

!8
)AA(P 101 


 . 

Therefore, 099.0
81

8

10

9
910

8

10

9
910

1

10

1

)A(P1

)AA(P)A(P
)A|A(P

1

11010
110 







 . 

 

E5. Order the numbers of the set  10,...,4,3,2,1  and suppose that all arrangements are 

equally probable. Given that the number “1” is not on its proper place, compute the probability 

that the number “10” or the number “5” is on its proper place. 

Let iA  the event that the number “i” is on its proper place. The question is the conditional 

probability )A|AA(P 1510  . Recall the properties of the conditional probability, namely 

)A|AA(P)A|A(P)A|A(P)A|AA(P 1510151101510  . 

We can realize that the conditional probabilities )A|A(P 110 , )A|A(P 15  and 

)A|AA(P 1510   are needed. )A|A(P 110  was computed in the previous example, and 

)A|A(P 15  can be computed in the same way. 

)A(P1

)AAA(P)AA(P

)A(P

)AAA(P
)A|AA(P

1

1510510

1

1510
1510







 . 

 


















kjifii,9,8,7,6,4,3,2j,egersint

,9i6,4i2:10,i,i,i,i,5,i,i,i,1
AAA

kj

jj9876432

1510  

!7AAA 1510   as numbers „1”, „10” and „5” are on their proper places. 

Consequently, 001.0
8910

1

!10

!7
)AAA(P 1510 


 , and  
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10

9
8910

7

10

1
1

8910

1

910

1

)A(P1

)AAA(P)AA(P
)A|AA(P

1

1510510
1510  

011.0
881

7



 . 

Now 

.187.0
881

121

881

7

81

8

81

8
)A|AA(P)A|A(P)A|A(P)A|AA(P 1510151101510 







 

E6. Pick 4 cards without replacement from a package containing 52 cards. Given 

that there is no hearts or there is no spades, compute the probability that there is no hearts and 

there is no spades. 

Let A be the event that there is no hearts, B the event that there is a spade. The question is the 

conditional probability )BA|BA(P  . 

   
)BA(P

)BA(P

)BA(P

)BABA(P
)BA|BA(P









 , as    BABA  . 

We have to compute the probabilities )BA(P   and  BAP  . This later one requires )A(P , 

)B(P  and )BA(P  . As the sampling is performed without replacement we do not have to 

take into consideration the order of the cards. 

  kjifdifferentare4,3,2,1ji,packagethefromcardsthearei:i,i,i,iΩ jj4321  . 











4

52
Ω , 










4

39
BA , 










4

26
BA ,  

304.0)B(P

4

52

4

39

)A(P 



















 , 055.0

4

52

4

26

)BA(P 



















 , 

553.0)BA(P)B(P)A(P)BA(P  . 

099.0
553.0

055.0

)BA(P

)BA(P
)BA|BA(P 




 . 

E7. Pick 4 cards without replacement from a package containing 52 cards. 

Compute the probability that the first card is heart, the second card and the third is diamond and 

the fourth one is spade. 

Let A be the event that the first card is heart, B be the event that the second one is diamond, C 

be the event that the third card is diamond and D be the event that the last one is spade. The 

question is )DCBA(P  . Applying the generalized form of the multiplicative rule, we 

can write that )CBA|D(P)BA|C(P)A|B(P)A(P)DCBA(P  . Notice 

that conditional probabilities )A|B(P , )BA|C(P  , )CBA|D(P   can be computed by 

the following argumentations. If we know that the first card is heart, then the package contains 

51 cards and 13 are diamond of them. The third and last ones can be any cards, consequently 

51

13
)A|B(P  . If we know that the first card is heart and the second one is diamond, then the 

package contains 50 cards at the third draw and 12 are diamonds of them. The last one can be 

any card, consequently 
50

12
)BA|C(P  . 
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Finally, if we know that the first card is heart, the second and third ones are diamonds, then the 

package contains 49 cards at the last picking and 13 spades are among them. Consequently, 

49

13
)CBA|D(P  . As 

52

13
)A(P  , 004.0

49

13

50

12

51

13

52

13
)DCBA(P  . 

We present the following “simple” solution as well. As the question is connected to the order of 

pickings, we have to take into consideration the order of picked cards. 

  kjifdifferentare4,3,2,1ji,packagethefromcardsthearei:i,i,i,iΩ jj4321  . 

49505152Ω  . If the first draw is heart, consequently we have 13 possibilities at the first 

draw. If the second card is diamond, we have 13 possibilities at the second picking. If the third 

card is diamond again, we have only 12 possibilities at the third picking, as the previous draw 

eliminates one of diamond cards. Finally, if the last card is spade, we have 13 possibilities at 

the last picking. Consequently, 13121313DCBA  ,  

49505152

13121313
)DCBA(P




 , which is exactly the same as we have got by applying the 

multiplicative rule. 

 

c.2. Theorem of total probability, Bayes’ theorem 

 

In the examples of the previous section the conditional probabilities were computed from 

unconditional ones. The last example was solved by two methods. One of them has applied 

conditional probabilities for determining unconditional one. Law of total probability applies 

conditional probabilities for computing unconditional (total) probabilities. To do this, we need 

only a partition of the sample space Ω . 

Suppose that Ω , A , and P are given. 

Definition The set of events An21 B,...,B,B  is called partition of Ω , if 
n

1i

iBΩ


  and 

 ji BB , ji  , ni1  , nj1  . 

 

We note that a partition cut the set of possible outcomes into some mutually exclusive events. 

Every possible outcome belongs to an event and any of them can not belong to two events. 

 

Theorem (Law of total probability) Let An21 B,...,B,B  be a partition of Ω , and assume 

)B(P0 i , .n,...,2,1i   Then for any event AA  the following equality holds 





n

1i

ii )B(P)B|A(P)A(P . 

Proof: As )B(P0 i , conditional probabilities are well defined.  

 

































n

1i

i

n

1i

i BAP)BA(P)ΩA(P)A(P . 

Notice that if  ji BB , then      ji BABA . Therefore the unioned events are 

mutually exclusive and the probability of the union is the sum of the probabilities. 

  


















n

1i

i

n

1i

i )BA(PBAP  . 

Recalling the multiplicative rule )B(P)B|A(P)BA(P iii   we get 





n

1i

ii )B(P)B|A(P)A(P . 
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An inverse question can be asked by the following way: if we know that A occurs, compute the 

probability that iB  occurs. The answer can be given by the Bayes’ theorem as follows: 

Theorem (Bayes’ theorem) Let An21 B,...,B,B  be a partition of Ω , and assume )B(P0 i , 

.n,...,2,1i   Then for any event AA  with )A(P0 , the following holds: 










n

1i

ii

iiii
i

)B(P)B|A(P

)B(P)B|A(P

)A(P

)B(P)B|A(P
)A|B(P , n,...,2,1i  . 

Proof 













n

1i

ii

iiiii
i

)B(P)B|A(P

)B(P)B|A(P

)A(P

)B(P)B|A(P

)A(P

)AB(P
)A|B(P . 

Remarks 

 Notice that the unconditional probability is the weighted sum of the conditional 

probabilities. 

 Law of total probability is worth applying when it is easy to know conditional 

probabilities. 

 Construction of the partition is sometimes easy, in other cases it can be difficult. The 

main view is to be able to compute conditional probabilities. 

 The theorem can be proved for countable infinite sets iB , ,...2,1i  , as well. 

 Bayes’ theorem can be interpreted as the probability of „reasons”. If A occurs, what is 

the probability that its „reason” is iB , ,...3,2,1i   

 

Examples 

E1. In a factory, there are three shifts. 45% of all products are manufactured by the 

morning shift, 35% of all products are manufactured by the afternoon shift, 20% are 

manufactured by the evening shift. A product manufactured by the morning shift is substandard 

with probability 0.04, a product manufactured by the afternoon shift is substandard with 

probability 0.06, and a product manufactured by the evening shift is substandard with 

probability 0.08. Choose a product from the entire set of products. Compute the probability that 

the chosen product is substandard. 

Let 1B  be the event that the chosen product was produced by the morning shift, let 2B  be the 

event that the chosen product was produced by the afternoon shift and let 3B  be the event that 

the chosen product was produced by the evening shift. ,B1 2B , 3B  is a partition of the entire set 

of all products. Let S be the event that the chosen product is substandard. Now, 

0.04)B|P(S 1  , 0.06)B|P(S 2  , 08.0)B|P(S 3  . Furthermore,  

,45.0)B(P 1  35.0)B(P 2  , 2.0)B(P 3  . Applying the law of total theorem we get 

 )B(P)B|S(P)B(P)B|S(P)B(P)B|S(P)S(P 332211

0.055 0.20.080.350.060.450.04  . 

If the chosen product is substandard, compute the probability that it was produced by the 

morning shift. If the chosen product is substandard, which shift produced it most probable? 

327.0
055.0

45.004.0

)S(P

)B(P)B|S(P
)S|B(P 11

1 





 . 

382.0
055.0

35.006.0

)S(P

)B(P)B|S(P
)S|B(P 22

2 





 . 

291.0
055.0

2.008.0

)S(P

)B(P)B|S(P
)S|B(P 33

3 





 . 

If the chosen product is substandard, the second shift is the most probable, as a „reason”. 
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This example draws the attention to the differences between the conditional probabilities 

)B|S(P 1 and )S|B(P 1 , )B|S(P 2 and )S|B(P 2 , )B|S(P 3 and )S|B(P 3 . Although the maximal 

value among )B|S(P 1 , )B|S(P 2 and )B|S(P 3 is the first conditional probability, the maximal 

value among )S|B(P 1 , )S|B(P 2  and )S|B(P 3  is the second one. )B|S(P 1  is the ratio of the 

substandard products among the products produced by the morning shift, )S|B(P 1  is the ratio 

of the products produced by morning shift among all substandard products. These ratios have to 

be strictly distinguished. 

 

E2. People are divided into three groups on the basis of their qualification: people 

with superlative, intermediate and elementary degree. We investigate the adults. 25% of all 

adults have elementary, 40% of all adults have intermediate and the rest of people have 

superlative degree. A person having elementary degree is unemployed with probability 0.18, a 

person having intermediate degree is unemployed with probability 0.12 and a person having 

superlative degree is unemployed with probability 0.05. Choose a person among the adults. 

Compute the probability that he is unemployed.  

Let 1B  be the event that the chosen person has elementary degree, 2B  be the event that the 

chosen person has intermediate degree, 3B  be the event that the chosen people has superlative 

degree. 321 B,B,B  is a partition of the entire set of Ω . Let E be the event that the chosen 

person is unemployed. 25.0)B(P 1  , 4.0)B(P 2   and 35.0)B(P 3  , furthermore 

18.0)B|E(P 1  , 12.0)B|E(P 2  , 05.0)B|E(P 3  . Applying the law of total probability we 

get  )B(P)B|E(P)B(P)B|E(P)B(P)B|E(P)E(P 332211  

1105.035.005.04.012.025.018.0  . 

If the chosen person is not unemployed compute the probability that he has 

elementary/intermediate/ superlative degree. 

 
230.0

1105.01

25.082.0

)E(P1

)B(P)B|E(P1

)E(P

)B(P)B|E(P
)E|B(P 1111

1 











 . 

 
396.0

1105.01

4.088.0

)E(P1

)B(P)B|E(P1

)E(P

)B(P)B|E(P
)E|B(P 2222

2 











 . 

 
374.0

1105.01

35.095.0

)E(P1

)B(P)B|E(P1

)E(P

)B(P)B|E(P
)E|B(P 3333

3 











 . 

We draw the attention that )B|E(P1)B|E(P 11   according to the properties of conditional 

probability. 

 

E3. Pick two cards without replacement from a package of cards containing 52 

cards. Compute the probability that the second card is heart. 

If we knew that the first card is heart or not, the conditional probabilities of the event “second 

draw is heart” could be easily computed. Consequently the unconditional probability can be 

also computed by the help of the conditional probabilities. 

Let 1B  be the event that the first card is heart and 12 BB  . Now 1B  and 2B  form a partition 

of the entire set of Ω . Let A be the event that the second draw is heart. Now, 
51

12
)B|A(P 1  , 

51

13
)B|A(P 2  , furthermore 

52

13
)B(P 1  , 

52

39
)B(P 2  . Applying the law of total probability 

we get 

 
25.0

52

13

5251

391213

52

39

51

13

52

13

51

12
)B(P)B|A(P)B(P)B|A(P)A(P 2211 




 . 
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Given that the second draw is heart compute the probability that the first one is not heart. 

51

39

25.0

4

3

51

13

)A(P

)B(P)B|A(P
)A|B(P 22

2 






 . 

Given that the second draw is not heart compute the probability that the first one is heart. 

51

13

4

3
4

1

51

39

)A(P

)B(P)B|A(P
)A|B(P 11

1 






 , taking into account that )B|A(P1)B|A(P 11  . 

 

c3. Independence of events 

 

Conditional probability of an event may differ from the unconditional one. It may be greater, 

smaller than the unconditional probability, and in some cases they can be equal, as well. Let us 

consider the following very simple examples. 

Roll two fair dies. Let A be the event that the sum of the rolls is 7, let B be the event that the 

difference of the rolls is at least 4, let be C the event that the difference of the rolls is 0, finally 

let D be the event that the first roll is 1. Now 
36

6
)A(P  , 

36

6
)B(P  , 

36

6
)C(P  , 

36

6
)D(P  . 

One can easily see that )B(P
3

1

36

6
36

2

)A(P

)AB(P
)A|B(P 


 ,  

)C(P0

6

1

)(P

)A(P

)AC(P
)A|C(P 





 , )D(P

6

1
36

1

)A(P

)AD(P
)A|D(P 


 . This latter case is 

the case when the information contained in A does not change the chance of D. It can be 

computed that )A(P
6

1

)D(P

)DA(P
)D|A(P 


  also holds, which means that the information 

in D does not change the chance of A. Relation is symmetric. Similarly, 

)A(P
3

1

)B(P

)AB(P
)B|A(P 


  and )A(P0

)C(P

)CA(P
)C|A(P 


 . 

 

Definition The events AB,A  are called independent if )B(P)A(P)BA(P  . 

 

Actually we present that this definition is generalization of the previous concept. 

 

Theorem Let A and B be events for which )A(P0  and )B(P0 . A and B are independent if 

and only if )A(P)B|A(P   and/or )B(P)A|B(P  . 

Proof Recalling the definition of conditional probability, we can write that 

)B(P

)BA(P
)B|A(P


  and 

)A(P

)AB(P
)A|B(P


 . If A and B are independent, then, by 

definition, )B(P)A(P)BA(P  . Dividing by P(A) and P(B) we get the equalities 
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)B(P
)A(P

)BA(P



 and )A(P

)B(P

)BA(P



, respectively. Conversely, )B(P

)A(P

)BA(P



 implies 

)B(P)A(P)BA(P  , and so does )A(P
)B(P

)BA(P



. 

Remarks 

 Definition of independence is symmetric. 

 Definition of independence is given even in the case of )A(P0   or 0)B(P  . 

 If )A(P0   or 0)B(P  , then A  and B are independent. Take into consideration that 

)A(P)BA(P  , )B(P)BA(P  , consequently 0))B(P),A(Pmin()BA(P  . 

Therefore, )B(P)A(P0)BA(P  . 

 Independent events are strongly different from mutually exclusive events. If A and B 

are mutually exclusive, then BA , 0)BA(P  . 0)B(P)A(P   implies 0)A(P   or 

0)B(P  .If A and B are mutually exclusive and )B(P0)A(P   hold, then A and B can not 

be independent. Roughly spoken, if A and B are mutually exclusive and any of them occurs, 

the other one can not occur. Occurrence of A is a very important piece of information with 

respect to B. 

 In the example presented at the beginning of the subsection the events A and D are 

independent but the events A and B are not. So are A and C. 

 Independence of A and B means that the “weight” of A in the entire set equals the 

“weight” of A in B. 

 

Examples 

E1. Roll 5 times a fair die repeatedly. Let A be the event that all rolls are different 

let B the event that there is no “six” among the rolls. Are the event A and B independent? 

Applying our knowledge on sampling with replacement it is easy to see that 

093.0
6

23456
)A(P

5



 , 42.0

6

5
)B(P

5

5

 , 015.0
6

12345
)BA(P

5



 . As 

)B(P)A(P)BA(P  , A and B are not independent. If we know that there is no “six” 

among the rolls then we can “feel” that the chance that all the rolls are different has been 

decreased. We have only five numbers to roll instead of six ones. 

 

E2. There are N balls in a box (urn), M of them are white N-M are red. Pick n balls 

from the urn with replacement. Let A be the event that the first one is red, let B the event that 

the last one is white. Are the event A and B independent? 

Recalling the results in connection with sampling with replacement, 

 
N

M
1

N

MN

N

NMN
)A(P

n

1n










, 
N

M

N

MN
)B(P

n

1n







,  

 
N

M

N

M
1

N

M)MN(

N

MNMN
)BA(P

2n

2n



















. As )B(P)A(P)BA(P  , A 

and B are independent. 

Roughly spoken, the result of the first picking does not effect on the result of the last picking, it 

does not increase and does not decrease the chance of picking white ball. 

 

E3. There are N balls in an urn, M of them are white N-M are red. Pick 2 balls from 

the urn without replacement. Let A be the event that the first one is red, let B the event that the 

second one is white. Are the event A and B independent? 

Recalling the results in connection with sampling without replacement, we can write 

 
)1N(N

MMN
)BA(P




 , 

   
N

MN

)1N(N

)1N(MN
)A(P







 . )B(P  can be computed by the 
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help of theorem of total probability as follows: 

 
 


















N1N

1MMNM

N

M

1N

1M

N

MN

1N

M
)A(P)A|B(P)A(P)A|B(P)B(P  

N

M
. As )B(P)A(P)BA(P  , A and B are not independent.  

Roughly spoken, if we know that the first draw is red, the chance of the second one being white 

has been increased. The reason is that the relative number of white balls in the urn has 

increased. 

 

E4. People are grouped into three groups on the basis of their qualification: people 

with superlative, intermediate and elementary degree. We investigate the adults. 25% of all 

adults have elementary, 40% of all adults have intermediate and the rest of people have 

superlative degree. A person having elementary degree is unemployed with probability 0.18, a 

person having intermediate degree is unemployed with probability 0.12 and a person having 

superior degree is unemployed with probability 0.05. Choose a person among the adults. Are 

the event A=“the chosen person is unemployed” and 1B ”the chosen person has superlative 

degree” independent? 

Recalling the law of total probability we get 1105.0)A(P  , but 05.0)B|A(P 1  . As 

)E(P)B|A(P 1  , A and 1B  are not independent. If somebody has superlative degree, the 

probability of the event that he is unemployed has decreased. The ratio of the unemployed 

people in the population is higher than the ratio of the unemployed people having superlative 

degree. 

E5. Roll 3 times a fair die. Let A be the event that the sum of the rolls is at least 17, 

let B be the event that all the rolls are the same. Are A and B independent? 

Taking into account the condition, the sum of the rolls can be 17 and 18. If the sum is 17 then 

we roll two “six”s and one “five”. if the sum is 18, then we have three “six”-s. 

333 6

4

6

1

6

1113
)A(P 


 . There are four elements in A. One of them satisfies that all of the 

rolls are the same, consequently
4

1
)A|B(P  . Finally, 

36

1

6

116
)B(P

3



 . Now we can see 

that )B(P)A|B(P  , therefore A and B are not independent. 

 

Theorem If the events A and B are independent, then A  and B , furthermore A  and B  are 

independent, as well. 

Proof

)BP(P(A)P(B))1)(A(PP(B)P(A)-P(A)B)P(A-P(A)B)\A(P)BA(P  . 

  )BA(P)B(P)A(P1)BA(P1)BA(P)BA(P  

    )B(P1)A(P1)B(P)A(P)B(P)A(P1  . 

 

Now let us consider independency of more than two events.  

Definition The events iA  Ii  are called pair wise independent if any two of them are 

independent, that is )A(P)A(P)AA(P kjkj  kj,Ik,j  . 

Definition The events iA  Ii are called independent, if for any finite set of different indices 

 n21 i,...,i,i  the equality )A(P)A(P)A(P)A...AA(P in2i1iin2i1i   . 

 

Remarks 

 If the number of elements of the set of indices equals 2, the above property expresses 

the pair wise independence. 

 Pair wise independence of events does not imply independence of the events. We 

construct the following example in which pair wise independence holds but 
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)C(P)B(P)A(P)CBA(P  . Let  4,3,2,1Ω  , 
4

1
)i(P  , 4,3,2,1i  . Let 

 2,1A  ,  3,1B  ,  4,1C  . Now 5.0
4

2
)C(P)B(P)A(P  ,  

1CACBBA  ,  25.0
4

1
)1(P)CA(P)CB(P)BA(P  .  

Consequently, )B(P)A(P)BA(P  , )C(P)A(P)CA(P  , )C(P)B(P)CB(P  . It 

means that A, B and C are pair wise independent. But 


8

1
)C(P)B(P)A(P25.0)1(P)CBA(P  . 

 

Definition Experiments are called independent if the events connected to them are 

independent. More detailed for two experiments: if 1A  is the set of events connected to an 

experiment, 2A  is the set of events connected to another experiment, then for any 1A A  and 

2B A  the events A and B are independent. The experiments characterized by the set of 

events iA , Ii  are independent if for any iiA A  the events iA  are independent. 

 

Remarks 

 Sampling with replacement can be considered as a sequence of independent 

experiments. If the first draw is the first experiment, the second draw is the second experiment 

and so on, the events connected to different draws are independent. 

 If we do sampling without replacement, then the consecutive draws are not independent 

experiments, as E3) in the previous subsection illustrates. 

 

Examples 

E6. Fill two lotteries (90/5) independently. Compute the probability that at least 

one of them is bull’s-eye. 

Let A be the event that the first lottery is bull’s-eye, let B the event that the second one is 

bull’s-eye. The question is )BA(P  . 











5

90

1
)A(P , 











5

90

1
)B(P , 





















5

90

1

5

90

1
)B(P)A(P)BA(P . Applying )BA(P)B(P)A(P)BA(P   we get 

8106.4

5

90

1

5

90

1

5

90

2
)BA(P 





























 . 

 

E7. Fill 10 million lotteries independently. Compute the probability that at least one 

of them is bull’s-eye. 

Let iA  be the event that the ith experiment is bull’s-eye. The question is )A...A(P 7101  . 

Instead of it, let us first consider its compliment. 

)A...AA(P)A...A(P 77 1021101  . As the experiments are independent, the 

probability of the intersection of the events connected to them is the product of the 

probabilities. Therefore  
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796.0

5

90

1
1)A(P...)A(P)A...AA(P

7

77

10

1011021 





























 . 

Consequently, 204.0796.01)A...A(P 7101  . 

 

E8. How many lotteries are filled independently, if the probability that there is at 

least one bull’s-eye among them equals 0.5? 

Let iA  n,...,2,1i  be the event that the ith experiment is bull’s-eye. The question is the value 

of n if 5.0)A...A(P n1  . Following the argumentation of the previous example E7 

 )A...AA(P)A...A(P n21n1 5.05.01

5

90

1
1

n































 . 

Take the logarithm of both sides, we get  

5.0log)

5

90

1
1log(n 









 , 30463322

)

5

90

1
1log(

5.0log
n 











 , which is much more than the half of 

possible fillings. But if you fill 30 million lotteries the probability that there are same fillings is 

almost 1. If you fill them independently, it may happen that the first one and the second one 

contain the same numbers crossed. 
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d. Random variable 

 

The aim of this chapter 

 

This chapter aims being acquainted with the concept of random variables 

as random valued functions. We introduce the concept of distribution, 

cumulative distribution function and probability density function. We 

present how to use cumulative distribution function to express 

probabilities. We introduce the concept of independent random variables. 

 

Preliminary knowledge 

 

Properties of probability. Analysis, taking derivative and integrate. 

 

Content 

 

d.1. Random variables as random valued functions. 

 

d.2. Cumulative distribution function. 

 

d.3. Continuous random variable. 

 

d.4. Independent random variables. 



Probability theory and mathematical statistics–Random variable 

 

45 

d.1. Random variables as random valued functions 

 

In this section we introduce the concept of random variables as random valued functions. 

We suppose that Ω , A  and P are given. 

First we introduce a simple definition and later, after presenting lots of examples, we make 

it mathematically exact. 

Definition The function RΩ:   is called random variable.  

Remarks 

 Random variables map the set of possible outcomes to the set of real numbers. The 

values of random variables are numbers. If we know the result of the experiment, we know 

the actual value of the random variable. Before we perform the experiment, we do not know 

the actual outcome; hence we do not know the value of the function. “Randomness” is 

hidden in the outcome. 

 Although we do not know the value of the function, we know the possible outcomes 

and the values assigned to them. These values are called as the image of the function in 

analysis. We will call them possible values of the random variable. 

 If we know the possible values of the function, we can presumably compute the 

probabilities belonging to these possible values. That is we can compute the probability that 

the function takes this value. Additional refinement is needed to be able to do this in all 

cases. 

 As the elements of Ω are not real numbers in some cases, the function   may not be 

drawn in a usual Cartesian frame. 

 

Examples 

E1. Flip a coin. If the result is head we gain 10 HUF, if the result is tail we pay 

5 HUF. Let   be the money we get/pay during a game. 

 T,HΩ  , Ω2A , P  is the classical probability. RΩ:  , 10)H(  , 5)T(  . 

Possible values of   are 10 and -5, and   5.0)H(P)10(P  ,   5.0)T(P)5(P  . 

Before performing the experiment we do not know the value of our gain, but we can state 

that it can be 10 or -5 and both values are taken with probability 0.5. 

E2. Roll a fair die. We gain the square of the result. Let   be the gain playing one 

game.  
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 6,5,4,3,2,1Ω  , Ω2A , P is the classical probability. RΩ:  , 2i)i(  . ,11)1( 2   

,42)2( 2   ,93)3( 2  ,164)4( 2   ,255)5( 2   .366)6( 2   Moreover, 


6

1
)i(P)i(P 2  . Summarizing, possible values of   are 1,4,9,16,25,36, and the 

probabilities belonging to them are 
6

1
. Before we roll the die we do not know how much 

money we gain, but we can state that it may be 1,4,9,16,25 or 36, and all of them have 

probability 
6

1
. 

E3. Roll a fair die twice. Let   be the sum of the rolls. 

 )6,6),.....(2,1(),1,1(Ω  , Ω2A , P is the classical probability. RΩ:  , ji))j,i((  . 

For example, 2))1,1((  , ,7))5,2((   12))6,6((  . Possible values of   are 

2,3,4,5,6,7,8,9,10,11,12. 

  
36

1
)1,1(P)2(P  , 

 
36

2
))1,2(),2,1((P)3(P  ,   ,

36

3
))2,2(),1,3(),3,1((P)4(P   

  ,
36

4
))1,4(),2,3(),3,2(),4,1((P)5(P    ,

36

5
))1,5(),2,4(),3,3(),4,2(),5,1((P)6(P   

  ,
36

6
))1,6(),2,5(),3,4(),4,3(),5,2(),6,1((P)7(P 

  ,
36

5
))2,6(),3,5(),4,4(),5,3(,6,2((P)8(P    ,

36

4
))3,6(),4,5(),5,4(),6,3((P)9(P 

  ,
36

3
))4,6(),5,5(),6,4((P)10(P    ,

36

2
))5,6(),6,5((P)11(P 

  .
36

1
))6,6((P)12(P   

We mention that the sets  i)(:Bi   12,...,3,2i   are mutually exclusive and the 

union of them is Ω . They form a partition. Consequently, the sum of the probabilities 

belonging to the possible values equals 1. 

E4. Choose two numbers without replacement from the set  4,3,2,1,0 . Let   be 

the minimum of the chosen numbers.  

Actually,   egersint,4ii0:i,iΩ 2121  , RΩ:  ,    2121 i,imin)i,i(  , 

10
2

5
Ω 








 .   0)4,0(  ,   2)3,2(   and so on. Possible values of   are 0,1,2,3 and 
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10

4
)4,0,3,0,2,0,1,0(P)0(P  ,      

10

3
)4,1,3,1,2,1(P)1(P  , 

   
10

2
)4,2,3,2(P)2(P  ,  

10

1
)4,3(P)3(P  . 

E5. Pick two numbers with replacement from the set  4,3,2,1,0 . Let   be the 

minimum of the picked numbers.  

Actually,   egersint,4i,i0:i,iΩ 2121  , RΩ:  ,    2121 i,imin)i,i(  , 

2555Ω  .   0)4,0(  ,   3)3,3(   and so on. Possible values of   are 0,1,2,3,4 and 

 
25

9
))0,4(),0,3(),0,2(),0,1(),4,0(),3,0(),2,0(),1,0(),0,0((P)0(P  ,  

25

7
))3,4(),2,4(),1,4(),4,1(),3,1(),2,1(),1,1((P)1(P  , 

25

5
))2,4(),2,3(),4,2(),3,2(),2,2((P)2(P  ,

25

3
))3,4(),4,3(),3,3((P)3(P  , 

25

1
))4,4((P)4(P  . 

E6. Choose two numbers with replacement of the set  4,3,2,1,0 . Let  be their 

difference. 

Actually, the elements of the sample space are as in the previous example, but the mappings 

differ. ,0))1,1((   3))1,4((  , and so on. Possible values of   are 0,1,2,3,4 and 

 
25

5
))4,4(),3,3(),2,2)(1,1(),0,0((P)0(P  , 

 
25

8
))3,4(),4,3(),3,2(),2,3(),2,1(),1,2)(0,1(),1,0((P)1(P  ,

 
25

6
))4,2(),2,4(),3,1(),1,3)(0,2(),2,0((P)2(P  ,

 
25

4
))1,4(),4,1(),0,3(),3,0((P)3(P  ,  

25

2
))0,4(),4,0((P)4(P  . 

E7. Fire into a circle with radius R and suppose that the probability that the hit 

is situated in a subset of the circle is proportional to the area of the subset. Let   be the 

distance of the hit from the centre of the circle.  

Actually, Ω  is the circle and A  are those subsets of the circle which have area. If Q is a 

point of the circle, then )Q,O(d)Q(  . Possible values of   are the points of the interval 

 R,0 .   .0
R

)O(
)O(P)0(P

2












2

R

R
)R(P , where R  is the area of the border 

curve of the circle with radius R, which equals 0. .0)R(P   If  Rx0  , then 
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2

x

R
)x(P , where x  is the area of the border curve of the circle with radius x, which 

equals 0, as well. Consequently, all possible values have probability 0. 

E8. Choose two numbers independently from the interval ]1,0[  by geometrical 

probability. Let   be their difference. 

Now,   ]1,0[x1,0Ω  , which is a square. 1)Ω(  . The possible values of   are the points of 

 1,0 . Actually, 
 

.
1

)Ωyx:)y,x(Q(
)0(P


  The area of the line given by the 

equation yx   in the square equals 0, consequently, 0)0(P  . 

 
.0

1

))1,0(),0,1((
)1(P 


  Generally, If 2u0  , then 

 
1

)Ωuyx:)y,x(Q(t
)u(P


 . The set  uyx:)y,x(Q   consists of the points 

of the lines given by x-y=u and y-x=u, and the area of the two lines equals 0. Therefore 

0)u(P  . 

 

Remarks 

 Common feature of E1, E2,…,E6 is that the set of the possible values are finite.  

 Common feature of E1, E2,…,E6 is that if ix  is a possible value of  , then 

0)x(P i  . 

 If the possible values of  are denoted by n1 x,...,x , then the sets 

 ii x)(:B   form a partition of Ω . Consequently, 

1)Ω(P)B(P)x(P
n

1i

i

n

1i

i  


. 

 Common feature of E7, E8 is that the set of possible values is uncountable infinite 

and if x is a possible value then 0)x(P  . Nevertheless,  )x)(:(P  =1. If 

 x)(:Bx  , and  y)(:By  , then  yx BB , if yx  . If the set of 

possible values were countable, then     0)x)(:(P)x)(:(P i

1i1i

i  








  would 

hold. 

 In the case of E7, E8, instead of )x(P   the probabilities )x(P   are worth 

investigating, if the set  x)(:   has probability, i.e.   A x)(: . This 

requirement is included in the mathematically correct definition of random variables. 

 



Probability theory and mathematical statistics–Random variable 

 

49 

Definition The function RΩ:   is called random variable, if for any Rx  

  A x)(: . 

Definition The function RΩ:   is called discrete random variable, if the set )Im(  is 

finite or countable infinite. Those values in Im  for which 0)x(P  , are called possible 

values. 

Definition Distribution of the discrete random variable   is the set of the possible values 

together with the probabilities belonging to them. We denote is by 









 .

p..,p,p

x..,x,x
~

n21

n21
 or in the infinite case 








 .

...,p,p

...,x,x
~

21

21
 with 

).x(Pp ii   

Remarks 

 Definition of a discrete random variable can be more general as well. In many 

cases   is called discrete random variable, if there is countable subset C of fIm , for which 

1)x(P
Cx




. This means that the set fIm  may be uncountable, but the values out of C 

have probability zero together, that is   0)x)(:(P
Cx




 . 

 If   A x)(: , then   














1n

n

1
x)(x: x)(:   

  























1n

x)(:\
n

1
x)(: A , as A  is   algebra. Consequently, 

 )x)(:(P   are well defined. 

 In example E1.,…E6. in the previous subsection, the distributions of random 

variables   are given: namely: 

In E1. 






 


5.0,5.0

5,10
~ . 

In E2. 















6

1

6

1

6

1

6

1

6

1

6

1
362516941

~ . 

In E3. 















36

1

36

2

36

3

36

4

36

5

36

6

36

5

36

4

36

3

36

2

36

1
12111098765432

. 

In E4. 









1.02.03.04.0

3210
~ . 
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In E5. 









04.012.02.028.036.0

43210
~  

In E6. 









08.016.024.032.02.0

43210
~ . 

 The examples in E7. and E8. are not discrete random variables even in the 

generalized sense of definition. 

 

d.2. Cumulative distribution function 

 

As the probabilities )x(P   are not always appropriate for characterizing random 

variables, consequently, the probability )x(P   is investigated. This probability depends 

on the value of x . If we consider this probability as the function of x , we get a real-real 

function. This function is called cumulative distribution function. 

Definition Let   be a random variable. The cumulative distribution function of   is 

defined as RR:F   x)(:(P)x(P)x(F  ). 

Remarks 

 If the random variable   is fixed, then notation from the index is omitted. 

 As F  is a real-real function, it can be represented in the usual Cartesian frame. 

 

Examples 

Give the cumulative distribution functions of the random variables presented in subsection 

d.1. 

E1. 






 


5.0,5.0

5,10
~ . 

It can be easily seen that if 5x  , then 0)(P)x(P  . 

If 10x5  , then   5.0)T(P)5(P)x(P  . 

If x10 , then 1)Ω(P)x(P  . 

Summarizing 
















x10if1

10x5if5.0

5xif0

)x(P)x(F . 

The graph of this function can be seen in Fig. d.1. 
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Figure d.1. The cumulative distribution function of the random variable 






 


5.0,5.0

5,10
~  

E2. 















6

1

6

1

6

1

6

1

6

1

6

1
362516941

~ . 































































x36if1

36x25if
6

5

25x16if
6

4

16x9if
6

3

9x4if
6

2

4x1if
6

1

1xif0

)x(F  

E6. 









08.016.024.032.02.0

43210
~  













































x4if1

4x3if92.0

3x2if76.0

2x1if52.0

1x0if2.0

0xif0

)x(F  

E7. If Rx0  ,  
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then  
2

2

2

2

2 R

x

R

x

R

)x(
)x)Q,O(d:ΩQ(P)x(P)x(F 









 , where )x(  is the area 

of the circle with radius x. Of course, if 0x  , then  0)(P)x(P  , and if xR  , 

then 1)Ω(P)x(P  . Summarizing,  





















xRif1

Rx0if
R

x

0xif0

)x(F
2

2

. 

which can be seen in Fig.d.2. 

 

 

 

 

 

 

 

 

 

 

Figure d.2. Cumulative distribution function of the random variable presented in E7 

 

E8.  )uyx:)y,x(Q(P)u(P)u(F   if 1u0  . 

Recall that uyx   means, that yux   if xy  , and uxy   if yx  .  

Those points for which uyx   are situated between the straight lines given by the 

equations uxy   and uyx  .The area of the appropriate points can be computed by 

subtracting the area of the two triangles from the area of the square. The area of a triangle is 

2

)u1( 2
. Consequently, 2)u1(1)u(P   if 1u0  . It is obvious that if 0u  , then 

0)(P)uyx(P  , and if u1 , then 1)Ω(P)uyx(P  . 
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Figure d.3. Appropriate points for the uyx   with 35.0u   

 

Summarizing, 
















u1if1

1u0if)u1(1

0uif0

)u(F 2 . 

The graph of the cumulative distribution function cumulative can be seen in Fig. d.4. 

 

 

 

 

 

 

 

 

 

 

Figure d.4. Cumulative distribution function of the random variable presented in E8 

 

The graphs of the cumulative distribution functions presented have common features and 

differences, as well. The most conspicuous difference is in continuity, namely the 

cumulative distribution functions of E1, E2, have discontinuity in jumps, while the 
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cumulative distribution functions of E7. and E8. are continuous. The common features are 

that they are all increasing functions with values between 0 and 1. 

Let us first consider the property of cumulative distribution functions. First we note that 

1)x(F0   for any Rx , as )x(F  is a probability. 

 

Theorem Let   be a random variable and let RR:F  be its cumulative distribution 

function. Then F satisfies the followings: 

A) F is a monotone increasing function that is in case of yx  , ).y(F)x(F   

B) 0)x(Flim
x




and 1)x(Flim
x




. 

C) F is a left hand side continuous function. 

 

Remarks 

 The proof of the previous properties can be executed on the basis of the properties 

of probabilities but we omit it.  

 The above properties can be checked easily using the tools of analysis. 

 

The above properties characterize cumulative distribution functions, namely 

 

Theorem If the function RR:F   satisfies the properties A) B) and C), then there exist Ω  

sample space, A    algebra and P  probability measure, furthermore random variable   

cumulative distribution function of that is the function F . 

 

Cumulative distribution functions are suitable for expressing the probability that the value of 

the random variable   is situated in a fix interval. We list these probabilities with 

explanation in the following theorem: 

 

Theorem 

a) )a(F)a(P))a,((P   by definition of cumulative distribution 

function. 

b) )a(F1)a(P)),a[(P  . 

  )a(F1)a)(:(P)a(P)a(P)),a[(P  . 

 

c) )a(P)a(F)a(P])a,((P   

       )a)(:(P)a)(:(P)a)(:a)(:(P)a(P   
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)a(P)a(F  . 

 

d) )a(P)a(F1)a(P)),a((P  . 

      )a(P)a(F1)a)(:(P)a)(:(P)a)(:(P)a(P  . 

 

e) )a(F)b(F)ba(P))b,a[(P   

)ba(P))b,a[(P  =     )a(F)b(Fa)(:(P)b)(:(P  . 

Note that    b)(:a)(:  , consequently the probability of the difference is the 

difference of probabilities. 

f) )b(P)a(F)b(F)ba(P])b,a[(P   

       )b)(:(P)b)(a:(P)b)(:b)(a:(P)ba(P 

)b(P)a(F)b(F  . We note that      b)(:b)(a: , consequently 

the probability of the union equals the sum of the probabilities. 

g) )a(P)a(F)b(F)ba(P))b,a((P   

     )a)(:(P)a(F)b(F)a)(:\b)(a:(P)ba(P  . 

h) )b(P)a(P)a(F)b(F)ba(P])b,a((P  - 

     )b)(:b)(a:(P)ba(P  

    )b(P)a(P)a(F)b(F)b)(:(P)b)(a:(P  . 

i) )a(F)aΔa(Flim)a(P
0aΔ




. 



































)a(F)
n

1
a(Flim)

n

1
a)(a:(Plim)

n

1
a)(a:(P)a(P

nn
1n



 )a(F)
n

1
a(Flim

n












. 

 

Remarks 

 )a(F)
n

1
a(Flim

n












 is the value of the jump of the cumulative distribution 

function at „a”. 

 If F is continuous at “a”, then )a(F)aΔa(Flim
0aΔ




, consequently 0)a(P  . 

 If F is continuous on R , then 0)x(P   for any Rx . Examples for this case 

were presented in E7 and E8. Further examples can be given by the help of 

geometrical probability. 
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Examples 

E9. Let the lifetime of a machine be a random variable which has cumulative 

distribution function 





















x0if,
ee

ee

0xif,0

)x(F

xx

xx . 

Prove that )x(F  is cumulative distribution function. 

To prove that )x(F  is a cumulative distribution function it is sufficient and necessary to 

check the properties A., B. and C. 

A) For checking the monotone increasing property, take its derivative. 

       
   

0
ee

4

ee

e)1(eeeee)e(e
)x('F

2xx2xx

xxxxxxxx














 if x0  , 

consequently the function F is monotone increasing for positive values. As at x=0 the 

function is continuous and it is constant for negative values, then it is increasing for all 

values of x. 

B) 00lim)x(Flim
xx




and 1)x(Flim
x




. .1
e1

e1
lim

ee

ee
lim

x2

x2

xxx

xx

x



















 

C) 0lim0
1

0

ee

ee
lim

0xxx

xx

0x 









, consequently F is continuous at 0x  , and it is 

continuous at any point x. Therefore F is left hand side continuous. 

 

Compute the probability that the lifetime of the machine is less than 1 unit. 

762.0
ee

ee
)1(F)1(P

11

11











. 

Compute the probability that the lifetime of the machine is between 1 and 2 unit. 

202.0762.0964.0
ee

ee

ee

ee
)1(F)2(F)21(P

11

11

22

22




















 

Compute the probability that the lifetime is between 2 and 3 unit. 

031.0964.0995.0
ee

ee

ee

ee
)2(F)3(F)32(P

22

22

33

33




















 

Compute the probability that the lifetime is at least 3 unit. 

005.0
ee

ee
1)3(F1)3(P

33

33











. 

Compute the probability that the lifetime of the machine equals 3. 

 )x(P 0, as the cumulative distribution function of the lifetime is continuous at 3x  . 

At least how much time is the lifetime of the machine with probability 0.9? 
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?x   9.0)x(P  . 1.0)x(F9.0)x(F1  . 

1.0
ee

ee
xx

xx









. Substitute yex  , we have to find the solution of the following equation: 

1.0

y

1
y

y

1
y







. 1.1y9.01.0
1y

1y 2

2

2





. Consequently, 222.1

9.0

1.1
y2  , 

105.1222.1y  . As xey  , y0   holds. 105.1ex   implies 100.0105.1lnx  . 

Finally, at most how much time is the lifetime of the machine with probability 0.9? 

?x   9.0)x(P  . 9.0)x(F)x(P)x(P)x(P  . Substitute yex  , we 

have to find the solution of the following equation: 9.0

y

1
y

y

1
y







. Following the above steps 

we get 
2.0

9.1
y  , and 126.1

2.0

9.1
lnx  . 

 

Definition: Random variables   and   are called identically distributed if )x(F)x(F    

for any value Rx . 

 

Example 

E10.  T,HΩ1  , 1A Ω2 , P  classical probability, 1)H(  , 

1)T(  . 

 6,5,4,3,2,1Ω2  , 2A Ω2 , P  classical probability, 1)i(   if i is odd, 1)i(   if i is 

even. Now,   and   are identically distributed random variables, as 















 

x1if1

1x1if5.0

1xif0

)x(F)x(F . 

We draw the attention that the distribution functions may be equal even if the mappings are 

different. 

 

Theorem If   and   are discrete and identically distributed then they have common 

possible values and )x(P)x(P ii  , ,...3,2,1i   

Proof If the random variables have common distribution functions, then the jumps of the 

cumulative distribution functions are at the same places. This concludes in common possible 
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values. Furthermore, the values of the jumps equal, as well. Recalling that the jump equals 

the probability belonging to the possible value, this means that the random variables take the 

possible value with the same probability. Consequently, they have the same distribution. 

 

d.3. Continuous random variable 

 

Actually we turn our attention to those random variables which have continuous cumulative 

distribution function. 

Definition The random variable   is called continuous random variable if its cumulative 

distribution function is the integral function of a piecewise continuous function, that is there 

exists a RR:f   piecewise continuous (continuous except from finite points) for which 






x

dt)t(f)x(F . The function f  is called probability density function of  . 

Remarks 

 The integral is Riemann integral. 

 It is well-known fact in analysis that the integral function is continuous at any point, 

and at the points where f is continuous F  is differentiable and )x(f)x('F  . 

 If f is changed at a point, its integral function does not change. Consequently the 

probability density function of a random variable is not unique. Consequently, we can 

define it at some points arbitrarily. It is the typically case at the endpoints of intervals when 

f has discontinuity. 

 The denomination “probability density function” can be argued by the followings: 

aΔ

)aΔaa(P 
 expresses the probability that   is situated in the neighbourhood of point 

“a” related to the length of the interval. It is a kind of density of being at the neighbourhood 

of “a”. As  

)a(F)aΔa(F)aΔaa(P  , 
aΔ

)a(F)aΔa(F

aΔ

)aΔaa(P 



. 

If 0aΔ0  , then )a(f)a('F
aΔ

)a(F)aΔa(F
lim

aΔ

)aΔaa(P
lim

0aΔ0aΔ








, 

supposing that the limit exists. 

 aΔ)a(faΔ)a('F)a(F)aΔa(F  , therefore where the probability density 

function has large values, there the random variable takes its values with large probability, if 



Probability theory and mathematical statistics–Random variable 

 

59 

the length of the interval is fixed. If the probability density function is zero in the interval 

]b,a[ , then the random variable takes its values in ]b,a[  with probability zero. 

 If the cumulative distribution function is a piecewise continuous function, then at 

the points of jumps the derivatives do not exist. On the open intervals, when the cumulative 

distribution function is constant, the derivative takes value zero, consequently there is no 

sense to take the derivative of the cumulative distribution function. 

 We note that there exist random variables which are not either discrete either 

continuous. They can be “mixing” of discrete and continuous random variables, their 

cumulative distribution function is strictly monotone increasing continuous function in some 

intervals and have jumps at some points. These random variables are out of the frame of this 

booklet. 

 

Examples 

E1. In the example given in E7 in subsection d.1., the probability density function 

is the following: 












otherwise0

Rx0if
R

x2

)x('F)x(f 2 . 

We note that at 0x   the function F is differentiable, and the derivative equals 0.At Rx   

the function F is not differentiable. The graph of the probability density function for 

1R  can be seen in Fig. d.5. 

 

 

 

 

 

 

 

 

 

 

 

Figure d.5. Probability density function of the random variable given in E7. 

 

E2. Probability density function of E8. in subsection d.1. is 
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otherwise0

1u0ifu22
)u('F)u(f . 

The graph of )u(f  can be seen in Fig.d.6. 

 

 

 

 

 

 

 

 

 

Figure d.6. Probability density function of the random variable given in E8. 

 

E3. Probability density function of E9. in the previous subsection 

 









 

otherwise0

0xif,
ee

4

)x('F)x(f
2xx . 

 

This function can be seen in Fig.d.7. 

 

 

 

 

 

 

 

 

 

 

Figure d.7. Probability density function of the random variable given in E9. 

 

The above probability density function takes large values in the interval ]1,0[  and small 

values in ]3,2[  and indeed, )32(P723.0)10(P  . 
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Now let us investigate general properties of density functions. 

 

Theorem If   is continuous random variable, with probability density function f, then  

D) )x(f0   except from “some” points and  

E) 1dx)x(f




 . 

Proof F is a monotone increasing function, consequently, its derivative is nonnegative, when 

the derivative exists. If we choose the values of f negative when the derivative does not 

exist, these points can belong to the set of exceptions. Usually we choose the values of f at 

these points zero. On the other hand, by the definition of improper integral 

01)x(Flim)x(Flimdx)x(f
xx







 . 

 

The properties D) and E) characterize the probability density functions, namely  

Theorem If the function RR:f   satisfies the properties D) and E) then there exist Ω  

sample space, A    algebra and P  probability measure, furthermore a continuous random 

variable   probability density function of that is the function f. 

 

Remarks 

 If the random variables   and   have the same probability density functions, then 

they have the same cumulative distribution functions as well, therefore they are identically 

distributed. 

 If the random variables   and   have the same cumulative distribution functions, 

then there derivatives also equal at the points when the derivatives exist. At the points when 

the derivatives do not exist we can define the probability density functions arbitrary, but 

only some points have this property. Consequently, if the continuous random variables   

and   are identically distributed, then they essentially have the same probability density 

functions. 

 If we would like to express the probability that the continuous random variable   

takes its values in an interval, we can write the followings: 

)x(F)x(P)x(P  ,  

)x(F1)x(P)x(P  , 

)a(F)b(F)ba(P)ba(P)ba(P)ba(P  . 
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The reason for this is the fact that the cumulative distribution function of a continuous 

random variable is continuous at any points, consequently it takes any value with probability 

0. Hence we do not have to take into consideration the endpoints of the interval. 

 

Now, we can express the probability taking values in an interval by the help of probability 

density function. 

 

Theorem If the continuous random variable   has probability density function f , then 



b

a

dt)t(f)ba(P . 

Proof Applying the formula concerning the cumulative distribution function and the 

properties of integrals we get  

 



b

a

ab

dt)t(fdt)t(fdt)t(f)a(F)b(F)ba(P . 

Remarks 

 As the integral of a nonnegative function equals the area under the function, the 

above formula states that the probability of taking values in the interval ]b,a[  equals the 

area under the probability density function in ]b,a[ . For example, in the case of the random 

variable given by the probability density function 


 


otherwise0

x0ifxsin5.0
)x(f , the 

probability of taking values between 
6


 and 

6

5
 can be seen in Fig.d.8. It is the area 

between the two red lines. 

 

 

 

 

 

 

 

 

 

 

Figure d.8. Probability expressed by the area between the two read lines 
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Example 

E4. Let the error of a measurement be a random variable   with probability 

density function 











 x0ife5.0

0xife5.0
)x(f

x

x

. 

The graph of this function can be seen in Fig.d.9. 

 

 

 

 

 

 

 

 

 

 

 

Figure d.9. Probability density function given by f 

 

Prove that f  is probability distribution function. 

To do this, check the properties D) and E). As exponential functions take only positive 

values, the inequality )x(f0   holds. Moreover, 

     
















x

x
0

x0x

0

x

0

x elim15.0e5.0e5.0dxe5.0dxe5.0dx)x(f  

  15.05.0)1(elim5.0 x

x
 


. 

Determine the cumulative distribution function of  . 















x

x

x

x0hae5.01

0xhae5.0
dt)t(f)x(F . 

Detailed computations are the following: 

If 0x  , then   xxx

x

x

x
xtt

x

e5.00e5.0e5.0lime5.0e5.0dte5.0dt)t(f 








 . 

If x0  , then  
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    ))5.0(e5.0(5.0)e(5.0e5.0dte5.0dte5.0dt)t(f x

x

0

0

x0t

x

0

tt

x

 










 

xe5.01  . 

Compute the probability that the error of the measurement is less than -2. 

068.0e5.0)2(F)2(P 2   . 

Compute the probability that the error of the measurement is less than 1. 

816.0e5.01)1(F)1(P 1   . 

Compute the probability that the error of the measurement is between -1 and 3. 

791.0184.0975.0e5.0e5.01)1(F)3(F)31(P 13   . 

Compute the probability that the error of the measurement is more than 1.5. 

  112.0e5.011)5.1(F1)5.1(P 5.1   . 

Now we ask the inverse question: at most how much is the error with probability 0.9? 

We want to find the value x for which 9.0)x(P  .  

Taking into account that )x(F)x(P)x(P  , we seek the value x  for which 

9.0)x(F  . Namely, we would like to determine the cross point of the function F and line 

9.0y  , as shown in Fig.d.10. 

 

 

 

 

 

 

 

 

 

 

Figure d.10.Cumulative distribution function of   and the level 0.9 

 

,5.0)0(F   consequently x  is positive. For positive x values xe5.01)x(F  . 

Consequently, 9.0e5.01 x   . This implies 1.0e5.0 x   , 2.0e x  , 61.12.0lnx  . 

Give an interval symmetric to 0 in which the value of the error is situated with probability 
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Now we have to determine the value x for which 9.0)xx(P  . This means that 

.9.0)x(F)x(F   Substituting the formula concerning )x(F  we get 

9.0e1e5.0e5.01 xxx   . This equality implies 1.0e x  , 3.21.0lnx  . 

In Fig.d.11, the area between the two red lines equals 0.9. 

 

 

 

 

 

 

 

 

 

 

 

d.11. Probability expressed by the area between the two read lines 

 

At least how much is the error of the measurement with probability 0.99? 

Now we would like to determine the value x for which 99.0)x(P  . 

)x(F1)x(P  , therefore 1.0)x(F  . As 5.0)0(F  , x  is negative. Now we can write 

the equality 01.0e5.0 x  , 91.3
5.0

01.0
lnx  . As Fig.d.12. shows, the area under the 

density function from the red line to infinity equals 0.99. 

 

 

 

 

 

 

 

 

 

 

d.12. Probability expressed by the area upper the read line 
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d.4. Independent random variables 

 

In this subsection we define independence of random variables. 

Definition Random variables   and   are called independent, if for any values of Rx  

and Ry  the events  x  and  y  are independent, that is 

)y(P)x(P)yx(P  . For more than two variables, the random variables 

,i ,...,2,1i  are called independent, if for any value of j and any indices 

 ,...3,2,1i,...,i,i j21   and any value of 
kix j,..,2,1k   

)x(P...)x(P)x(P)x...x(P
jiji2i2ili1ijijili1i

 . 

The independence of random variables are defined by the independence of events connected 

to them. 

The following theorem can be stated: 

Theorem If   and   are discrete random variables, distribution of them are 











...pp

...xx
~

2l

21
 and 










...qq

...yy
~

2l

21
, then   and   are independent if and 

only if for any ,.2,1i   and ..2,1j  the equality 

jijiji qp)y(P)x(P)yx(P   holds. 

Theorem Let   and   be continuous random variables with probability density function 

)x(f  and )y(g , respectively.   and   are independent if and only if for any Rx  and 

Ry  where the )yx(P   is differentiable, there the following equality holds: 

)y(g)x(f
yx

)y,x(P2





. 

Examples 

E1. Flip twice a coin repeatedly. Let   be the number of heads, let   be the 

difference between the number of head and tails. Now, 

        T,T,H,T,T,H,H,HΩ  .    ,2H,H      0T,T  ,    1T,H  ,    1H,T  . 

Therefore, 









25.05.025.0

210
~ . Moreover,      T,T2H,H  , and 

     H,T0T,H  .  











5.05.0

20
~ . 125.0)0(P)0(P0)(P)00(P  ., consequently   

and   are not independent. 
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E2. Choose one point Q from the circle with radius 1 by geometrical 

probability. Put the circle into the Cartezian frame and let the centre be the point O(0,0). Let 

  be the distance of the point Q from the centre O(0,0) of the circle, and   be the angle of 

the vector 


OQ . Now, 10  ,  20 . 2
2

x
x

)x(P 



 , if 1x0  . 
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Figure d.13. Appropriate points for  x  and for  y  
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)y(P ,  2y0 . 

Furthermore, 
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Figure d.14. Appropriate points for    y  x   

These together imply that )y(P)x(P)yx(P  , if 1x0  ,  2y0 . 

For the values out of ]2,0[x]1,0[   one can easily check the equality, consequently   and   

are independent. 
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e. Numerical characteristics of random variables 

 

The aim of this chapter 

 

In the previous chapter random variables were characterized by functions, 

such as cumulative distribution function or probability density function. 

This chapter aims with being acquainted with the numerical 

characteristics of random variables. These numbers contain less 

information than cumulative distribution functions but they are easier to 

be interpreted. We introduce expectation, dispersion, mode and median. 

Beside the definitions, main properties are also presented. 

 

Preliminary knowledge 

 

Random variables, computing series and integrals. Improper integral. 

 

Content 

 

e.1. Expectation. 

 

e.2. Dispersion and variance. 

 

e.3. Mode. 

 

e.4. Median. 
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e.1. Expectation 

 

Cumulative distribution function of a random variable contains all of information about the 

random variable but it is not easy to know and handle it. This information can be condensed 

more or less into some numbers. Although we lose information during this concentration, 

these number carry important information about the random variable, consequently they are 

worth dealing with. 

First of all we present a motivational example. Let us imagine the following gamble: we 

throw a die once and we gain the square of the result (points on the surface). How much 

money is worth paying for a gamble, if after many rounds we would like get more money 

than we have paid. About some values one can easily decide: for example 1 is worth paying 

but 40 is not. Other values, for example 13, are not obvious. Let us follow a heuristic train 

of though. Let the price of a round be denoted by x , and let the number of rounds be n . 

Now, the frequency of “one”, “two”, “three”, “four”, “five”, “six” are 1k , 2k ,…, 6k , 

respectively. The money we get together equals  

6
2

5
2

4
2

3
2

2
2

1
2 k6k5k4k3k2k1  . 

The money we pay for gambling is xn  . We get more money than we pay if the following 

inequality holds: 6
2

5
2

4
2

3
2

2
2

1
2 k6k5k4k3k2k1xn  . Dividing by 

x , we get 
n

k
6

n

k
5

n

k
4

n

k
3

n

k
2

n

k
1x 625242322212  . 

n

k i  i=1,2,…,6 

express the relative frequencies of result "i" . If they were about the probabilities of the 

result "i" , then 
6

1

n

k i   and the left hand side of the previous inequality ends in 

6

1
15

6

91

6

1
6

6

1
5

6

1
4

6

1
3

6

1
2

6

1
1 222222  . Therefore, if 

6

1
15x   then the 

money we get after many rounds is more than we paid for them, in the opposite case it is 

less than we paid. Heuristic is 
6

1

n

k i  , it has not been proved yet in this booklet, it will be 

done in the chapter h.  

How the value 
6

91
 can be interpreted? If we define the random variable   as the gain 

during one round, then   is discrete random variable with the following distribution: 
















6

1

6

1

6

1

6

1

6

1

6

1
362516941

~ . The right hand side of the inequality is the weighted sum of 
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the possible values of   and the weights are the probabilities belonging to the possible 

values. This motivates the following definition: 

 

Definition Let   be discrete random variable with finite possible values. Let the distribution 

of 









n21

n21

p..pp

x..xx
~ . Then the expectation of   is defined as 




n

1i

ii px)(E .   

Let   be discrete random variable with infinite possible values. Let 









...pp

...xx

21

21
. 

Then the expectation of   is defined as 





1i

ii px)(E , if the series is absolute 

convergent, that is 


1i

ii px . 

Let   be continuous random variable with probability density function f . Then the 

expectation of   is defined as 




 dx)x(fx)(E  supposing that the improper integral is 

absolute convergent, that is 




dx)x(fx . 

 

Remarks 

 If the discrete random variable has only finite values, then its expectation exists. 

 If 


1i

ii px  or 




dx)x(fx , then, by definition, the expectation does not 

exist. 

 


1i

ii px  implies 


1i

ii px . Similarly, 




dx)x(fx  implies 






dx)x(fx .  

 Expectation of a random variable is finite, if it exists. 

 





1i

ii px  can be convergent even if it is not absolute convergent. But in this case if 

the series is rearranged, the sum can change. Therefore the value of the sum may depend on 

the order of the members, which is undesirable. This can not happen, if the series is absolute 

convergent. 
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 Expectation may be out of the set of possible values. For example, if the random 

variable takes values 1  and 1  with probability 0.5 and 0.5, then expectation is 

05.015.01  . 

 

Examples 

E1. We gamble. We roll a die twice repeatedly and we gain the difference of the 

results. Compute the expectation of the gain. 

Let   be the difference of the results. The distribution of   can be given as follows: 
















36

2

36

4

36

6

36

8

36

10

36

6
543210

~ . 

Now 24.1
36

2
5

36

4
4

36

6
3

36

8
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36

10
1

36

6
0px)(E

6

1i

ii  


. 

 

E2. We gamble. We roll a die n times repeatedly and we gain the maximum of 

the results. Compute the expectation of the gain. 

Let   be the maximum of the results. The distribution of   can be given as follows: 

Possible values are 1,2,3,4,5,6. and 

n

6

1
)1(P 








 , 

nn

6

1

6

2
)2(P 
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E3. Flip a coin repeatedly. The gain is n10  if head appears first at the nth game. 

Compute the expectation of the gain. 

Let   be the gain. Now the possible values of   are 10, 100, 1000,….and 

n

n

2

1
)10(P 








 . 








 











 1i

i

1i

i

i

1i

ii 5
2

1
10px)(E , consequently the 

expectation does not exist. 
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E4. Flip a coin repeatedly. The gain is n10  if head appears first at the nth game 

supposing mn   and m10 , if the we do not get head until the nth game.(The bank is able to 

pay maximum a given sum, which is reasonable assumption.) Compute the expectation of 

the gain.  

Let   be the gain. Now the possible values of   are 10, 100, 1000,…., m10 . 

n

n

2

1
)10(P 








 , if mn   and 

1m

m

2

1
)10(P











 . 


















 













 1m
1m

1i

i
1m

1i

1m

m

i

i
m

1i

ii 5105
2

1
10

2

1
10px)(E  

25.1525.11510
4

15
5 1m1m

1m




 


, consequently the expectation exists. 

E5. We compare the expectation of a random variable and average of the result 

of many experiences. We make computer simulations, we generate random numbers in the 

interval ]1,0[  by geometrical probability. Let the random number be denoted by  . Let 

  16  . Now the possible values of   are 1,2,3,4,5,6,7 and 

 
6

1
)

6

1
0(P)06(P)1(P  ,  

6

1
)

6

2

6

1
(P)16(P)2(P  , …, 

 
6

1
)1

6

5
(P)56(P)6(P  , finally,   0)1(P)66(P)7(P  . 

Therefore, distribution of   equals the distribution of the random variable which is equal to 

the number of points on the surface of a fair die. If we take the square of this random 

variable, we get our motivation example presented at the beginning of this subsection. 

Now repeating the process many times, and taking the average of the numbers 1,4,…,36 , 

we get the following results in Table e.1. Recall that the expectation of the gain equals 

15.1667. The larger the number of simulations, the smaller the difference between the 

average and the expectation. 

 

Numbers of 

simulations 

100 1000 10000 100000 100000 10000000 

Average  13.94 15.130 15.0723 15.1779 15.1702 15.1646 

Difference 1.2267 0.0367 0.0944 0.0112 0.0035 0.0021 

Table e.1. Averages and their differences from the expectation in case of simulation 

numbers 
710,...,100n   

E6. Recall the example presented in E7. in subsection d.1. Compute the 

expectation of the distance between the chosen point and the centre of the circle. 
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Let   be the distance. The probability density function of  , as presented in subsection d.3. 

is the following: 











otherwise0

Rx0
R

x2

)x(f . 

Now R
3

2

R3

x2
dx

R

x2x
dx)x(fx)(E

R

0

R

0

2












  





. 

E7. Recall the example presented in E8. in subsection d.1. Compute the 

expectation of the distance between the chosen points.  

The probability density function of   as presented in subsection d.3. is the following: 

 



 


otherwise0

10xifx12
)x(f . 

 
3

1

3

2
1

3

x2
xdxx12xdx)x(fx)(E

1

0

3
2

1

0









  





. 

 

E8. Compute the approximate value of the above expectation. Generate two 

random numbers in ]1,0[  by geometrical probability, compute their difference and take the 

average of all differences. Repeating this process many times, we get the following results: 

 

Numbers of 

simulations 

100 1000 10000 100000 100000 10000000 

Average  0.3507 0.3325 0.3323 0.3328 0.3331 0.3333 

Difference 0.0174 0.0008 0.0010 0.0005 0.0002 0.00007 

Table e.2. Differences of the approximate and the exact expectation in case of different 

numbers of simulations 

 

E9. Choose two numbers in the interval  1,0  by geometrical probability 

independently. Let   be the sum of them. Now one can prove that the probability density 

function is  















otherwise0

2x1ifx2

1x0ifx

)x(f . 
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Now 

  1
3

1
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x
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x
dxx2xdxxxdx)x(fx)(E

2

1

3
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1

0

1

0

31

0


















  





. 

Solving this problem is also possible by simulation. Generating two random numbers, 

summing them up and averaging the sums one can see the following:  

Numbers of 

simulations 

100 1000 10000 100000 100000 10000000 

Average  0.9761 1.0026 0.99995 1.0001 0.9999 1 

Difference 0.0239 0.0026 0.00005 0.0001 0.0001 0.00001 

 

Table e.3. Differences of the approximate and the exact expectation in case of different 

numbers of simulations 

 

Properties of the expectation 

 

Now we list some important properties of the expectation. If it is easy to do, we give some 

explanation, as well. Let   and   be random variables, suppose that )(E   and )(E   exist. 

Let Rc,b,a  . 

1. If   and   are identically distributed, then )(E)(E  . If   and   are discrete, 

then they have common possible values and )x(P)x(P ii  , consequently the 

weighted sums are equal, as well. If   and   continuous random variable, they have 

common probability density function, consequently the improper integrals are equal. 

2. If  c  or 1)c(P  , then 11c)(E  . 

3. If 0 , then )(E0   holds. If   is discrete, then all possible values of   is 

nonnegative, therefore so is the weighted sum, as well. If   is continuous random variable, 

then 0  implies that its probability density function is zero for negative x values. 

Consequently, 






0

dx)x(fxdx)x(fx)(E , which must be nonnegative. 

4. )(E)(E)(E  . Additive property is difficult to prove using elementary 

analysis, but is follows from the general properties of integral. 

5. b)(Ea)ba(E  . If   is discrete, then the possible values of ba   are 

„a” times more and b than the possible values of  , therefore so is their weighted sum. If   
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is continuous, then )
a

bx
(F)

a

bx
(P)xba(P)x(F ba





  supposing a0  . 

Taking the derivative )
a

bx
(f

a

1
)x(f ba


 , 

 


















 


 dy)y(f)bay(dx)
a

bx
(f

a

1
xdx)x(fxdx)x(fx)ba(E baba  

b)(aEdy)y(fbdy)y(fya  








. Similar argumentation can be given for negative 

value of “a” as well. If 0a   holds, then .b)(aEb)ba(E   

6. If ba  , then b)(Ea  . As a , a0  , holds, therefore 

a)(E)a(E0  , which implies )(Ea  . Similar argumentation can be given for the 

upper bound. 

7. If  , that is )()(   for any Ω , then )(E)(E  . Take into 

consideration that   implies 0 , consequently 

)(E)(E)(E)(E)(E0  . We draw the attention that it is not enough that 

the possible values of   are less than the possible values of  . For example, 











9.01.0

41
~ , 










2.08.0

52
~ . Now 7.39.041.01)(E  , 

6.32.058.02)(E  , that is )(E)(E  . 

8. Let i  i=1,2,,…,n be independent identically distributed random variables with 

expectation m)(E i  . Then nm)(E
n

1i

i 


. This is the straightforward consequence of 

the above properties, namely 



n

1i

i

n

1i

i mn)(E)(E . 

9. Let i  i=1,2,,…,n be independent identically distributed random variables with 

expectation m)(E i  . Then m
n

E

n

1i

i
























 . Take into consideration that 




 


n

1i

i

n

1i

i

n

1

n
. 

10. If   and   are independent random variables and )(E   exists, then 

)(E)(E)(E  . 
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11. If   is discrete random variable with distribution 









...pp

...xx
~

21

21
, RI:g   

for which   I,....x,x 21  , furthermore 





1i

ii p)x(g , then 





1i

ii p)x(g))(g(E . Take 

into consideration that RΩ:)(g   and their possible values are )x(g i , and 

i

)x(g)x(g:j

ji qp))x(g))(g(P

ij

 


. This implies the equality 







1i

ii p)x(g))(g(E .Especially, if 2x)x(g  , then 





1i

i

2

i
2 px)(E . 

12. If   is continuous random variable with probability density function f, RI:g   for 

which I)Im(   and 




dx)x(f)x(g , then 




 dx)x(f)x(g )(g(E . Especially, if 

2x)x(g  , then 




 dx)x(fx)(E))(g(E 22  

Examples 

E9. The latest property is able to provide possibility for computing integral by 

computer simulation. If the expectation is an integral, and expectation is about the average 

of many values of the random variables, we can compute the average and it can be used for 

approximation of the integral. For example, if we want compute the integral ,dxxsin

1

0

  then 

it can be interpreted as an expectation. Namely, let   be a random variable with probability 

density function 


 


.otherwise0

1x0if1
)x(f , and  





1

0

.xdxsindx)x(fxsin)(sinE  If   is a 

random number chosen by geometrical probability, then 
















x1if1

1x0ifx

0xif0

)x(P)x(F ,  

and 


 


otherwise0

1x0if1
)x('F)x(f . 

Consequently, generating a random number, and substituting it into the function sinx, taking 

their average we get an approximate value for the integral. This is a simple algorithm. We 

draw the attention to the fact that expectation is about the average of many experiments has 

not been proved yet in this booklet. It will be done by the law of large numbers in chapter h. 

The following Table e.4. presents some results: 
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Numbers of 

simulations 

100 1000 10000 100000 100000 10000000 

Average  0.4643 0.4548 0.4588 0.4586 0.4596 0.4597 

Difference 0.0046 0.0049 0.001 0.0011 0.0011 0.00002 

Table e.4. Differences of the approximate and the exact value of the integral in case of 

different numbers of simulations 

 

E10. Additive property of the expectation helps us to simplify computations. For 

example, consider the following example. Roll twice a die repeatedly. Let    be the sum of 

the results. Now, one can check that 
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3
10  . Another method is the following: 21   where 1  is the 

result of the first throw and 2  is the result of the second throw. Now  1  and 2  are 

identically distributed random variables and 
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1i
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, 

consequently, 75.32)(E 2121  . 

e.2. Dispersion and variance 

Expectation is a kind of average. It is easy to construct two different random variables 

which have the same expectation. For example, 






 


5.05.0

11
~1  and 








 


125.025.0225.03.01.0

21012
~2 . They both have the same expectation, namely zero. 

Measure of the average distance from the expectation can be important information, as well. 

As 0))(E(E)(E))(E(E  , therefore it is not appropriate to characterize the 

distance from the average. The reason is that the negative and positive differences balance. 

This phenomenon disappears if we take ))(E(E  . But if we use the square instead of 
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absolute value, the signs disappear again and, on the top of all the small differences become 

smaller, large differences become larger. Square punishes large differences but does not 

punish small ones. Consequently, it is worth investigating   2
)(EE   instead of 

))(E(E  , if it exists. 

Definition Let   be a random variable with expectation )(E  . The variance of   is defined 

as   ))(E(D
22  , if it exists. 

Definition Let   be a random variable with expectation )(E  . The dispersion of   is 

defined as )(D)(D 2  , if )(D2   exists.  

Remarks 

 As  2)(E0  , so is its expectation. Its square root is well-defined. 

 By definition, dispersion of a random variable is nonnegative number. It is the 

square root of the average squared difference. 

 It is easy to construct such random variable which has expectation but does not have 

dispersion. We will do it in this subsection, after proving the rule of its calculation. 

 

Theorem If   is a random variable with expectation )(E   and )(E 2  exists, then 

 222 )(E)(E)(D  . 

Proof Applying the properties of expectation  

      ))(E(E)(E)(E2)(E))(E)(E2(E))(E(E)(D
222222   

     22222 )(E)(E)(E)(E2)(E  . 

 

Remarks 

 

2

1i

ii

1i

i

2

i
2 pxpx)(D 













 









, and 

2

22 dx)x(xfdx)x(fx)(D













 









. 

 If   and   are identically distributed random variables, then )(D)(D   

 In case of discrete random variable with infinitely many possible values, 







1i

i

2

i
2 px)(E .If the series is not (absolute) convergent, then 



1i

i

2

i px .  
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 In case of continuous random variables with probability density function f, 






 dx)x(fx)(E 22 . If the improper integral is not (absolute) convergent, then 






dx)x(fx 2 .  

 If )(E 2  does not exist, neither does )(D2  . 


1i

i

2

i px  implies 




1i

i
2

i p)cx(  and 




dx)x(fx 2  implies 




dx)x(f)cx( 2  for any value of c. 

 It can be proved that if )(E 2  exists, so does )(E  . 

 Let   be a continuous random variable with probability density function 














x1if

x

2

1xif0

)x(f

3

. Then the expectation of the random variable is  

  2102)1(
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1
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x

1
2dx
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x
1

11

3

222 . 

Consequently, )(E   exists, but )(D   does not. 

Example 

E1. Roll a die twice repeatedly. Let   be the maximum of the results. Compute 

the dispersion of  . First we have to determine the distribution of  . It is easy to see that 
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Applying the above theorem, 

  405.1973.1472.4972.21)(E)(E)(D 222   

E2. Choose two numbers from the interval [0,1] independently by geometrical 

probability. Let   be the difference between the two numbers. Compute the dispersion of 
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 . Recall from E8. in subsection d3 that the probability density function of   looks 



 


otherwise0

1x0ifx22
)x(f .  

We need )(E   and )(E 2 . 
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 . 

 

Now we list the most important properties of the variance and dispersion. As variance and 

dispersion are in close connection, we deal with their properties together. 

 

Properties of the variance and dispersion 

Let   and   be random variables with dispersion )(D   and )(D  , respectively, a, b, c are 

constant values. 

1. If c , then 0)(D)(D2  . It is obvious, as c)(E  ,   0)(E
2
 , and 

0)0(E  . 

2. If 0)(D  , then 1)c(P  . Consequently, zero value for dispersion characterizes 

the constant random variable.  

3.   222 Da)ba(D  and )(Da)ba(D  .  

Take into consideration that b)(aE)ba(E  ,  

     )(Da))(E(Ea)))(E(a(E)b)(aEba(E 2222222
 .

)(Da)(Da)ba(D 22  . 

4. Let   be a random variable with dispersion )(D  . Now the value of 

  )c(E)c(g
2

  is minimal, if )(Ec  . Take into consideration that 

  )c(E)c(g
2

  22 )(E)(cE2c   is a quadratic polynomial of c. Moreover, the 

coefficient of 2c  is positive, therefore the function has minimum value. If we take its 

derivative, )(E2c2)c('g  . It is zero if and only if )(Ec   which implies our 

statement. 
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5. If   is a random variable for which ba   holds, then its dispersion exists. If it is 

denoted by )(D  , then 
2

ab
)(D


 .  

If   is discrete, then      








22

1i

i
22

i

1i

2
i

2 b,amaxpb,amaxpx)(E . If   is 

continuous, then      








222222 b,amaxdx)x(fb,amaxdx)x(fx)(E , which 

proves the existence of dispersion. Applying the properties of expectation we can write for 

any value of Rx , 

)x(P)xb()x(P)xa())x((E)))(E((E)(D 22222  = 

)x(P)x2ab)(ab()xa()x(P)xb()x(P)xa()xa( 2222  . 

Substituting 
2

ba
x


  , 0x2ab  , 

2

2

2

ab
)xa( 







 
 . We get that 

4

)ab(
)(D

2
2 

 , therefore 
2

ab
)(D


 . We note that in case of  










5.05.0

ba
~  , 

.
2

ab
)(D


 Consequently, the inequality can not be sharpened.  

6. If   and   are independent, then )(D)(D)(D 222   and 

)(D)(D)(D 22  . 

    )(E)(E(E2)))(E((E)))(E((E))(E)(E(E)(D 2222 

Recall that if   and   are independent then )(E)(E)(E  , therefore 

  0))(E((E))(E((E)(E()(E(E  . 

We would like emphasize that the dispersions can not be summed, only the variances. 

Namely, it is important to remember, that )(D)(D)(D  . This fact has very 

important consequences when taking average of random variables. 

7. Let i  i=1,2,…,n be independent identically distributed random variables with 

dispersion  )(D i . Then 2
n

1i

i
2 n)(D 



 and 


n)(D
n

1i

i . This is the 

straightforward consequence of the above properties, namely 





n

1i

2
i

2
n

1i

i
2 n)D)(D . 
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8. Let i  i=1,2,,…,n be independent identically distributed random variables with 

dispersion  )(D i . Then 
n

)
n

(D
2

n

1i

i

2 



  and 

n
)

n
(D

n

1i

i





 . This is again the 

straightforward consequence of properties 3 and 7. 

 

e.3. Mode 

Expectation is the weighted average of the possible values and it may be out of the set of 

possible values. A very simple example is the random variable taking values 0 and 1 with 

probabilities 0.5. In that case the distribution of   is given by 









5.05.0

10
~ , 

5.05.015.00)(E  , and 0.5 is not between the possible values of  . Mode is in the 

set of the possible values and the most probable value among them. 

Definition Let   be discrete random variable with distribution 











..p..pp

..x..xx

n2l

n21
. The mode of   is kx , if ki pp  , ,...3,2,1i   .  

 

Definition Let  be continuous random variable with probability density function )x(f . 

Mode of   is x if f has its local maximum at x, and the maximum value is not zero. 

 

Remark 

 Mode of a discrete random variable exists. If it has finite values then the maximum 

of a finite set exists. If it has infinitely many values, then only the probability 0 may have 

infinitely many probabilities in its neighbourhood. The remaining part of the probabilities is 

a finite set, it must have maximum value, and the index belonging to it marks the mode. 

 Mode of a discrete random variable may not be unique. For example, consider 











5.05.0

10
~ . Now both possible values have equal likelihood. 

 Mode of a continuous random variable is more complicated case, as the probability 

density functions may be changed at any point and the distribution of the random variable 

does not change. Consequently we usually deal with the mode of such continuous random 

variables which have continuous probability function on finitely many subintervals. We 

consider the maximum of these functions in the inner parts of the subintervals, and they are 

the modes. Consequently, mode of a continuous random variable may not exist, see for 
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example the following probability density function: 











0xif0

x0e
)x(f

x

. It has its maximum 

value at zero, at the endpoint of the interval ),0[   and no other maximum value exists. 

 

 

 

 

 

 

 

 

 

 

Figure e.1. Probability density function without local maximum 

 

 Mode of a continuous random variable may be unique, see for example  












0xif0

x0if)exe(7
)x(f

x3x

. 

The graph of this probability density function can be seen in Fig.e.2. 

 

 

 

 

 

 

 

 

 

 

Figure e.2. Probability density function with unique local maximum 

 

The maximum can be determined by taking the derivative of )x(f  and finding where the 

derivative equals zero. Namely, 
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0xif0

x0if)exex3e(7
)x('f

x3x2x

. 

0)x('f   implies 0exex3e x3x2x    which means that 0xx31 32  .It is 

satisfied at x=2. 8794 and x=0.6527. At x=0.6527 the function takes its minimum, at x=2. 

8794 the function takes its maximum. Consequently, the mode is 2.8794. 

 Mode of a continuous random variable may not be unique. If the probability density 

function of the random variable is )ee(
22

1
)x(f 2

)5x(

2

x 22 




 , it has two maximum 

values, one of them is about zero, the other one is about 5. Consequently, two modes exist. 

 

 

 

 

 

 

 

 

 

 

Figure e.3. Probability density function with double local maximums 

 

e.4. Median 

Mode is the most likely value of the random variable, median is the middle one. Namely, 

the random variable takes values with equal chance under and below the median. More 

precisely, the probability of taking values at least median and at most median, both are at 

least 0.5 

Definition   is a random variable. Median of   is the value y, if )y(P5.0   and 

)y(P5.0  . 

Remark 

 If   is continuous random variable with cumulative distribution function )x(F , then 

the median of   is the value y for which 5.0)y(F   holds. The inequality 

)y(F1)y(P5.0   implies 5.0)y(F  . Taking into account that   is continuous 
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random variable, 5.0)y(P)y(P  , therefore )y(F)y(P5.0  . Consequently, 

5.0)y(F  . As the function F  is continuous, and it tends to 0 if x  tends to   and it tends 

to 1 if x  tends to infinity, therefore the median of a continuous random variable exists, but 

may not be unique. 

 Let   be a discrete random variable. Median of   is the value y for which 

5.0)y(F   and )y(F.5.0  . )y(F1)y(P5.0   implies 5.0)y(F  , and 

)y(F)a(Flim)y(P5.0
ya




 is the second inequality. 

Examples 

E1. Consider a random variable with cumulative distribution function 

















x1if1

1x0if)x1(1

0xif0

)x(F 2 . 

Determine the median of the random variable.  

We have to find the cross point of )x(F  and 5.0y  . As the function takes the value 0.5 in 

the case ]1,0[ , we have to solve equation 2)x1(1  =0.5. It implies the equality 

,5.0xx2 2   therefore ,293.0x1   and 707.1x 2  . This last number is out of interval 

]1,0[ , consequently median is 293.0 . As a checking, 5001.0)293.01(1)293.0(F 2  . 

 

 

 

 

 

 

 

 

 

 

Figure e.5.Cross point of the cumulative distribution function and line 5.0y   

E2. Let   be a discrete random variable with distribution 
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Now 5.0)x(F  . 
3

2
)1(P  , 

3

2
)1(P  , both of them are greater than 0.5. Any other 

value of x  does not satisfy this property. Consequently the unique median is 1. 

 

 

 

 

 

 

 

 

 

Figure e.6. Cumulative distribution function of the random variable   and the line 5.0y   

Median equals the argument when the cumulative distribution function jumps the level 0.5. 

E3. Let   be a discrete random variable with distribution 
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Determine the median of  .  

Now 
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)x(F , and )x(F  takes value 0.5 in the interval ]5,2(̇ . 5.0)2(P  , 

5.0)2(P  , consequently 2x   is median. Moreover, 5.0)x(P)x(P   holds 

for any values of )5,2[ . Therefore, they are all median. Usually the middle of the interval 

(actually 3.5) is used for the value of median. 
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Figure e.7. Cumulative distribution function of the random variable   and the line 5.0y   
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f. Frequently used discrete distributions 

 

The aim of this chapter 

 

In the previous chapters we have got acquainted with the concept of 

random variables. Now we investigate some frequently used types. We 

compute their numerical characteristics, study their main properties, as 

well. We highlight their relationships. 

 

Preliminary knowledge 

 

Random variables and their numerical characteristics. Computing 

numerical series and integrals. Sampling. 

 

Content 

 

f.1. Characteristically distributed random variables. 

 

f.2. Uniformly distributed discrete random variables. 

 
f.3. Binomially distributed random variables. 

 

f.4. Hypergeometrically distributed random variables. 

 

f.5. Poisson distributed random variables. 

 

f.6. Geometrically distributed random variables. 
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f.1. Characteristically distributed random variables 

First we deal with a very simple random variable. It is usually used as a tool in solving 

problems. Let Ω , A , and P be given. 

 

Definition The random variable   is called characteristically distributed random 

variable with parameter 1p0  , if it takes only two values, namely 0 and 1, furthermore 

p)1(P   and p1)0(P  . Briefly written, 











pp1

10
~ . 

 

Example  

E1. Let AA , p)A(P  . Let us define RΩ:   as follows: 










Aif0

Aif1
)( . Now   is characteristically distributed random variable with 

parameter p . 

In terms of event,   equals 1 if A occurs and   equals zero if it does not. Therefore   

characterizes the occurrence of event A. It is frequently called as indicator random variable 

of event A, and denoted by A1 . 

 

Numerical characteristics of characteristically distributed random variables: 

 

Expectation 

p)(E  , which is a straightforward consequence of p)p1(0p1px)(E
2

1i

ii  


. 

Dispersion 

)p1(p)(D  . As a proof, recall that    222 )(EE)(D  . 

p)p1(0p1px)(E 22
i

2

1i

2
i

2  


, consequently, )p1(ppp)(D 22  . This 

implies the formula )p1(p)(D  . 

 

Mode 

There exist two possible values, namely 0 and 1. The most likely of them is 1, if p50 . , 

and 0, if 50p .  and both of them, if 50p . . 

 

Median 

If 50p . , then p1)0(P5.0   and 1)0(P5.0  . Consequently, the median 

equals 0. 

If p5.0  , then 1)1(P5.0  and p)1(P5.0  . Consequently, the median equals 

1. 

If 50p . , then 5.0)x(P   and 5.0)x(P   for any value of )1,0( . Moreover, 

5.0)0(P  , 1)0(P  , and 1)1(P   and 5.0)1(P  . This means that any point 

of ]1,0[  is median.  
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Theorem If A and B are independent events, then A1  and B1  are independent random 

variables. 

Proof )1(P)1(P)B(P)A(P)BA(P)11(P  BABA 1111 . 

)0(P)1(P)B(P)A(P)BA(P)01(P  BABA 1111 . 

)1(P)0(P)B(P)A(P)BA(P)10(P  BABA 1111 . 

)0(P)0(P)B(P)A(P)BA(P)00(P  BABA 1111 . 

 

f.2. Uniformly distributed discrete random variables 

 

The second type of discrete random variables applied frequently is uniformly distributed 

random variable. In this subsection we deal with discrete ones. 

 

Definition The discrete random variable   is called uniformly distributed random 

variable, if it takes finite many values, and the probabilities belonging to the possible values 

are equal. Shortly written, 









n21

n21

p..pp

x..xx
~ , .n,...,2,1j,n,...,2,1i,pp ji   

 

Remarks 

 As 1

n

1i

i npp1 


, 
n

1
p...pp n21  . 
















n

1
..

n

1

n

1

x..xx n21

. 

 There is no discrete uniformly distributed random variable if the set of possible 

values contains infinitely many elements. This is the straightforward consequence of the  

condition 





1i

ip1 . With notation p)x(P i  , if 0p   then 00
1i






, if p0   , 




1i

p . 

 

Numerical characteristics of uniformly distributed random variables: 

 

Expectation 

x
n

1
x)(E

n

1i

i  


. 

 

Dispersion 

2
n

1i

i

n

1i

2
i

n

x

n

x

)(D
























 , which can be computed by substituting into the formula 

concerning the dispersion. 

 

Mode 
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All of possible values have the same chance, all of them are mode. 

 

Median 

2

xx

2

1n

2

1n  

 if n  is odd, and 

2

nx  if n  is even. 

 

 

Example 

E1. Throw a die, let   be the square of the result. Actually, 
















6

1

6

1

6

1

6

1

6

1

6

1
362516941

. As all possible values have the same chance,   is uniformly 

distributed random variable. Note that there is no requirement for the possible values. 

 

 

f.3. Binomially distributed random variable 

After the above simple distributions actually we consider a more complicated one. 

 

Definition The random variable   is called binomially distributed random variable with 

parameters n2  and 1p0  , if its possible values are n,...,2,1,0  and 

  knk p1p
k

n
)k(P











 , n,...,2,1,0k  . 

 

Remark 

 It is obvious that   knk p1p
k

n
)k(P0











 . Furthermore, binomial theorem 

implies that  
















n

0k

knk
n

0k

1p1p
k

n
)k(P . Recalling that   knk

n

0k

n
ba

k

n
ba 



 







 , 

and substituting pa   and p1b  , we get 1p1pba  . 

 

Theorem If i  n,...,2,1i   are independent characteristically distributed random variables 

with parameter 1p0  , then 



n

1i

i  is binomially distributed random variable with 

parameters n and p. 

Proof Recall that 











pp1

10
~i . Their sum can take any integer from 0 to n. 

 nn21n21

n

1i

i p1)0(P...)0(P)0(P)0...00(P)0(P 


 

  1n

n21n21

n

1i

i p1pn)0(P...)0(P)1(P)0...01(Pn)1(P






. 
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Multiplier n is included because the event A can occur at any experiment, not only at the 

first one. 

  )0...01...11(P n1kk21  

  knk
n1kk21 p1p)0(P...)0(P)1(P...)1(P)1(P



   

If the event A occurs k times, then the serial numbers of experiments when A occurs can be 

chosen 








k

n
 times, consequently, knk

n

1i

i )p1(p
k

n
)k(P 











 . 

 

Theorem Repeat n times a trial, independently of each other. Let A be an event with 

probability ,p)A(P   1p0  . Let   be that number how many times the event A occurs 

during the n independent experiments. Then   is binomially distributed random variable 

with parameter n and p . 

Proof: 

Let 





erimentexpiththeatoccursnotdoesAif0

erimentexpiththeatoccursAif1i

A1 . 

Taking into account that the experiments are independent, so are 
i

A1 , i=1,2,…,n.  

As 



n

1i

i

A1 ,   is the sum of n independent indicator random variable, consequently,   is 

binomially distributed random variable.  

 

Examples 

 

E1. Throw n times a fair die. Let   be the number of “6”. Then   is binomially 

distributed random variable with parameter n and 
6

1
p  . 

E2. Flip n times a coin. Let   be the number of heads. Then   is binomially 

distributed random variable with parameter n and 
2

1
p  . 

E3. Throw n times a die. Let   be the number of even numbers. Then   is 

binomially distributed random variable with parameters n and 
2

1
p  . We note that the 

random variable being in this example is identically distributed random variables with the 

random variable presented in E2.. 

 

E4. Draw 10 cards with replacement from the pack of French cards. Let   be 

the number of diamonds among the picked cards. Then   is binomially distributed random 

variable with parameters 10n  , 
32

8
p  . 

E5. Draw 10 cards with replacement from the pack of cards. Let   be the 

number of aces among the picked cards. Then   is binomially distributed random variable 

with parameters 10n  , 
32

4
p  . 

E6. There are N balls in an urn, M of them are red, N-M are white. Pick n with 

replacement among them. Let   be the number of red balls among the chosen ones.   is the 
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number of events when we succeed in choosing red balls during n experiments.   is 

binomially distributed random variable with parameters n  and 
N

M
p  . N2(  , M1 , 

MN1  , n2 ) 

 

Numerical characteristics of binomially distributed random variables 

 

Expectation 

np)(E  , which is a straightforward consequence of 

 


)(E)(E
n

1i

i
A1 



n

1i

E ( )i
A1 npp

n

1i




. 

Dispersion 

)p1(np)(D  .  

As an explanation take into consideration that, as i
A1  )n,...,2,1i(   are independent,  

pn)1(nD)(D)(D i
2

n

1i

22  


i1 . This implies )p1(np)(D  . 

Mode 

If p)1n(   is integer, then there are two modes, namely p)1n(   and 1p)1n(  . 

If p)1n(   is not integer, then there is a unique mode, namely  p)1n(  . 

As an explanation, investigate the ratio of probability of consecutive possible values. 

 

   
p1

p

k

1kn

p1

p

!1kn!1k

!n

!kn!k

!n

)p1(p
1k

n

)p1(p
k

n

)1k(P

)k(P

)1k(n1k

knk












































, 

n,...,2,1k  . 

)1k(P

)k(P
1




  implies that )k(P)1k(P  , that is the probabilities are growing. 

1
)1k(P

)k(P





 implies that )1k(P)k(P  , that is the probabilities are decreasing. 

1
)1k(P

)k(P





, then )1k(P)k(P  .  

p1

p

k

1kn
1





  holds, if only if p)1n(k  . 1

p1

p

k

1kn






 holds, if and only if 

kp)1n(  , and 1
p1

p

k

1kn






 holds if and only if p)1n(k  . This is satisfied 

only in the case, if p)1n(   is integer. Therefore, if p)1n(   is not integer, then, up to 

 p)1n(k  , the probabilities are growing, after that the probabilities are decreasing. 

Consequently, the most probable value is  p)1n(  . If p)1n(   is integer, then 

)1k(P)k(P  , consequently there are two modes, namely   ,p1n   1p)1n(  . 
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Figure f.1. Probabilities of possible values of a binomially distributed random variable with 

parameters 10n   and 2.0p   

 

Without proof we can state the following theorem: 

 

Theorem 

If 1  is binomially distributed random variable with parameters 1n  and p , 2  is binomially 

distributed random variable with parameters 2n  and p , furthermore they are independent, 

then 21   is also binomially distributed with parameters 21 nn   and p. 

 

As an illustration, if 1  is the number of “six” if we throw a fair die repeatedly 1n  times, 2  

is the number of “six” if we throw a fair die 2n  times, then 21   is the number of “six” if 

we throw a fair die 21 nn   times, which is also binomially distributed random variable. 

 

Theorem 

If n  is sequence of binomially distributed random variables with parameters n and nq , 

furthermore  nqn , k is a fixed value, then      









 e

!k
q1q

k

n
)k(P

k
kn

n

k

nn , 

if n . 

Proof 

Substitute 
n

q n


 ,  

    






 




















kn

k

k
kn

n

k

nn
n

1
n)!kn(!k

!n
q1q

k

n
)k(P  

nkk

k n
1

!kn
1

n

)1kn)....(2n)(1n(n







 










 





. 

Taking separately the multipliers,  

1
n

1kn
...

n

2n

n

1n

n

)1kn)....(2n)(1n(n
k













, if n , as each multiplier 

tends to 1, and k is fixed.  

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k

p(
k)
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Similarly, 1
n

1

k








 




, if  n . 

As x

n

e
n

x
1 








  if n , consequently, 







 
 e

n
1

n

, if n . 

Summarizing,      









 e

!k
q1q

k

n
)k(P

k
kn

n

k

nn  supposing n . 

Example 

 

E7. There are 10 balls and 5 boxes. We put the balls into the boxes, one after the 

other. We suppose that all balls fall into any box with equal chance, independently of the 

other balls. Compute the probability that there is no ball in the first box. Compute the 

probability that there is one ball in the first box. Compute the probability that there are two 

balls in the first box. Compute the probability that there are at most two balls in the first 

box. Compute the probability that there are at least two balls in the first box. Compute the 

expectation of the balls being the first box. How many balls are in the first box most likely? 

Let   be the number of the balls in the first box.   is binomially distributed random 

variable with parameters 10n   and 
5

1
p  . We can give the explanation of this statement as 

follows: we repeat 10 times that experiment that we put a ball into a box. We regard if the 

ball falls into the first box or no. If   is the number of balls in the first box, then   is the 

number of occurrences of the event A =”actual ball has fallen into the first box”. It is easy 

to see that 
5

1
)A(P  . Therefore, the possible values of   are 0,1,2,…,10, and the 

probabilities are 

k10k

5

1
1

5

1

k

10
)k(P




























 , 10,...,2,1,0k  . 

If we calculate the probabilities, we get  

1074.0
5

1
1

5

1

0

10
)0(P

100


























 , 2684.0

5

1
1

5

1

1

10
)1(P

91


























 , 

 

3020.0
5

1
1

5

1

2

10
)2(P

82


























 , 2013.0

5

1
1

5

1

3

10
)3(P

73


























 ,…,  

7

010

10
5

1
1

5

1

10

10
)10(P 

























 . In details,  

.
1010100007.00055.00264.008808.0 2013.03020.02884.01074.0

109876543210
~

754- 











 

Returning to our questions, the probability that there is no ball in the first box is  

1074.0
5

1
1

5

1

0

10
)0(P

100


























 .  

The probability that there is one ball in the first box equals 

2684.0
5

1
1

5

1

1

10
)1(P

91


























 .  
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The probability that there are two balls in the first box is 

3020.0
5

1
1

5

1

2

10
)2(P

82


























 .  

The probability that there are at most two balls in the first box is 

6778.03020.02684.01074.0)2(P)1(P)0(P)2(P  .  

The probability that there are at least two balls in the first box can be computed as 

,6242.010...0088.02013.03020.0)10(P...)3(P)2(P)2(P 7  

or in a simpler way,  

  6242.03758.01)2684.01074.0(1)1(P)0(P1)2(P  . 

The expectation of the balls being in the first box is 2
5

1
10)(E  , which coincides with 

the mode,   2
5

1
11p)1n( 








 . 

 

E8. There are 10 balls and 5 boxes, 100 balls and 50 boxes, 1000 balls and 500 

boxes, n10  balls and 2/10n  boxes, ,...3,2,1n  . Balls are put into the boxes and all of the 

balls fall into any box with equal probability. Let us denote n10n   the number of balls 

being in the first box. Let k  be fixed and investigate the probabilities )k(P n  . Compute 

the limit of these probabilities. 

Referring to the previous example, n  is binomially distributed random variable with 

parameters n10  and 
n10

2
)n(q  . The product of the two parameters equals always 

2
10

2
10

n

n  , consequently, 2
k

n e
!k

2
)k(P  , if n . 

In details, 

 

 
1  (10, 

5

1
) 2  (100, 

50

1
) 3  (1000, 

500

1
) 3  (10000, 

5000

1
) 

. . 
e

!k

2k

 

k=0 0.1074 0.1326 0.1351 0.1353 . . 0.1353 

k=1 0.2684 0.2706 0.2707 0.2707 . . 0.2707 

k=2 0.3020 0.2734 0.2709 0.2707 . . 0.2707 

k=3 0.2013 0.1823 0.1806 0.1805 . . 0.1804 

 

Table f.1. Probabilities of falling k balls in a box in case of different parameters of total 

number of balls and boxes 

 

We can see that the probabilities computed by the binomial formula are close to their limits, 

if the number of experiments is large (for example 10000). Consequently, the probabilities 

of binomially distributed random variables can be approximated by the formula 
e

!k

k

, 

called Poisson probabilities. 
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f.4. Hypergometrically distributed random variable 

 

After sampling with replacement, we deal with sampling without replacement, as well. The 

random variable which handles the number of specified elements in the sample if the 

sampling has been performed without replacement is hypergeometrically distributed random 

variable. 

 

Definition The random variable   is called hypergeometrically distributed random 

variable with parameters N2  , 1NS1   and n1 , ,Sn   SNn   integers, if its 

possible values are n,...,2,1,0  and 


































n

N

kn

SN

k

S

)k(P , n,...,2,1,0k  . 

Example 

E1. We have N products, S of them have a special property, SN   have not. 

We choose n ones among them without replacement. Let   be the number of products with 

the special property in the sample. Then, the possible values of   are n,...,3,2,1,0 , and the 

probabilities (referring to the subsection of classical probability) are 


































n

N

kn

SN

k

S

)k(P . 

Remarks 

 The previous example shows that the sum of probabilities 
































n

N

kn

SN

k

S

 equals 1. The 

events „there are k products with the special property in the sample” k=0,1,2,…n form a 

partition of the sample space, consequently the sum of their probabilities equals 1.  

 

 Similarly to the binomially distributed random variable, actually,   can also be 

written as a sum of indicator random variables, but these random variables are not 

independent.  

 

Numerical characteristics of hypergeometrically distributed random variables: 

 

Expectation 

N

S
n)(E  . This formula can be computed by the definition of expectation as follows:  


































 


n

N

kn

SN

k

S

k)(E
n

0k
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)!nN(!n

!N

)!kn(

)1)kn(SN(..)1SN()SN(

!k

)1kS)...(2S)(1S(S

k
n

0k

















n

1k

)!nN(!n

!N

)!kn(

)1)kn(SN(...)1SN()SN(

)!1k(

)1kS)...(2S)(1S(S

 






















































































1n

01k

n

1k

1n

1N

)1k(1n

)1S(1N

1k

1S

N

S
n

1n

1N

)1k(1n

)1S(1N

1k

1S

N

S
n






































 

1n

0j

1n

1N

j1n

)1S(1N

j

1S

N

S
n  

Taking into account that 






































 

1n

0j

1

1n

1N

j1n

)1S(1N

j

1S

, we get the presented closed form 

of the expectation. 

 

Dispersion 















1N

1n
1)

N

S
1(

N

S
n)(D . We do not prove this formula, because it requires too 

much computation. 

 

Mode 














2N

)1n)(1S(
, if 

2N

)1n)(1S(




 is not integer and there are two modes, namely 

2N

)1n)(1S(




 and 1

2N

)1n)(1S(





, if 

2N

)1n)(1S(




 is integer. 

 

Similarly to the way applied to the binomially distributed random variable we investigate 

the ratio 
)1k(P

)k(P




. Writing it explicitly and making simplification we get 
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1kn

knSN

k

1kS

n

N

1kn

SN

1k

S

n

N

kn

SN

k

S

)1k(P

)k(P













































































. In order to know for which 

indexes the probabilities are growing and the probabilities are decreasing we have solve the 

inequalities 

1kn

knSN

k

1kS
1







 , 1

1kn

knSN

k

1kS








, 1

1kn

knSN

k

1kS








. 

After some computation we get that 

1kn

knSN

k

1kS
1







  holds if and only if 

2N

)1n)(1S(
k




 , 

1
1kn

knSN

k

1kS








 holds if and only if k

2N

)1n)(1S(





 

1kn

knSN

k

1kS
1







  holds if and only if 

2N

)1n)(1S(
k




 . This equality can be 

satisfied if 
2N

)1n)(1S(




 is integer. Consequently, the mode is unique and it equals 














2N

)1n)(1S(
, if 

2N

)1n)(1S(




 is not integer and there are two modes, namely 

2N

)1n)(1S(




 and 1

2N

)1n)(1S(





 if 

2N

)1n)(1S(




 is integer. 

 

Theorem 

Let N , S , p
N

S
 , and let k ,n be fixed integer values. 

Then  knk )p1(p
k

n

n

N

kn

SN

k

S










































. 

Proof 

)1nN)...(1N(N

!n

)!kn(

)1knSN)...(1SN)(SN(

!k

)1kS)...(1S(S

n

N

kn

SN

k

S










































.  
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The number of multipliers in the numerator is nknk   and so is in the denominator. 

Taking into account that 









 k

n

)!kn(!k

!n
, and p

N

S
 , p

N

1
1

N

1

N

S

1N

1S










 if N ,  

p

N

1

N

k
1

N

1

N

k

N

S

1kN

1kS










 if N , furthermore p1

N

k
1

N

S
1

kN

SN










,  

p1

N

1

N

n
1

N

1

N

k

N

n

N

S
1

1nN

)1knSN(










 if N .  

The number of multipliers tending to p equals k, the number of multipliers tending to 1-p 

equals n-k, consequently knk )p1(p
k

n

n

N

kn

SN

k

S









































. 

 

Remark 

 The meaning of the previous theorem is the following: if the number of all elements 

is large and we choose a sample of small elements, then the probabilities of having k 

elements with a special property in the sample is approximately the same if we take the 

sample with and without replacement. 

 

Example 

 

E1. There are 100 products, 60 of them are of first quality, 40 of them are 

substandard. Choose 10 of them with/ without replacement. Let   be the number of 

substandard products in the sample if we take the sample with replacement. Let   be the 

number of substandard products in the sample if we take the sample without replacement. 

Give the distribution, expectation, dispersion, mode of both random variables. 

  is binomially distributed random variable with parameters 10n  , 
100

40
p  . This means, 

that the possible values of   are 0,1,2,3,…,10, and k10k 6.04.0
k

10
)k(P 









 .   is 

hypergeometrically distributed random variable with parameters 100N  , 40S , 10n  . 

Therefore the possible values of   are 0,1,2,3,..,10 and 
































10

100

k10

60

k

40

)k(P . To 

compare the probabilities we write them in the following Table f.2. 

 

k 0 1 2 3 4 5 6 7 8 9 10 

)k(P  0.00 0.040 0.12 0.21 0.25 0.20 0.11 0.04 0.01 0.00 0.0001 
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 6 1 5 1 1 1 2 0 1 

)k(P 

 

0.00

4 

0.003

4 

0.11

5 

0.22

0 

0.26

4 

0.20

8 

0.10

8 

0.03

7 

0.00

8 

0.00

1 

0.0000

4 

 

Table f.2.Probabilities of the numbers of substandard products in the sample in case of 

sampling with and without replacement 

 

It can be seen that there are very small differences between the appropriate probabilities, 

therefore it is almost the same if we take the sample with or without replacement.  

 

44.010)(E  , .4
100

40
10)(E    

55.16.04.010)(D  , 48.1
99

9
1

100

60

100

40
10)(D 








 .  

Mode of   and   are the same values, namely 4, as it can be seen in the Table f.1., or 

applying the formula     44.011p)1n(  , or   442.4
102

1141

2N

)1n)(1S(








 













, 

respectively. 

 

E2. There are N balls in a box, S are red, N-S are white. Choose 10 among them 

without replacement. Compute the probability that there are 4 red balls in the sample if the 

total number of balls are ,10N1  ,100N2  ,1000N3  10000N4  , 100000N4  , and 

4S1  , 40S2  , ,400S3   4000S4  , 40000S5  . Notice that 4.0p
N

S

i

i   is constant. 

N 10 100 1000 10000 100000 limit 

)4(P N   1 0.26431 0.25209 0.25095 0.25084 0.25082 

 

Table f.3. Probabilities of 4 red balls in the sample in case of different numbers of total balls 

 

One can follow the convergence in Table f.3. very easily on the basis of the computed 

probabilities. We emphasize that both values n and k are fixed. 

 

f.5. Poisson distributed random variable 

After investigating sampling without replacement, we return to the limit of probabilities of 

binomially distributed random variables. 

 

Definition The random variable   is called Poisson distributed random variable with 

parameter 0 , if its possible values are ,....2,1,0 , and 
 e

!k
)k(P

k

, k=0,1,2,… 

Remarks 

 
 e

!k
0

k

 holds obviously, furthermore 









 





0k

k

0k

k

1ee
!k

ee
!k

. 

 The last theorem of subsection f.3. states that the limit of the distribution of 

binomially distributed random variables is Poisson distribution. 
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Numerical characteristics of Poisson distributed random variables 

 

Expectation 

)(E . This formula can be proved as follows: 
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Dispersion 

)(D . Recall that  222 )(E)(E)(D  .  
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)!2k(
e

)!1k()!1k(
)1k(e  

  22 eeee . Therefore    22222 )(E)(E)(D . 

Finally,  )(D)(D 2 . 

 

Mode 

There is a unique mode, namely   , if   is not integer and there are two modes, namely   

and 1  if   is integer. 

Similarly to the way applied in the previous subsections, we investigate the ratio 

)1k(P

)k(P




. Writing it explicitly and making simplification we get 

k
e

)!1k(

e
!k
1k

k















. The 

inequality 
k

1


 , holds, if and only if k , the inequality 1
k



, holds, if and only if 

k , and 
k

1


 , holds, if and only if k . This can be achieved only in the case, if   is 

integer. Summarizing, for the values of k less than   the probabilities are growing, for the 

values of k greater than   the probabilities are decreasing, consequently the mode is   . 

The same probability appears at 1 , if   is integer. 

 

Examples 

E1. Number of the faults being in some material is supposed to be Poisson 

distributed random variable. In a unit volume material there are 2.3 faults, in average. 

Compute the probability that there are at most 3 faults in a unit volume material. How much 

volume contain at least 1 fault with probability 0.99? 

Let 1  be the number of faults in a unit volume of material. Now the possible values of 1  

are ,...k,...,2,1,0  and 
 e

!k
)k(P

k

1 . The parameter   equals the expectation, hence 

3.2
k

l e
!k

3.2
)k(P  . Now,  )3(P)2(P)1(P)0(P)3(P 11111   
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799.0e
!3

3.2
e

!2

3.2
e

!1

3.2
e

!0

3.2 3.2
3

3.2
2

3.2
1

3.2
0

  .  

Compute the probability that there are at least 3 faults in a unit volume material. 

.404.0)e
!2

3.2
e

!1

3.2
e

!0

3.2
(1))2(P)1(P)0(P(1)3(P 3.2

2
3.2

1
3.2

0

1111  

How many faults are most likely in a unit volume material?  

3.2  is not integer, consequently there is a unique mode, namely   23.2  . 

The probabilities are included into the following Tables f.5. and can be seen in Fig.f.2.  

 
k  0 1 2 3 4 5 6 7 8 9 

)k(P 1   0.100 0.230 0.203 0.117 0.0538 0.0206 0.0068 0.0019 0.0005 0.0001 

Table f.5. Probabilities belonging to the possible values in case of Poisson distribution with 

parameter 3.2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure f.2. Probabilities belonging to the possible values in case of  Poisson distribution 

with parameter 3.2  

 

How many faults are most likely in 10 unit volume material? 

Let 10  is the number of faults a 10 unit volume. 10  is also Poisson distributed random 

variable with parameter 232.310*  . As *  is integer, two modes exist, namely 

23*  and 22-1*  . It is easy to see that 

     
)23(Pe

!23

23
e

!22

23
e

!22

*
)22(P 10

23
23

23
22

*
22

10 


  . 

How much volume contains at least on fault with probability 0.99? 

Let x denote the unknown volume and x  the number of faults being x volume material. 

We want to know x if we know that 99.0)1(P x  . Taking into account that 

)0(P1)1(P xx  , 99.0)1(P x   implies 01.0)0(P x  . x  is Poisson 

distributed random variable with parameter 3.2xx  , consequently 

 
01.0e

!0

3.2x x3.2
0


  . As   13.2x

0
 , 1!0  , we get 01.0e x3.2  . Taking the logarithm 

of both sides, we ends in 1.0lnx3.2  , therefore 2003.2
3.2

01.0ln
x 


 . 
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E2. The number of viruses arriving at a computer is Poisson distributed random 

variable. The probability that there is no file with viruses during 10 minutes equals 0.7. How 

many files arrive at the computer most likely during 12 hours? 

Let 10  be the number of viruses arriving at our computer during a 10 minutes period. We 

do not know the parameter of 10 , but we know that 7.0)0(P 10  . As 10  is Poisson 

distributed random variable with parameter  , therefore 7.0e
!0

)0(P
0

10 


  . It 

implies 357.07.0ln  . 

If 720  is the number of viruses arriving at the computer during 12 hours, 720  is also 

Poisson distributed random variable with parameter 68.25357.0612*  , consequently 

there is unique mode,   2568.25  .  

 

Theorem If   is Poisson distributed random variable with parameter 1 ,   is Poisson 

distributed random variable with parameter 2  furthermore they are independent, then 

  is also Poisson distributed random variable with parameter 21  . 

Proof 

As   is Poisson distributed random variable with parameter 1 , the possible values of   

are ,...3,2,1,0  and  
 

1e
!i

iP

i

l 
 . As   is Poisson distributed random variable with 

parameter 2 , the possible values of   are ,...3,2,1,0  and  
 

2e
!j

jP

j

2 
 . It is 

obvious that the possible values of   are ,...3,2,1,0 . We prove that 

   21e
!k

)k(P

k

21 
 . 

First, investigate )0(P  . 
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Similarly, 
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requirement. 

Generally, 
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  . 

 

E3. The number of served people in an office is Poisson distributed random variable. 

There are two attendants in the office and the number of people served by the first one and 
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the second one are independent random variables. The average number served by them 

during an hour is 3 and 2.5, respectively. Compute the probability that together they serve 

more than 4 people during an hour.  

Let 1  and 2 be the numbers of people served by the attendants, respectively. 1  is Poisson 

distributed random variable with parameter 31  , 2  is Poisson distributed random 

variable with parameter 5.22  , and according to the assumption, they are independent. 

The total number of people served by them is 21  .Applying the previous theorem, 

21   is also Poisson distributed random variable with parameter 5.521   

Consequently, 

  )4(P)3(P)2(P)1(P)0(P1)4(P 212121212121

 

0.6420.3581e
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e

!0
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1 5.5

4
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3
5.5

2
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1
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0














  . 

Given that they serve 5 people together, compute the probability that the first attendant 

serves 3 and the second one serves two clients. 

The second question can be written as follows: )5|23(P 2121  =? 

Recall that the conditional probability is given by 
)B(P

)BA(P
)B|A(P


 . Consequently, 

  
 

)5(P

)5()23(P
)5(|23P

21

2121
2121




 . 

The event  521   is the consequence of  23 21  , therefore their 

intersection is the event  23 21  . Now, taking into consideration the 

independence of random variables 1  and 2  we get 
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f.6. Geometrically distributed random variable 

At the end of this section we deal with geometrically distributed random variables. 

In this case we perform independent experiments until a fixed event occurs. We finish the 

experiments when the event occurs first. Actually we do not know the number of 

experiments, in advance. 

 

Definition The random variable   is called geometrically distributed random variable 

with parameter 1p0  , if its possible values are ,....k,...,3,2,1  and 1k)p1(p)k(P  , 

k=1,2,3,… 

 

Remarks 
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 The above probabilities are really nonnegative, and their sum equals 1. It can be 

seen easily if we apply the formula concerning the sum of infinite geometrical series, 

namely 
x1

1
x

1i

i








, if 1x   holds.  

1
)p1(1

1
p)p1(p)p1(p)p1(p)k(P)k(P

0k

k

1k

1k

1k 1k

1k 


  

















 . 

 The quantities 1k)p1(p   form a geometrical series, this is the reason of the 

denomination. 

 Do not confuse this discrete random variable with the geometrical probability 

presented in the first chapter. 

 

Theorem We repeat an experiment until a fixed event A occurs, 1)A(P0  . Suppose that 

the experiments are independent. Let   be the number of necessary experiments. Then,   is 

geometrically distributed random variable with parameter )A(Pp  .  

Proof Let iA  denote that the event A  occurs at the ith experiment. Now, the values of   

can be 1,2,3,… , whatever positive integer. 1  means that the event A occurs at the first 

experiment, therefore p)A(P)1(P 1  . 2  means that the event A does not occur at 

the first experiment, but it does at the second experiment, that is 

 pp1)A(P)A(P)AA(P)2(P 2121  , which meets the requirements. 

Generally, k  means, that the event A does not occur at the 1.,2., …,(k-1)th experiments, 

but it occurs at the kth one. Hence  

p)p1()A(P)A(P)...A(P)A(P)A(P)AA...AA(P 1k
k1k321k1k21  

 , which 

is the statement to be proved. 

 

Numerical characteristics of geometrically distributed random variables 

 

Expectation 

p

1
)(E  . This formula can be proved as follows: 

1k

1k1k

1k

1i

ii )p1(kp)p1(pkpx)(E 













  .   1k
p1k


  is similar to derivative. If 

we investigate the function 1k

1k

xk 




  for values 1x  , 
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. Substituting p1x  , we get 

  22
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1k p

1

)p1(1

1
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 . This implies the formula 

p
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Dispersion 
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p

p1
)(D


 . We do not prove this formula. It can be proved similarly to the previous 

statement, but it requires more computation. 

 

Mode 

There is a unique mode, namely always 1. This is the straightforward consequence of the 

fact that the ratio of consecutive probabilities is 
 

 
1p1

p1p

p1p

)1k(P

)k(P
2k

1k














. This 

implies that the probabilities are decreasing, therefore the first one is the greatest. 

 

Example 

 

E1. We throw a die until we succeed in “six”. Compute the probability that at 

most 6 throws are needed.  

Let   be the number of necessary throws.   is geometrically distributed random variable 

with parameter 
6

1
. This means that the possible values of   are 1,2,3,… and 
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Generally, 

n

n
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1
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1
)n(P 





















 . 

Compute the probability that more than 10 throws is needed.  

According to the previous formula, 161.0
6

5
)10(P

10









 . 

At most how many throws are needed with probability 0.9?  

The question is to find the value of n  for which 99.0)n(P  . As 

n

6

5
1)n(P 








 , 

we have to solve the equality 99.0
6

5
1

n









 . This implies 01.0

6

5
n









, that is 

1.0ln)
6

5
ln(n  . Computing the value of n we get 63.12

6

5
ln

1.0ln
n  . But we expect integer 

value for n, hence we have to decide whether n=12 or n=13 is appropriate. 
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888.0
6

5
1)12(P

12









 , which is less than the required probability 0.99. 

907.0
6

5
1)13(P

13









 , which is larger than the requirement. Exactly 0.9 can not be 

achieved, the series skip over this level, as it can be seen in Fig. f.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure f.3. Probabilities )k(P   and the level y=0.9 

 

 

The probabilities )k(P)k(P  are presented in Fig.f.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure f.4. Probabilities )k(P    

 

Which is the most probable value of the throws? The most probable value of   equals 1, the 

probability belonging to them is 
6

1
. All of the probabilities belonging to other value are 

smaller than 
6

1
. We draw the attention that 

6

5
)1(P  , which is much more than the 

probability belonging to value 1. 
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Theorem If   is geometrically distributed random variable, then for any nonnegative integer 

values of n  and m  the following equality holds: )m(P)n|nm(P  . 

Proof Recall that k)p1()k(P  . Applying the definition of conditional probability, 

    
)n(P

nnmP
)n|nm(P




 .  nm   implies  n , consequently 

the intersection is  nm  . Therefore  

 

 
 m

n

nm

p1
p1

p1

)n(P

)nm(P
)n|nm(P 













, which coincides with )n(P  . 

 

Remarks 

 

 The property )m(P)n|nm(P   is the so called forever young 

property. If we do not succeed until n, the probability that we will not succeed until further 

m experiments is the same that the probability that we do not succeed until m. Everything 

begins as if we were at the starting point. 

 One can also prove that the forever young property implies the geometrical 

distribution in the set of positive integer valued random variables. Consequently, this 

property is a pivotal property. 

 )m(P)n|nm(P   implies the formula )m(P)n|nm(P   

as well. As an explanation recall that )B|A(P1)B|A(P  . 

)n|nm(P1)n|nm(P   )m(P)m(P1  . 

 

Example 

E2. At an exam there are 10 tests. The candidate gives it back if the test is not from the 

first three tests. Compute the probability that the candidates will succeed until 4 

experiments.  

Let   be the number of bids.   is geometrically distributed random variable with parameter 

10

3
p  . 

 )4(P)3(P)2(P)1(P)4(P

760.07.017.03.07.03.07.03.03.0 432   

At most how many bids does he need with probability 0.95? 

n=? 95.0)n(P  . 99.07.01)n(P n  , which implies n=8.4. Consequently, the 

candidates needs at most 9 bids until the hit.  

If he does not succeed up to the 5
th
 experiment, compute the probability that he succeed 

until the 8
th
 one.  

The question can be easily answered by applying the forever young property as follows: 

657.07.03.07.03.03.0)3(P)2(P)1(P)3(P)5|8(P 2  . 
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g. Frequently used continuous distributions 

 

The aim of this chapter 

 

In chapter d. we have dealt with continuous random variables. Now we 

investigate some frequently used types. We compute their numerical 

characteristics, study their main properties and we present their relationships 

with some discrete distributions, as well. We derive new random variables 

from normally distributed random variables. These are often used in 

statistics. 

 

Preliminary knowledge 

 

Random variables and their numerical characteristics. Density function. 

Partial integrate. 

 

Content 

 

g.1. Uniformly distributed random variables. 

 
g.2. Exponentially distributed random variables. 

 

g.3. Normally distributed random variables. 

 

g.4. Further random variables derived from normally distributed ones. 
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g.1. Uniformly distributed random variables 

In this chapter we deal with some frequently used continuous random variable. We defined 

them by the help of probability density function. 

First we deal with a very simple continuous random variable. Let Ω , A , and P be given and 

  is a random variable. 

 

Definition The random variable   is called uniformly distributed random variable with 

parameter a, b (a<b), if its probability density function is 


 


otherwise0

bxaifc
)x(f . 

 

Remarks 

 As the area under the probability density function equals 1, 
ab

1
c


 . This value is 

positive, consequently all values of the probability density function are nonnegative.  

 The constant values of the probability density function express that all the values of the 

interval  b,a  are equally probable. 

 Uniformly distributed random variable with parameter a, b (a<b) are often called 

uniformly distributed random variable in ]b,a[  

 The graph of the probability density function of the uniformly distributed random 

variable with parameters 1a  , 4b   can be seen in Fig.g.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.1. Probability density function of uniformly distributed random variable with 

parameters a=-1, b=4 

 

Theorem 

The cumulative distribution function of uniformly distributed random variable in ]b,a[  is 
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Proof 

Recall the relationship 




x

dt)t(f)x(F  between the probability density function and 

cumulative distribution function presented in section d. 

If ax  , then  0dt0dt)t(f)x(F

xx

 


. 

If bxa  , then  
ab

ax
t

ab

1
0dt

ab

1
dt0dt)t(f)x(F

x

a

x

a

ax










 



. 

Finally, if xb  , then 1010dt0dt
ab

1
dt0dt)t(f)x(F

x

b

b

a

ax




 


. 

The graph of the cumulative distribution function of a uniformly distributed random 

variable with parameters a=-1 and b=4 is presented in Fig.g.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.2. Cumulative distribution function of uniformly distributed random variable with 

parameters a=-1, b=4 

 

 

Remarks 

 Let   be uniformly distributed random variable in the interval ]b,a[  and bdca  . 

Then 
ab

cd

ab

ac

ab

ad
)c(F)d(F)dc(P














 . The probability of being in the interval 

)d,c( is proportional to the length of the interval )d,c( . 

 Choose a number from the interval  b,a  by geometrical probability. Let   be the 

chosen number. Then   is uniformly distributed random variable in the interval  b,a . 

As justification take into consideration that 0)(P)x(P  , if ax  , 

ab

ax
)xa(P)x(P




 , if bxa  and 1)Ω(P)x(P  , if xb  . )x(P)x(F  , 

and bxaif
ab

1
)x('F)x(f 


 , and 0  if ax   or xb  . At the endpoints ax   and 

bx   the cumulative distribution function is not differentiable, we can define the probability 

density function anyhow. Defining )b(f
ab

1
)a(f 


 , f equals to one in the definition. 
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 Random number generator of computers usually generates approximately uniformly 

distributed random variables in ]1,0[ . 

 

Numerical characteristics of uniformly distributed random variables: 

 

Expectation 

2

ba
)(E


 , which is a straightforward consequence of  

2

ab

)ab(2
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2
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1
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dx
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. Note that 

this value is the middle of the interval  b,a . 

 

Dispersion 

12

ab
)(D


 . As a proof, recall that    222 )(EE)(D  . 
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Consequently, 
 

2

ab

12

ab

12

ab
)(D

2








 . 

 

Mode 

All of the values of interval  b,a  have the same chance, consequently, all the points of  b,a  

are mode. 

 

Median 

2

ba
me


 . We have to find the value y for which 5.0)y(F  . As neither 0 nor 1 do not equal 

0.5, the following equality has to be held: 5.0
ab

ay





. This implies )ab(5.0ay  . 

Arranging it, finally we get 
2

ab
y


 . 

 

Example 

 

E1. Let   be uniformly distributed random variable in ]10,2[ . Compute the 

probability that the value of the random variable is between 5 and 8.  

 

The cumulative distribution function of   is given by 






















x10if1

10x2if
8

2x

2xif0

)x(F , 

which is a useful tool to compute probabilities. 
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375.0
8

3

8

25

8

28
)5(F)8(F)85(P 





 . 

Compute the probability that the value of the random variable is less than 5. 

375.0
8

3

8

25
)5(F)5(P 


 . 

Compute the probability that the value of the random variable is greater than 8. 

.25.0
8

2

8

28
1)8(F1)8(P 


  

 

Compute the probability that the value of the random variable is greater than the half of its 

expectation and less than the double of the expectation.  

6
2

102
)(E 


 , 

8

7

8

23
1)3(F)12(F)123(P 


 . 

At most how much is the value of the random variable with probability 0.9?  

x=? for which 9.0)x(P  . )x(F)x(P  , we have to solve 9.0
8

2x



. This implies 

2.9x  . 

At least how much is the value of the random variable with probability 0.9?  

x=? for which 9.0)x(P  . )x(F1)x(P  , we have to solve 9.0
8

2x
1 


 . This 

implies 8.2x  . 

Given that the value of the random variable is more than 5, compute the probability that it is 

less than 8. 

   
6.0

5

3

8

25
1

8

25

8

28

)5(F1

)5(F)8(F

)5(P

)85(P

)5(P

)58(P
)5|8(P 























 . 

Notice that this conditional probability is proportional to the length of the interval  8,5  if the 

number originates from  10,5 . 

 

Theorem If   is uniformly distributed random variable in ]1,0[ , c0   and Rd , then 

dc   is uniformly distributed random variable in  dc,d  . 

Proof Investigate the cumulative distribution function of  , then take its derivative. 








 



 

c

dx
F)

c

dx
(P)xdc(P)x(P)x(F .  

Recalling that 
















x1if1

1x0ifx

0xif0

)x(F , 





























c

dx
1if1

1
c

dx
0if

c

dx

0
c

dx
if0

)x(F . 

Summarizing, d

xdcif1

cxdif
c

dx

dxif0

)x(F 




















  .  
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Taking the derivative of )x(F , 











otherwise0

dcxdif
c

1

)x(f . 

 

Remarks 

 

 If c is negative, then dc   is uniformly distributed random variable in  d,dc  . 

 Using the random number generator, we can get uniformly distributed random variable 

in ]b,a[  by multiplying the generated random number by ab   and adding a. 

 If   is uniformly distributed random variable in ]1,0[ , then so is  1 . To justify it, 

first take into consideration that all of values of   are in  1,0 , hence so are the values of 

 1 . Moreover,  

x)x1(1)x1(F1)x1(P)x1(P)x(P)x(F   , if 1x0  . 

Therefore 1)x('F)x(f   , if 1x0   and zero out of  1,0 . 

 

Theorem 

Let   be uniformly distributed random variable in [0,1]. Let F a continuous cumulative 

distribution function in R . Let  1)x(F,0)x(F:RxI   and suppose that F  is strictly 

monotone in I. Then )(F 1    is a random variable those cumulative distribution function is 

F. 

Proof 

I)1,0(:F 1  , 0)0(P  , 0)1(P  .   1F  is well defined. Take any value Ix , and 

investigate the cumulative distribution function of   at x. Taking into account that 

















x1if1

1x0ifx

0xif0

)x(F .  

 x)(FP)x(P)x(F 1  
 . 

As F  is monotone increasing,      )x(F)x(F))(F(Fx)(F 11   .Consequently,  

)x(F)x(F))x(F(P)x)(F(P 1  
 . 

If Iinfx  , then 0)x(F   and   0x)(FP)x(P)x(F 1  
 . 

If xIsup  , then 1)x(F   and   1x)(FP)x(P)x(F 1  
 . 

Consequently, the cumulative distribution function of  1F  is )x(F . 

 

Remark 

 The previous statement gives us possibility to generate random variables with 

cumulative distribution function F. 

 

Example 

E2.  Generate random variables with cumulative distribution function 














1xif

x

1
1

1xif0

)x(F . 
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Apply the previous statement. F  is strictly monotone increasing function in the interval  ,1 , 

y1

1
)y(F 1


 , 1y0  . Consequently, if   is uniformly distributed in ]1,0[ , then )(F 1   is a 

random variable with cumulative distribution function F. Consequently, substituting the 

random number generated by the computer into 1F  we get a random variable with cumulative 

distribution function F. The relative frequencies of the random numbers and the probability 

density function 
2x

1
)x('F)x(f  , x1 , can be seen in Fig.g.3. 
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Figure g.3. Relative frequencies of random numbers )(F 1   situated in different 

subintervals and the probability density function 

 

g.2. Exponentially distributed random variables 

In this subsection we deal a frequently used continuous distribution, namely exponential one. It 

is very useful, because many examples can be computed for it due to the exponential 

probability density and exponential cumulative distribution function.  

 

Definition: The random variable   is exponential distributed random variable with 

parameter 0 , if its probability density function is 









 x0ife

x0if0
)x(f

x
. 

 

Remarks 

 )x(f0   is obvious, furthermore,  

  110)e(elim
e

dxedx)x(f 0x

x
0

x

0

x 









 












 . These properties imply that 

)x(f  is a probability density function. The graphs of probability density functions of 

exponentially distributed random variables belonging to different parameters are presented in 

Fig.g.4. 
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Figure g.4. Probability density functions of exponentially distributed random variables with 

parameters 1  (black), 5.0  (blue) and 2 (red) 

 

 Exponentially distributed random variable takes its value with large probability around 

zero, whatever the parameter is. All of its values are nonnegative.  

 

Theorem The cumulative distribution function of an exponentially distributed random variable 

with parameter 0  is 









 x0ife1

0xif0
)x(F

x
. 

Proof 

0dx0dt)t(f)x(F

xx




 , if 0x  . 

xx

x

0

tx

0

t

x

e1)1(e
1

e
dxedt)t(f)x(F 
















  , if x0  . 

The graphs of the cumulative distribution function belonging to the previous probability density 

functions are presented in Fig.g.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.5. Cumulative distribution functions of exponentially distributed random variables 

with parameters 1  (black), 5.0  (blue) and 2 (red) 
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Remark 

 

 Simple way to generate exponentially distributed random variable to substitute the 

uniformly distributed random variable into 



 )y1ln(

)y(F 1 . Relative frequencies of 

exponentially distributed random variables situated in the interval ]5,0[  are presented in 

Fig.g.6. One can notice that the relative frequencies follow the probability density function 

drawn by red line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.6. Relative frequencies of random numbers )1ln(   situated in different 

subintervals and the exponential probability density function with parameter 1  

 

 

Numerical characteristics of exponentially distributed random variables: 

 

Expectation 




1
)(E . It follows from  

 



























 
1e

0dxe)e(xdxexdx)x(fx)(E

0

x

0

x

0

x

0

x .  

Taking the average of random numbers generated previously by the presented way, for 1 , 

the results are in Table g.1. Differences from the exact expectation 1 are also presented: 

 

N= 1000 10000 100000 1000000 10000000 

Average  0.9796 1.0083 1.0015 1.0005 0.9996 

Difference 0.0204 0.0083 0.0015 0.0005 0.0004 

 

Table g.1. The average of  the values of  random variable )1ln(  , if   is uniformly 

distributed random variable in ]1,0[  in case of different numbers of simulations N 

 

 

Dispersion 
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1
)(D . As a proof, recall that    222 )(EE)(D  . Twice partially integrating, 

2

22 2
dx)x(fx)(E


 





,    
222

222 112
)(EE)(D








 . 

 

Mode 

There is no mode. 

 

Median 




5.0ln
me . We have to find the value x for which 5.0)x(F  .In order to do this, we have to 

solve the following equation  5.0e1 x   . This implies 5.0e x  . Taking the logarithm of 

both sides, we get 5.0lnx  , finally 



5.0ln

x . 

 

Example 

E1. Lifetime of a bulb is supposed to be exponentially distributed random variable 

with expectation 1000hours. Compute the probability that the bulb breaks down before 500 

hours. 

Let   denote the lifetime of a bulb. As   is exponentially distributed random variable, its 

cumulative distribution function looks 0x,e1)x(F x   . As 1000
1

)(E 


 , 001.0 . 

393.0e1)500(F)500(P 1000

500




. 

Compute the probability that the bulb goes wrong between 1000 and 2000 hours. 

233.0e1e1)1000(F)2000(F)20001000(P 1000

1000

1000

2000


































. 

At most how many hours is the lifetime of a bulb with probability 0.98?  

x=?, 98.0)x(P  . 98.0e1)x(F)x(P 1000

x




, consequently, 02.0e 1000

x




, and 

.391202.0ln1000x   

At least how many hours is the lifetime of a bulb with probability 0.98?  

x=?, 98.0)x(P  . 98.0e1)x(F1)x(P 1000

x




, consequently, 98.0e 1000

x




, and 

2.2098.0ln1000x  . 

Compute the probability that, out of 10 bulbs, having independent exponentially distributed 

lifetimes with expectation 1000 hours, 7 go wrong before 1000 hours and 3 operate after 1000 

hours. 

Let i  denote the lifetime of the ith bulb. They are independent random variables and 

632.0e1)1000(F)1000(P 1000

1000

i 


, 368.0)1000(P i  . If   is the number of bulbs 

going wrong until 1000 hours,   is binomially distributed random variable with parameters 

10n   and )1000(Pp i  . Therefore 241.0368.0632.0
7

10
)7(P 37 








 . 

 

Actually we present characteristic feature of exponentially distributed random variables. 
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Theorem If   is exponentially distributed random variable, then for any y0,x0   the 

following property holds: )y(P)x|yx(P  . 

Proof  

Recall that aa e)e1(1)a(F1)a(P   . 

Moreover, 

)y(Pe
e

e

)x(P

)yx(P

)x(P

)xyx(P
)x|yx(P y

x

)yx(










 





. 

 

Remark  

 The previous property can be written in the form )y(P)x|yx(P  , as well.  

Take into consideration that  

)y(P)y(P1)x|yx(P1)x|yx(P  . 

 As exponentially distributed random variables are continuous random variable, then we 

do not bother if strict inequality (>) or   holds. We can also write 

)y(P)x|yx(P  , which coincides with the property stated for geometrically 

distributed random variable. 

 The property can be interpreted as forever young property. If   is the lifetime of an 

appliance, then   is the time point when it goes wrong. If it does not go wrong until x , the 

probability that it will not go wrong until further y  unit time is the same that it does not go 

wrong until y  from the beginning. This is the reason of the denomination of the property. 

 The forever young property is valid essentially for the exponential distributed random 

variable in the set of continuous random variables. 

 

Theorem Let   be continuous random variable with nonnegative values, suppose that its 

cumulative distribution function is differentiable and 


)x(Flim
0x

, 0 . Moreover, for any 

y,x0   )y(P)x|yx(P   holds. Then   is exponentially distributed random 

variable with parameter  . 

Proof Denote )x(F1)x(G  . As   is nonnegative, 0)0(F  , 1)0(G  . As the conditional 

probability exists, )x(P0  , consequently 1)x(G  . Let xΔy0  , 

)y(P)x|yx(P   has the form )xΔ(P)x|xΔx(P  . 

)xΔ(G
)x(G

)xΔx(G

)x(P

)xΔx(P
)x|xΔx(P 







 . This implies the form 

)x(G)xΔ(G)xΔx(G  . Subtracting )x(G  and applying 1)0(G   we get 

))0(G)xΔ(G)(x(G)x(G)xΔx(G  . Dividing by xΔ  and taking the limit of both sides if 

0xΔ0   we arrive at )x(G)0('G)x('G  . )0('F  implies )0('G , therefore 

)x(G)x('G  . This is an ordinary differential equation which is easy to solve. Dividing by 

0)x(G  , 
)x(G

)x('G
, consequently cx)x(Gln  . )x(G  is nonnegative, hence 

cx)x(Gln   and cxe)x(G  . )0(G 1e c0   implies 0c   and xe)x(G  . 

Finally, xe)x(F1  , xe1)x(F   and xe)x('F)x(f  . 

 

Remarks 

 

 Assumptions of the previous statement can be slightly depleted. 
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 Forever young property can be assumed of lifetime of appliances when the fault is not 

caused by the age. For example, if   is the age of a person, then )10(P)90|100(P  . 

In other words, if he survives 90 years, the probability that he survives further 10 years is 

obviously less than the probability of surviving 10 years from the birth. Exponentially 

distributed random variables are punctures. Punctures are usually caused by a pin. I we do not 

enter into a pin until x, the wheel do not remember the previous passage. 

 Forever young property of the exponentially and geometrically distributed random 

variables indicates that geometrically distributed random variable is the respective one of the 

exponentially distributed random variable. This is supported by the formulas 
p

1
)(E   and 




1
)(E , respectively. 

 

Example 

 

E2. The ways between the consecutive punctures are independent exponentially distributed 

random variables. The probability that there is no puncture until 20000 km equals 0.6. Compute 

the probability that there is no puncture until 50000 km.  

Let 1  the way until the first puncture. Because of the forever young property, we can suppose 

that the way begins at 0. Actually we do not know the expectation and the value of the 

parameter, but we know data 6.0)20000(P 1  , This is suitable for determining the value of 

the parameter   as follows. 6.0e1)20000(F)20000(P 20000
1   . 4.0e 20000 , 

which implies 51058.4
20000

4.0ln 


 . Returning to the question, 

  101.0e11)50000(P 500001058.4
1

5

  

. 

Compute the expectation of the way between consecutive punctures. 

21827
1

)(E 1 


 .  

Given that the first puncture is not until 50000 km, compute the probability that it is until 

70000 km.  

6.0e1)2000(F)2000(P)50000|70000(P 2000
111   . 

Given that the first puncture is until 50000 km, compute the probability that it is until 10000 

km. 

408.0
)50000(F

)10000(F

)50000(P

)10000(P

)50000(P

)5000010000(P
)50000|10000(P

1

1

1

11
11 









 . 

 

Theorem (Relationship between the exponentially distributed random variables and Poisson 

distributed random variable) 
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Let i , ,...3,2,1i   be independent exponentially distributed random variables with parameter 

 , T0  fixed and 







































.

.

.

Tifk

.

.

Tif2

Tif1

Tif0

1k

1i

i

k

1i

i

32121

21

1

T . 

Then, T  is Poisson distributed random variable with parameter T*  . 

 

The proof of this statement is omitted as it requires the knowledge of the distribution of the 

sum of exponentially distributed random variables. 

 

E3. Returning to the Example E2, compute the probability that until 100000 km 

there are at most 2 punctures. 

Denote the number of puncture until T (km) by T . Applying the previous statement 100000  is 

Poisson distributed random variable with parameter 

 * .58.41058 4. 100000100000 -5   

Consequently,  )2(P)1(P)0(P)2(P 100000100000100000100000  

165.0e
!2

58.4
e

!1

58.4
e

!0

58.4 58.4
2

58.4
1

58.4
0

  .  

How many punctures happen until 200000 km most likely? 

200000  is also Poisson distributed random variable with parameter 

16.91058.4200000 5  
** . As the parameter **  is not integer, there is a unique 

mode, namely     916.9**  . 

 

Theorem 

If   is exponentially distributed random variables with parameter  , then   1  is 

geometrically distributed random variable with parameter  e1p . 

Proof As 0 ,    takes nonnegative integer,   takes positive integer.  

    p0e1)0(F)1(F)10(P)0(P)11(P)1(P 1   . 

         12 e1e1)1(F)2(F)21(P)1(P)21(P)2(P  

)p1(p)e1(eee 2   . 

Generally, 

         )1k(k e1e1)1k(F)k(F)k1k(P)1k(P)k1(P)k(P

 

    pp1)e1(e)e1(e
1k1k)1k( 
 , which is the formula to prove. 

 

Example 
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E4. Telecommunication companies invoices the fee of calls on the basis of minutes. 

It means that all minutes which were begun have to be paid totally. If the duration of a call is 

exponentially distributed random variable with expectation 3 minutes, how much is the 

expectation of its fee if every minute costs 25HUF.  

Let   denote the duration of a call. The minutes invoiced are   1 . The previous 

statement states that   is geometrically distributed random variable with parameter 

393.0e1e1p 5.0   . Consequently, 54.2
393.0

1

p

1
)(E  . The expectation of the 

fee of a call is   54.6354.225E25)25(E  . 

 

g.3. Normally distributed random variables 

 

In this subsection we deal with the most important continuous distribution, namely normal 

distribution. First of all we investigate the standard normal one. 

 

Definition The continuous random variable   is standard normal distributed random variable, 

if its probability density function is 2

x2

e
2

1
)x(f




 , Rx . 

 

Remarks 

 The inequality )x(f0   holds for any value of Rx , and it can be proved that 








2dxe 2

x2

. Consequently, 1dxe
2

1
2

x2











. This means that )x(f  is really probability 

density function.  

 The above function is often called as Gauss curve and is denoted by )x( . 

 The function )x(  is obviously symmetrical to the axis x. 

 We use the following notation: )1,0(N~ . 

 Standard normally distributed random variables take any value. 

 The graph of the probability density function can be seen in Fig.g.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.7. Probability density function of a standard normally distributed random 

variable 
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 The cumulative distribution function of a standard normally distributed random 

variable is 









x

2

tx

dte
2

1
dt)t(f)x(F

2

, which is the area under the Gauss-curve presented 

in Fig.g.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.8. The value of the cumulative distribution function as area under the 

probability density function 

 

 

 The cumulative distribution function of standard normally distributed random variables 

is denoted by )x(Φ (capital F in Greek alphabet). Its graph can be seen in Fig.g.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.9. Cumulative distribution function of standard normally distributed random variables 

 

 The function Φ  can not be written in closed form, its values are computed numerically 

and are included in a table (see Table 1 at the end of the booklet and Table g.2.) 

 

x (x)Φ 

 

0 0.5 

1 0.8413 

2 0.9773 

3 0.9986 
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Table g.2. Some values of the cumulative distribution function of standard normally distributed 

random variables 

 

Data from this table can be read out as follows: 5.0)0(Φ  , 8413.0)1(Φ  , 9773.0)2(Φ  , 

9986.0)3(Φ  . 

 

Remarks 

 

 The tables do not contain arguments greater than 3.8. As the cumulative distribution 

function is monotone increasing and it takes values at most 1, furthermore 99993.0)8.3(Φ  , 

1(x)Φ9999.0   in case of x8.3  . We use 1)x(Φ   for x8.3  . 

 The tables do not contain arguments less than 0, because the values at negative 

arguments can be computed as follows. 

 

Theorem 

If x0  , then )x(Φ1)x(Φ  . 

Proof The proof is based on the symmetry of the probability density function. 

)x(Φ1dte
2

1
1dte

2

1
)x(Φ

x

2

tx

2

t 22







 









. 

Expressively, stripped areas of the Fig.g.9. are equal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.9. Equal areas under the standard normal probability density function due to its 

symmetry 

 

Obviously, )x(Φ1)x(Φ   holds for any value of x. 

 

Theorem 

If )1,0(N~ , then )1,0(N~  holds, as well. 

Proof Let  .  

).x(Φ))x(Φ1(1)x(Φ1)x(P)x0(P)x(P)x(P)x(F   

Now 2

x2

e
2

1
)x('Φ)x('F)x(f






 , which proves the statement. 

 

Numerical characteristics of standard normally distributed random variables: 
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Expectation 

0)(E  . It follows from the fact that 2

x

2

x 22

edxex


  and  

0e
2

1
lime

2

1
limdxe

2

1
xdx)x(fx)(E 2

x

x

2

x

x

2

x 222





























  .  

 

Dispersion 

1)(D  . As a proof, recall that    222 )(EE)(D  . Applying partially integration 
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1
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xxdxe
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1
xdx)x(fx)(E 2
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2

x

2

x

222

2222

. 

Recalling L’ Hopital law we get  

0e
2

1
xlime

2

1
xlim 2

x

x

2

x

x

22









 






. Moreover, 1dxe

2

1
2

x2











, as 2

x2

e
2

1 


 is a 

probability density function. Consequently,     001)(EE)(D 2222  , which proves 

the statement. 

 

Mode 

Local maximum of   is at 0x  , consequently the mode is zero. 

Median 

0me . We have to find the value x for which 5.0)x(Φ  . Using the table of cumulative 

distribution function of standard normal distribution, we get 0x  . 

 

Example 

E1.  Let   be standard normally distributed random variable. Compute the probability that 

  is less than 2.5.  

P( 9938.0)5.2(Φ)5.2  . 

Compute the probability that   is greater than -1.2. 

8849.0)2.1(Φ))2.1(Φ1(1)2.1(Φ1)2.1(P  . 

Compute the probability that   is between -0.5 and 0.5. 

  .3830.016915.021)5.0(Φ2)5.0(Φ1)5.0(Φ)5.0(Φ)5.0(Φ)5.05.0(P 

At most how much is   with probability 0.9?  

x=? 9.0)x(P  . 9.0)x(Φ)x(P  . We have to find the value 0.9 in the columns of Φ , 

as the value of the function equals 0.9. Therefore, .28.1x   

At least how much is   with probability 0.95?  

x=? 95.0)x(P  . 05.0)x(Φ95.0)x(Φ1  . As 5.0)x(Φ   and Φ  is monotone 

increasing function, 0x  . If we denote ax   , a0   and 05.0)a(Φ1)a(Φ)x(Φ  . 

This implies 95.0)a(Φ   and 1.645a  .Finally, we end in 645.1x  . 

Give an interval symmetrical to 0 in which the values of   are situated with probability 0.99. 

x=? 99.0)xx(P  . 99.01)x(Φ2)x(Φ)x(Φ)xx(P  . This implies  

995.0)x(Φ   and 58.2x  . The interval is )58.2,58.2(  
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Now we turn to the general form of normal distribution. 

 

Definition  Let   be standard normal distributed random variable, Rm  and 0 . The 

random variable m  is called normally distributed random variable with 

parameters m  and  . We use notation ),m(N~  . 

 

Remarks 

 With 0m   and 1 ,  m  is standard normally distributed random 

variable. It fits with notation )1,0(N~ . 

   is linear transformation of a standard normally distributed random variable. 

 If 0a   and Rm , then m))(a(ma  . Recall that )1,0(N~  holds as 

well, furthermore a0  , consequently   is normally distributed random variable with 

parameters m  and a . 

 

Theorem Let   be standard normally distributed random variable, Rm  and 0 . The 

cumulative distribution function of the random variable m  is )
mx

(Φ)x(F



  and 

the probability density function of   is 

 
2

2

2

mx

e
2

1
)x(f 







 . 

Proof )
mx

(Φ)
mx

(P)m(P)x(F








 .  

 
2

2

2

mx'

e
2

11
)

mx
(

1
)

mx
(Φ)x('F)x(f 






























 . 

 

The graph of the cumulative distribution functions can be seen in Fig.g.10. In all cases 0m  , 

red line is for 1 , yellow line is for 2 , blue line is for 4  and green line is for 

5.0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.10. Cumulative distribution functions for normally distributed random variables for 

different values of   

 

The graph of the probability distribution functions be seen in Fig.g.11. In all cases 0m  , red 

line is for 1 , yellow line is for 2 , blue line is for 4  and green line is for 5.0 . 
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Figure g.10. Probability density functions for normally distributed random variables for 

different values of   

 

One can notice that if the value of   is large, then the curve is depressed, if the value of   is 

small, then the curve is peaky. It is the obvious consequence of the fact that the peak is at high 

of 
2

1
. 

If we want to present the roll of parameter m, then we can notice that the probability density 

function is symmetric to m. In fig.g.11., the parameter   equals 1, red line is for 0m  , blue 

line is for 1m   and green line is for 1m  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.11. Probability density functions for normally distributed random variables for 

different values of m  

 

 

 

Numerical characteristics of normally distributed random variables: 

 

Expectation 

If ),m(N~  , then m)(E  . It follows from the fact that  
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mm0m)(E)m(E)(E  . 

 

Dispersion 

If ),m(N~  , then )(D . To prove it, take into consideration that 

 1)(D)m(D)(D .  

 

Summarizing, the first parameter is the expectation, the second one is the dispersion. 

 

Mode 

Local maximum of )x(f  is at mx  , consequently the mode is m. 

 

Median 

mme . We have to find the value x for which 5.0)x(F  .This means 5.0)
mx

(Φ 



. It 

implies mx0
mx





. 

 

Example 

E2. Let )2,5(N~ . Compute the probability that   is less than 0.  

0062.09938.01)5.2(Φ1)5.2(Φ)
2

50
(Φ)x(F)0(P 


  . 

Compute the probability that the value of   is between 0 and 6.  

.6853.00062.06915.0)5.2(Φ)5.0(Φ)
2

50
(Φ)

2

56
(Φ)0(F)6(F)60(P 





 

Compute the probability that the value of    is greater than 6.  

3085.06915.01)5.0(Φ1)
2

56
(Φ1)6(F1)6(P 


  . 

At most how much is the value of   with probability 0.8? 

x=? 8.0)x(P  . 8.0)
2

5x
(Φ 


. As 8.0)84.0(Φ  , therefore 84.0

2

5x



. This implies 

68.6284.05x  . 

 

At least how much is the value of   with probability 0.98? 

x=? 98.0)x(P  . 98.0)
2

5x
(Φ1)x(P 


 . 02.0)

2

5x
(Φ 


. If we introduce new 

variable 
2

5x
y


 , we reduce our task to determine the solution of 02.0)y(Φ  . This type of 

problem was previously solved. We can first realize that y  is negative and if ay  , then 

.98.0)a(Φ   Consequently, 33.2a  , 33.2y  , that is 33.2
2

5x



,. Finally, arranging the 

equation we get 34.0233.25x  . 

Compute the value of the probability density function at 6. 

176.0e
2

1
)6(f

2

2

22

)56(




 



 . 

 

Theorem (k times   law) If ),m(N~  , then 1)k(Φ2)kmkm(P  . 
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Proof The proof is very simple, compute the probability. 









   ) 

mkm
(Φ  ) 

mkm
(Φ )km(F)km(F)kmkm(P

1)k(Φ2))k(Φ1()k(Φ)k(Φ)k(Φ  . 

 

Remarks 

 Substituting the values 3,2,1,0k   into the previous formula, we get  

6826.018413.021)1(Φ2)mm(P  , 

9544.019772.021)2(Φ2)2m2m(P  , 

9974.019987.021)3(Φ2)3m3m(P  . 

 The last equality states that a normally distributed random variable takes its values in the 

interval symmetrical to the expectation and radius 3 times dispersion with probability almost 1. 

 The probability density function with parameters 1m   and 1 , for k=1,2 present 

the k times   law (see Fig.g.12.). 
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Figure g.12.The areas under the probability density function 

 

Example 

 

E3. Let )12,3(N~ . Give an interval, symmetrical to 3 , in which the values of   

are situated with probability 0.99! 

Apply “k times  ” law. As the required probability equals 0.99, consequently, 

99.01)k(Φ2  . This implies 995.0)k(Φ  , and as a consequence, 58.2k  . Therefore the 

interval looks )96.33,96.27()58.2123,58.2123()km,km(  . It is also 

presented in Fig.g.13. 
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Figure g.13.Area 0.99 under the probability density function 

 

Theorem If   is normally distributed random variable, then so is its linear transformation. 

Namely, if ),m(N~  , 0a  , then )a,bma(N~ba  . 

Proof 

Recall the definition of the normally distributed random variable, m  with 

)1,0(N~ . .bamab)m(aba   If a0  , then )a,bam(N~  , if 

0a  , then )a,bam(N~  . Summarizing these formulas we get the statement to be 

proved. 

 

Theorem If ),m(N~ 111  , ),m(N~ 222   furthermore 1  and 2  are independent, then 

2
2

2
12121 ,mm(N~  . 

 

Remarks 

 Although we can not prove the previous statement, notice, that the parameters are 

calculated according to the properties of expectation and variance. The first parameter is the 

expectation. Expectation of the sum is the sum of expectations. The second parameter is 

dispersion. Dispersions can not be given, but variances can. )(D)(D)(D 2
2

1
2

21
2  , 

therefore 2
2

2
121 )(D  . 

 As a consequence of the previous statement we emphasize the following: If i  

n,...,3,2,1i   are independent identically distributed random variables, ),m(N~i  , then 

)n,mn(N~
n

1i

i


 . 

 If i  n,...,3,2,1i   are independent identically distributed random variables, 

),m(N~i  , then 






 




n
,mN~

n

n

1i

i

. 

 

Example 

 

E4. Weights of adults are normally distributed random variables with expectation 

75kg and dispersion 10 kg. Weights of 5 year children are also normally distributed random 

variables with expectation 18 kg and dispersion 3 kg. Compute the probability that the average 

weight of 20 adults is less than 70 kg. 

)10,75(N~a , )2,18(N~c . )
20

10
,75(N~

20

20

1i

i,a




,   

0127.09873.01)236.2(Φ1)236.2(Φ)
236.2

7570
(Φ)70(F)70

20
(P

20

20

1i

i,a

20

1i
i,a















. 

Give an interval symmetrical to 75kg in which the average weight of 10 adults is with 

probability 0.9.  
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)
10

10
,75(N~

10

20

1i

i,a




. To answer the question apply the “k times   law” with expectation 75 

and dispersion 10/10 . 9.01)k(Φ2   implies 645.1k  , therefore the required interval 

looks )2.80,8.69()16.3645.175,16.3645.175(  . 

At most how much is the total weight of 6 adults in the elevator with probability 0.98?  

x=? 



6

1i

i,a 98.0)x(P . )106,756(N~
6

1i

i,a 


. It means that 98.0)x(Φ 6

1i
i,a





. 

98.0)
495 24.

450x
(Φ 


. Consequently, 06.2

495 24.

450x



, finally  

kg500kg46.50006.2495.24450x  . 

Compute the probability that the total weight of an adult and a 5 year child is more than 100 kg, 

if their weights are independent. 

)310,1875(N~ 22
ca  ,

3063.06937.01)
82.13

93100
(Φ1)100(F1)100(P

caca 


  . 

 

E5. Daily return of a shop is normally distributed random variable with expectation 1 

million HUF and dispersion 0.2 million HUF. Suppose that returns belonging to different days 

are independent random variables. Compute the probability that there is at most 0.1 million 

HUF difference between the returns of two different days.  

Let 1  denote the return of the first day, 2  denote the return of the second day. )2.0,1(N~1 , 

)2.0,1(N~2 .  The question is )1.0(P 21  . 

)1.0(F)1.0(F)1.01.0(P)1.0(P
21212121   . 

If we knew the cumulative distribution function of 21  , then we can substitute 0.1 and -0.1 

into it. 

As )( 2121  , furthermore )2.0,1(N~2  , )2.02.0,11(N~ 22
21  . 

Consequently, )283.0,0(N~21  . This implies )
283.0

0x
(Φ)x(F

21


 . 

Finally, 2762.016381.021)
283.0

1.0
(Φ2)

283.0

1.0
(Φ)

283.0

1.0
(Φ)1.0(P 21 


 . 

Compute the probability that the return of a fixed day is less than the 80% of the return of 

another day. 

?)8.0(P 21   )0(F)08.0(P)8.0(P
21 8.02121  . 

If we knew the cumulative distribution function of 21 8.0  , then we could substitute 0 into 

it. 

)2.08.0,18.0(N~2  , )2.08.0,18.0(N~2  . 

  )2.08.02.0,8.01(N~8.0
22

21  . Consequently, )256.0,2.0(N~8.0 21  .  

Now we can finish computations as follows: 

2173.0)78.0(Φ)
256.0

2.00
(Φ)0(F)8.0(P

2
1 8.021 




 . 
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g.4. Further distributions derived from normally distributed ones 

In statistics, there are many other distributions which are originates from normal ones. Actually 

we investigate chi-square and Student’s t distributions. We will use them in chapter j, as well. 

 

Definition Let )1,0(N~ . Then 2  is called chi-squared distributed random variable 

with degree of freedom 1 and it is denoted by 2
1~   

 

Theorem The cumulative distribution function of 2  is 











x0if1)x(Φ2

0xif0
)x(F . 

The probability density function of   is 













 

 x0
x

1
e

2

1

0xif0

)x(f
2

x . 

Proof  

All of values of 2
1  are nonnegative, consequently, 0)x(F 2

1




, if 0x  . For positive x  values,  

)x(Φ)x(Φ)x(F)x(F)xx(P)x(P)x(P)x(F 2  
 

.1)x(Φ2 

 
 

 



















 



x0ife

x2

1

x2

1
e

2

1
2x)x('Φ2

0xif0

)x(F)x(f
2

x

2

x

'

' 2

. 

 

The graph of the above cumulative distribution function and the probability density function 

can be seen in Fig. g.14. 
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Figure g.14. Graph of the cumulative distribution function and the probability density 

function of 2
1  distributed random variables 

 

Numerical characteristics of chi-squared distributed random variables with degree of freedom 

1: 

 

Expectation 

1)(E  , which is a straightforward consequence of   101)(E)(D)(E
222  . 



 

 

 

Probability theory and math. statistics– Frequently used continuous distributions 

 

134 

 

Dispersion 

2)(D  , which can be computed by partial integrating. 

 

Mode 

There is no local maximum for the probability density function. 

 

Median 

675.0me . We have to solve equation 5.01)x(Φ2  , that is .75.0)x(Φ   It is satisfied by 

675.0x  . 

 

Definition Let n,..,3,2,1i),1,0(N~i  , and let i  be independent. Then 



n

1i

2
i  is called 

chi-squared distributed random variable with degree of freedom n and is denoted by 
2
n~   

 

Theorem 

Probability density function of 2
n  distributed random variable is 





















otherwise0

x0if

)
2

n
(Γ2

ex

)x(f
2

n

2

x
1

2

n

. 

The function Γ  is the generalization of factorial for non integer values. )5.0(Γ , 

furthermore )x(Γn)1x(Γ  .  

 

The graph of the probability density function of 2
n  distributed random variable with degree of 

freedom 5n   can be seen in Fig.g.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.15. Graph of the probability density function of 2
5  distributed random variables 

 

Remarks 
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 If n=2, the probability density function coincides with that of exponentially distributed 

random variable with parameter 5.0 . 

 For general values of n , explicit form of cumulative distributions function of 2
n  is 

quite complicated, it is not usually used. The values for which the cumulative distribution 

function reaches certain levels are included in tables used in statistics. These tables are used in 

chapter j, as well. For example, if we seek the value x for which 95.0)x(P 2
5  holds, we get 

07.11x  .(see Table 3 at the end of the booklet.) 

Usually, the real number x for which  )x(P  holds, can be found in tables and is 

denoted by 2
,n   (see Table 2 at the end of the booklet). 
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Figure g.15. The value exceeded with probability 0.05 in case of 2
5  

 

Numerical characteristics of chi-squared distributed random variable: 

 

Expectation 

n)(E  , which is a straightforward consequence of 



n

1i

2
i

n

1i

2
i n)(E)(E . 

 

Dispersion 

n2)(D  , which follows from 



n

1i

2
i

2
n

1i

2
i n2)(D)(D . 

 

Mode 

There is no mode if 2n  , and it is 2n  , if n2 . 

 

Median  

It can not be expressed explicitly, it is about 3)
n9

2
1(n   
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Definition Let n21 ,...,,   and   independent standard normally distributed random variables. 

The random variable 









n

1i

2
i

 is called Student’s t distributed random variable with 

degree of freedom n and is denoted by n~  . 

 

Theorem 

The probability density function of a Student’s t distributed random variable with degree of 

freedom n is 
2

1n

2

n
n

x
1

)
2

n
(Γn

)
2

1n
(Γ

)x(f























 . 

Remarks 

 If n is odd, then the normalising constant is 
24)...4n)(2n(

35)...3n)(1n(

n2

1




, and if n is even, 

then it is 
35)...4n)(2n(

24)...3n)(1n(

n

1






. 

 If n=1, then 
21

x1

11
)x(f





 . The random variable with this probability density 

function is called Cauchy distributed random variable. 

 If n , then 2

x
2

1n

2
2

e
n

x
1



















 , consequently )x(e

2

1
)x(f 2

x

n

2








 for 

any values of x. 

 The probability density functions of n  distributed random variable can be seen in 

Fig.g.16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure g.16. Probability density functions of n  distributed random variable for 

1n  (black), 5n  (red) and 100n  (blue) 

 

 Closed form of the cumulative distribution functions do not exist. The values for which 

the cumulative distribution function reach different levels are included in tables used in 

statistics (see Table 2 at the end of the booklet). These tables are used in chapter j, as well. 
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Supposing n~  , the value, for which  1)xx(P  and  )(P  is usually 

denoted by ,nt . For example, if 2.0  and 5n  , 92.0t 2.0,5  . It is also presented in Fig. 

g.17.  
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Figure g.17. Bounds for 5  distributed random variables with probability 0.8 

 

 

Numerical characteristics of chi-squared distributed random variable: 

 

Expectation 

If  n~  , then 0)(E  , if n1 . It is straightforward consequence of the symmetry of the 

probability density function. If 1n  , expectation does not exist. 

 

Dispersion 

n

2n
)(D


 , if n2 , otherwise it does not exist. It can be computed by partial integrating. 

 

Mode 

It is always zero. 

 

Median 

It is always zero, due to the symmetry of probability density function. 
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h. Law of large numbers 

 

The aim of this chapter 

 

In this chapter we present asymptotical theorems which characterize the 

behaviour of the average of many independent identically distributed 

random variables. We return to the relative frequency, as well, and we 

prove that it is about the probability of the event. These theorems are the 

theoretical basis of the pools and computer simulations. 

 

Preliminary knowledge 

 

Expectation, dispersion and their properties. Binomially distributed 

random variables. 

 

Content 

 

h.1. Markov’s and Chebisev’s inequalities. 

 
h.2. Law of large numbers. 

 

h.3. Bernoulli’s theorem. 
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h.1. Markov and Chebisev’s inequalities 

First we provide estimations for certain probabilities. Although these estimations are quite 

rough, they are appropriate to be applied for proving asymptotical statement. Their main 

advantage that they do not require the knowledge of the distribution of the random variable, 

they use only the expectation and dispersion. 

 

Theorem (Markov’s inequality) 

Let   be a random variable all of values of that is nonnegative and )(E   exists. Then, for 

any 0  the following inequality holds: 





)(E
)(P . 

Proof 

The proof is based on the following:  1 . Recall that 





holdnotdoesAif0

holdsAif1
A1 . 

This implies 









holdsif0

holdsif1
1 .  

Multiplying by   we get 







 

holdsif0

holdsif
1 . Taking into account the non-

negativity of  , this means that   1 . Applying the following property of 

expectation )(E)(E 2121  , we can see that )(E)(E)(E   11 . 

Recalling that )A(P)(E A 1 and dividing both sides by 0  the inequality ends in 






)(E
)(P . This is the statement to be proved. 

 

Theorem (Chebisev’s inequality) 

Let   be a random variable those dispersion exists. Then for any 0 , the following 

inequality is satisfied: 
2

2 )(D
))(E(P




 . 

Proof Note that  )(E  holds if and only if   22
)(E  . Consequently, 

  ))(E(P))(E(P 22
 . Apply Markov inequality with  2)(E   and 

2 . Non-negativity obviously holds, and   )(D))(E(E)(E 22
 . Therefore, 

2

2 )(D)(E
)(P)))(E(P









 , and it is the statement to be proved. 

 

Remark 

 Chebisev’s inequality can be also written in the following form: 

2

2 )(D
1))(E(P




 .  ))(E   is the compliment of the event 

  )(E . If x)A(P  , then x1)A(P1)A(P  , which implies the statement. 
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 Chebisev’s inequality can be also written as follows: 
2k

1
))(kD)(E(P   

and 
2k

1
1))(kD)(E(P  . Substitute )(kD  . It can be done with 

)(D
k




 , 

supposing 0)(D  . If 0)(D  , then on the basis of the property of dispersion, 

1))(E(P  , therefore 0))(kD))(E(P   which is less than 
2k

1
 for any value 

of k . 

 The inequality 
2k

1
))(kD)(E(P   expresses that the random variable   

takes its values out of the neighbourhood with radius )(kD   of its expectation with 

probability not larger than 
2k

1
. Large deviation is with small probability. 

 The inequality 
2k

1
1))(kD)(E(P   states that a random variable   takes 

its values in the neighbourhood with radius )(kD   of its expectation with probability no 

smaller than 
2k

1
1 . Small deviation is with large probability.  

 The proofs do not use the distribution of the random variable. 

 If we knew the distribution of  , the probabilities ))(kD)(E(P   and 

))(kD)(E(P   can be computed explicitly. 

 

Example 

 

E1. Let   be Poisson distributed random variable with parameter 2 . 

Compute the probability that the values of   are in the neighbourhood with radius )(D   of 

its expectation.  

2)(E  , 41.12)(D  . )(D)(E   means that 

)(D)(E)(D)(E  . Explicitly, 2222  , that is 41.359.0  . 

Now 722.0e
!3

2
e

!2

2
e

!1

2
)3(P)2(P)1(P)41.359.0(P 2

3
2

2
2

1

  .  

E2. Let   be uniformly distributed random variable in ]b,a[]2,1[  . Compute 

the probability that   takes its value in the in the neighbourhood with radius )(D5.1   of 

its expectation.  

5.0
2

21

2

ba
)(E 





 . 866.0

32

3

12

)1(2

12

ab
)(D 





 . 299.1)(D5.1  . 

The interval is )299.1,799.0()299.15.0,2999.15.0(  . The question can be written as 

)799.0(F)799.1(F)799.1799.0(P))799.1,799.0((P  . Recalling that 



























x2bif1

2bxa1if
3

1x

ab

ax

1axif0

)x(F , 
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we get  866.0
3

1799.0

3

17999.1
)799.1799.0(P 





 . 

We note that one can check that the result ends in the same probability independently of the 

endpoints of the interval ]b,a[ . 

 

E3. Let   be exponentially distributed random variable. Determine the interval 

symmetric to expectation of   in which the values of   are situated with probability 0.99. 

Let the radius of the interval )(kD  . )(D
1

)(E 


 , the interval looks 


















1
k

1
,

1
k

1
. 

)
1

k
1

(F)
1

k
1

(F
1

k
11

k
1

P)
1

k
1

,
1

k
1

(P















































 . 

Recalling that 









 x0ife1

0xif0
)x(F

x
, 

)
k

1
1()

1
k

1
(

e1e1)
1

k
1

(F













. 

The value of  )
1

k
1

(F




 depends on the sign of its argument. One can notice that 

0
1

k
1






, if k1  and 







1
k

1
0  if 1k  . If 1k  , then 

99.0865.0e10)
2

(F)
2

0(P))
1

1
1

,
1

1
1

((P 2 













  . This implies 

k1 . Therefore, 0)
1

k
1

(F 




. Consequently,  

  99.0e1)
1

k
1

,
1

k
1

(P k1 















  ,   01.0e k1  , 605.401.0lnk1  , 

605.3k  . As a control, 01.00e1)
1

605.3
11

605.3
1

(P 605.4 











 , which 

was the requirement. 

We note that the value of k is independent of the value of the parameter  .  

 

E4. We do not know the distribution of a random variable  , but we know its 

expectation and dispersion. If 200)(E   and 10)(D  .Give an interval in which the 

values of   are situated with probability at least 0.95! 

According to the Chebisev’s inequality 
2k

1
1))(D(k)(E)(D(k)(E(P  . If 

95.0
k

1
1

2
 , then 472.4k  , and the interval looks 

   72.244,28.155472.410200,472.410200  . 

 

E5. Let   be binomially distributed random variable with expectation 200 and 

dispersion 10. Compute the probability that values of   are situated in the neighbourhood 

of its expectation with radius )(D472.4  . 
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As   is binomially distributed with parameters n  and p , 200pn)(E  , 

10)p1(np)(D  , consequently 5.0
100

200
p1  , which implies 5.0p   and 

400n  . The question is )10472.420010472.4200(P   

)72.24428.155(P  .   takes only nonnegative integer values, hence 

)244(P...)157(P)156(P)72.24428.155(P  . As   is binomially 

distributed random variable,   k400kknk 5.05.0
k

400
p1p

k

n
)k(P 


















 . 

244400244157400157156400156 5.05.0
244

400
...5.05.0

157

400
5.05.0

156

400
)72.24428.155(P  




























99999.0 . 

 

E6. Let   be a random variable with expectation 200 and dispersion 10. Give 

the probability that values of   are situated in the interval )225,175( .  

As we do not know the distribution of  , we can not give exactly the required probability, 

but we can give an estimation for it. The interval )225,175(  is symmetric to the expectation 

200, it can be written as  )(Dk)(E),(Dk)(E)105.2200,105.2200(   

with 5.2k  . 
2k

1
1))(kD)(E(P    implies 84.0

5.2

1
1)225175(P

2
 . 

 

E7. Let   be binomially distributed random variable with expectation 200 and 

dispersion 10. Compute the probability that the values of   are situated in the interval 

)225,175( . 

 )224(P...)177(P)176(P)225175(P  

9858.05.05.0
224

400
...5.05.0

177

400
5.05.0

176

400 176224223177224176 

























, which is much 

more than the estimation 0.84 given by Chebisev’s inequality. We draw the attention that 

actually we know the distribution of the random variable, and it is extra information to E6. 

 

E8. Let   be normally distributed random variable with expectation 200 and 

dispersion 10. Compute the probability that the values of   are situated in the interval 

)225,175( . 

Now, )10,200(N~ ,  and )
10

200x
(Φ)x(F


 . Now  )175(F)225(F)225175(P  

9876.01)5.2(Φ2)5.2(Φ)5.2(Φ)
10

200175
(Φ)

10

200225
(Φ 





 . We note that 

this probability is also much more than the estimation given by Chebisev’s inequality due to 

the extra information of distribution. Furthermore it is close to the probability computed in 

the previous example. The reason of this latter phenomenon will be given in the next section 

i. 
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h.2. Law of large numbers 

In this subsection we provide a form of large numbers which is easy to prove and which is 

able to give estimations for the probability of large deviations. This statement is the basic of 

computer simulations. One can state stronger forms of the law of large numbers and one 

also can give statements under weaker assumptions, as well. 

 

Theorem Let ,...,....,, n21  be independent identically distributed random variables with 

m)(E i   and  )(D i . Then , for any 0 ,  

1m
n

P

n

1i

i


























 , if n , 

and  

0m
n

P

n

1i

i


























  if n . 

Proof 

Let n
n

n

1i

i




. Now m)
n

(E

n

1i

i




  and 

nn
D

n

1i

i

























 . Apply the Chevisev’ inequality 

for n . This gives us  
2

n
2

n

)(D
mP




 , which implies 

2

2

n

1i

i

n
m

n
P





























 . 

As   and   are fixed, 0
n 2

2





, if n , which coincides with the second part of the 

statement. The formula 01
n

1m
n

P
2

2

n

1i

i






























  is the first part is the 

statement. 

 

Example 
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E1.  Let l  ,… 1000  are independent uniformly distributed random variable in 

]1,0[ . Give an estimation for the probability 
























 0.055.0

1000
P

1000

1i

i

. 

Apply the above inequality 
2

2

n

1i

i

n
m

n
P





























 . 

Now m5.0)(E i  ,  2887.0
12

1
)(D i . Substitute 05.0 , 

033.0
05.0100012

1

n 22

2








. 

Consequently, 033.00.055.0
1000

P

1000

1i

i


























 . 

At most how much is the difference between the average and 0.5 with probability 0.95? 

The question is the value of  , for which 95.0m
n

P

n

1i

i


























 . As we do not know the 

exact distribution of 
n

n

1i

i




, we can not compute the exact probability, but we are able to 

estimate the probability. 
2

2

n

1i

i

n
1m

n
P





























 ,  if 95.0

n
1

2

2





 , then 
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95.0m
n

P

n

1i

i


























  holds. 95.0

n
1

2

2





  implies 2

05.0100012

1



, consequently 

-32 10×6667 1.  , 041.0 . 

 

How many random variables have to be averaged in order to assure that the difference 

between the average and 0.5 should be at most 0.01 with probability 0.98?  

The question is the value of n for which 98.001.0m
n

P

n

1i

i


























 . Applying the formula 

2

2

n

1i

i

n
1m

n
P





























  again, substitute 98.0

n
1

2

2





  and 01.0 . 

n
02.001.012

1

01.0 22

2








, 41667n  . 

How many random variables have to be average in order to assure that the difference 

between the average and 0.5 be at most 0.005 with probability 0.98? 

If 005.0 , then , n=1.6667×10⁵, which is four times larger than the previous number of 

experiments. If we want to decrease the accuracy into the half, we need 22  times more 

experiments. 

 

Remark 

 If we fix the accuracy  , and the value of n , then 
2

2

n

1i

i

n
1m

n
P





























  

gives us an estimation for the probability that maximal difference between the average and 

the expectation exceeds the accuracy. 
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 If we fix the probability 1  (reliability) and the value of n, then 



 1

n
1

2

2

 

implies 





n

2

. Consequently, the accuracy is proportional to the square root of the 

reciprocal of the number of experiments. 

 If we fix probability 1  (reliability) and the accuracy  , then 



 1

n
1

2

2

 

implies n
2

2





. This means that the number of experiments is proportional to the square 

of the accuracy. 

 As an illustration of the law of large numbers, we present the next Table h.1. The 

random variables were uniformly distributed in ]1,0[ , the reliability level was fixed as 

95.01   and 99.01  . The table shows that the difference between the average and 

the expectation is getting smaller and smaller as the number of simulations was increased. 

The total requested time was less than 1 minute. The theoretical accuracy 
05.0n

2




  and 

01.0n

2




  were computed for the reliability levels 0.95 and 0.99, respectively. 

 

n 

n

n

1i

i




 5.0
n

n

1i

i




  

05.0n

2




 

01.0n

2




 

 

10 

 

0.432756065694353 

 

0.067243934305647 

 

0.11785 

 

0.2635 

 

100 

   

0.530898496906201 

   

0.030898496906201 

 

0.03 7268 

 

0.0833 

 

1000 

   

0.506786612848606 

   

0.006786612848606 

 

0.011785 

 

0.02635 

 

10000 

   

0.496156685345852 

   

0.003843314654148 

 

0.003 7268 

 

0.00833 

 

100000 

   

0.500349684591498 

   

0.000349684591498 

 

0.0011785 

 

0.002635 

 

1000000 

   

0.500158856526807 

   

0.000158856526807 

 

0.0003 7268 

 

0.000833 

 

10000000 

   

0.499726933610529 

   

0.000273066389471 

 

0.00011785 

 

0.0002635 

 

100000000 

   

0.499951340487525 

   

0.000048659512475 

 

0.000037268 

 

0.0000833 

 

1000000000 

   

0.499985939301628 

   

0.000014060698372 
 

0.000011785 

 

0.00002635 

 

Table h.1. The averages and their differences from the expectation in case of uniformly 

distributed random numbers 

 



 

 

 

Probability theory and mathematical statistics– Law of large numbers 

 

147 

 

Secondly, the random variables were exponentially distributed with expectation 0.1 and 10. 

Table h.2. shows that the difference between the average and the expectation depends on the 

value of the parameter. The parameter is the reciprocal of the dispersion, consequently, the 

larger the dispersion, the larger the difference. 

 

 1.0  1.0  10  10  

N 

n

n

1i

i




 10
n

n

1i

i




  

n

n

1i

i




 1.0
n

n

1i

i




  

10  

6.2277618964331 

 

3.7722381035668 

 

0.09447373893621 

 

0.055276 

 

100 

 

11.756814668520 

   

1.7568146685202 

   

0.10392000570707 

 

0.00392 

 

1000 

   

9.5670585169631 

   

0.4329414830368 

   

0.09696619091756 

 

0.00304 

 

10000 

 

 9.9932193771582 

 

   

0.0067806228417 

   

0.100150679660307 

 

0.00015 

 

100000 

    

9.9708942677258 

 

   

0.0291057322741 

   

0.100629035751288 

 

0.00063 

 

1000000 

   

9.9943200370807 

   

0.0056799629192 

   

0.100039656754390 

 

0.00004 

 

10000000 

   

10.003113268035 

   

0.0031132680354 

   

0.099950954820648 

 

0.00004 

 

100000000 

   

9.9994289522126 

   

0.00057104778736 

 

0.100000507690485 

 

0.00000005 

 

100000000 

   

10.000097147933 

 

0.00009714793369 

 

0.100000729791939 

 

0.00000007 

Table h.2. The averages and their differences from the expectation in case of exponentially 

distributed random numbers 

 

 The law of large numbers is expressed by the sentence that the expectation is about 

the average of many values of random variable. Not exactly the same, but it is not far from 

it. 

 As the expectation is an integral, the law of large numbers provides possibility to 

compute integrals numerically as follows: Let RH:g  , RH , H]b,a[  , suppose that 

g is continuous in  b,a . Taking into account the properties of expectations, 

  ))(g(E)ab(dx
ab

1
)x(gabdx)x(gI

b

a

b

a




  , where   is uniformly distributed 

random variable in ].b,a[ ))(g(E   is about the average of many values of )(g  .   can be 

constructed as a linear transformation of a uniformly distributed random variable in [0,1]. 

Consequently, the algorithm of computing the approximate value of the integral 
b

a

dx)x(g is 

the following: generate a random number, multiply it by ab   and add “a”, then substitute 
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this value into the function g . Substitution can be made as the all the values we get are in 

the domain of g . Repeat the process n times and take the average of the values. Multiply the 

average by ab  and we get the approximate value of the integral. The necessary number of 

simulation can be determined as follows: 





















 )
abn

)(g

)ab(

dx)x(g

(P)
n

)(g

)ab(dx)x(g(P

n

1i

i

b

a

n

1i

ib

a

 

  



 1

n

))(g(D
ab1

2

i
2

2
. 

As i  is in [a,b], 
2

)x(gmin)x(gmax
)(D bxabxa

i



 . 

 
 

2

2

bxabxa2

n

1i

ib

a
n4

)x(gmin)x(gmax
ab1)

n

)(g

)ab(dx)x(g(P1







 


 , which 

implies 
 

n
4

)x(gmin)x(gmax
)ab(

2

2

bxabxa2 



  . 

 

Example 

E2. Compute dx
x1

1
1

0

 
 by random simulation.  

Notice that )
1

1
(Edx

x1

1
1

0





 where   is uniformly distributed random variable in ].1,0[  

Consequently, generate random numbers by the computer, add 1, and take the reciprocal. 

This process has to be repeated many times. Take the average of the numbers you got, and 

this average is approximate value of the integral. As ]1,0([ ,  1,5.0
1

1



, 

0625.0
4

5.0
)

1

1
(D

2
2 


. If we fix the reliability level 99.01  , the necessary number 

of simulation is n
01.0

0625.0
2




. If we would like to compute the integral with difference less 

than 0.01, then we have to make n62500100625.0 6   simulations. As 

  2ln1ln2ln)x1ln(dx
x1

1 1x

0x

1

0






 , we can follow the difference between the exact 

value and the approximate value of the integral in Table h.3. 
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   is computed as 

















 


n01.0

0625.0

n

2

)x(gmin)x(gmax
2

bxabxa

.  

 

N average Difference   

62 0.702627791231423 0.009480610671478 0.3175 

625 0.694214696993436 0.001067516433491 0.1 

6250 0.695502819777260 0.002355639217315 0.03175 

62500 0.693417064411419 0.000269883851474 0.01 

625000 0.693095119363388 0.000052061196558 0.003175 

6250000 0.693134534818101 0.000012645741844 0.001 

62500000 0.693167969772721 0.000020789212776 0.0003175 

625000000 0.693142704368027 0.000004476191918 0.0001 

Table h.3. The averages and their differences from the expectation in case of transformed 

random variables 

 

For all simulations, elapsed time was 42.9 seconds.  

E3.  Compute the value of the integral dx
x

1
sin

3

1

  with accuracy  0.01. 

 

Note, that )(E2dx
2

1

x

1
sin2dx

x

1
sin

3

1

3

1

  , where )
1

sin(


  and   is uniformly 

distributed random variable in ]3,1[ . 1
x

1
sin1  , 

 
1

4

)1(1
)

1
(sinD

2
2 





, 

2

3

1

n

1i i

n

1
41)dx

x

1
sin

n

1

1

2(P





 

 . 99.0

n

1
41

2



  and 01.0  implies 

4000000n  .We can follow the average and the theoretical accuracy in the function of 

numbers of simulation in Table g.4. Elapsed time, together for all simulations, was 36.82 

seconds. 

 

n average   

40 4.044413814196310 3.162 

400 3.124480498240279 1 

4000 3.266154820794264 0.3162 

40000 3.241221397791890 0.1 

400000 3.252187207202902 0.03162 

4000000 3.251025444611742 0.01 

40000000 3.251126290354754 0. 003162 

400000000 3.250561315440294 0.001 

Table g.4. Averages of random variables given by )
1

sin(


  and the theoretical accuracy 
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We note that better estimations for the variance can be also given, we used 1ysin1   for 

the sake of simplicity. 

 

E4. Compute dxe

100

100

2

x2






 by random simulation. 

 

Note that )e(E200dxe 2

100

100

2

x 22 





 where   is uniformly distributed random variable in 

]100,100[ . As 1e0 2

2





 
4

1
)e(D 22

2





,  

2

2

100

100

2

x

n

1i

2

n4

1
2001)dxe

n

e

200(P

2

i
2


 











. 99.0
n4

1
100001

2



  implies 

25000000n  . As from standard normal probability density function we know that 

 










2dxedxe 2

x100

100

2

x 22

, comparing the average to 2  we get Table h.5.: 

n average Difference    

25 8.323342326487701 5.816714051856701 10 

250 3.015562934762770 0.508934660131769 3.16227 

2500 2.264787314861209 0.241840959769791 1 

25000 2.441972159407621 0.064656115223379 0.316227 

250000 2.451752388622218 0.054875886008782 0.1 

2500000 2.511696184700974 0.005067910069974 0.0316227 

25000000 2.508097777785709 0.001469503154709 0.01 

250000000 2.504753761626246 0.001874513004754 0.00316227 

Table h.5. Averages of the transformed random variable and their differences 

from 2  in case of different numbers of simulations 

 

We can see that actual difference is always smaller than the theoretical accuracy. 

 

h.3. Bernoulli’s theorem 

 

In this subsection we apply the law of large numbers to characteristically distributed random 

variables and we get a statement for relative frequencies. This statement tells us that the 

relative frequency of an event A are close to the probability of A. 
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Theorem (Bernoulli’s theorem) Let A be an event, and )n(k A  is the frequency of the event 

performing n independent experiments. Then, for any 0 , 0))A(P
n

)n(k
(P A   if 

n  and 1))A(P
n

)n(k
(P A  supposing n . 

Proof Recall that  )n(kA  is binomially distributed random variable with parameters n and 

)A(Pp  , and )n(k A  can be written as a sum of n independent characteristically distributed 

random variables i
A1  with parameter p . )A(Pp)(E i

A 1 , )p1(p)(D i
A

2 1 , 

consequently, 01
n

)p1(p
1))A(P

n

)n(k
(P

2

A 



  supposing n  and 

0
n

)p1(p
))A(P

n

)n(k
(P

2

A 



  supposing n .  

 

Remarks 

 The above statement tells us that large deviation between the relative frequency and 

the probability occurs with small probability, small deviation is with large probability.   

 Roughly spoken, the relative frequency is about the probability, if the number of 

simulations is large. This is the theoretical background of computer simulations and pools. 

 
4

1
)p1(p0  , consequently 

2

A

n4

1
1))A(P

n

)n(k
(P


 . This inequality 

provides possibility to estimate the necessary number of simulations. 

 If we fix the number of simulation and the accuracy (  ), we can estimate the 

probability that the difference between the relative frequency and the probability exceeds 

accuracy  . 

 If we fix the number of simulations and the reliability ( 1 ), we can compute the 

accuracy   by 


 1
n4

1
1

2
, 




n4

1
. 

 If we fix the reliability ( 1 ) and the accuracy  , we can determine the necessary 

number of simulations by n
4

1
2



. 

Examples 

E1. To illustrate the above statement we present the following simulation example: flip 

4 times a fair coin and determine the probability that there are heads and tails among the 

results.  

Of course our computer can not flip a coin but it can generate a random number uniformly 

distributed on ]1,0[ . Imagine that if the result (random number) is less than 0.5, then we get 

head, in the opposite case we get tail. Repeat it four times and decide whether the results of 

flips are the same in all cases or there are at least one heads and at least one tails. Repeat the 

composite experiment n times and compute how many times you get both head and tail. The 

relative frequency is about the probability. If we would like to approximate the probability 

of the event “you get both head and tail “ with accuracy 01.0  with probability 0.99, we 

need n250000
01.001.04

1

4

1
22







experiments. The relative frequencies arising 
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from simulations and their differences from the exact probability 
16

14
 can be seen in Table 

h.6. One can notice that the real difference is much smaller than the accuracy showing that 

the estimation is not sharp. We can see better estimation in the next chapter. 

 

n Relative frequency Difference   

25 0.960000000000000 0.085000000000000 1 

250 0.892000000000000 0.017000000000000 0.3162 

2500 0.874800000000000 0.000200000000000 0.1 

25000 0.873840000000000 0.001160000000000 0.03162 

250000 0.875000000000000 0 0.01 

2500000 0.875041600000000 0.000041600000000 0.003162 

25000000 0.875081200000000 0.000081200000000 0.001 

250000000 0.874980140000000 0.000019860000000 0.003162 

Table h.6. Relative frequencies and their differences from the exact probability 

 

The computer program is very simple and the elapsed time is small. The program for 

simulation was written in MatLab and it can be seen as follows: 
function szim16 

format long 

tic 

er=zeros(8,1) 

for j=1:1:8 

    jo=0; 
for i=1:1:(2.5*10^j); 

head=0; 

for k=1:1:4 

    vel=rand(1); 

    if vel<0.5 

        head=head+1; 

    end 

end 

    if 0<head & head<4 

        jo=jo+1; 

    end 

end 

szim=jo/(2.5*10^j); 

er(j,1)=szim; 

end 

toc 

er 

kul=abs(er-14/16) 

 

 

The relative frequencies and their differences from the exact probability are plotted in 

Fig.h.1. and Fig.h.2. with k105.2n  . 
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Figure h.1. Relative frequencies in the function of number of simulations on logarithm scale 
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Figure h.2. Differences of the relative frequencies and the probability in the function of 

number of simulations on logarithm scale 

 

 

Of course, it is easy to find such events the probability of that is complicated to compute but 

computer program for simulation is easy to elaborate. In those cases the approximation of 

the probability by relative frequency is a useful tool for people who are able to apply 

informatics. 
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i. Central limit theorem 

 

The aim of this chapter 

 

In this chapter we present asymptotical theorems in connection with the 

distribution of the sum and the average of many independent identically 

distributed random variables. We will approximate the cumulative 

distribution functions and probability density functions by the help of 

those of normal distributions. 

 

Preliminary knowledge 

 

Convergence of functions. Cumulative distribution function, normal 

distribution, properties of expectation, dispersion. 

 

Content 

 

i.1. Central limit theorem for the sum of independent identically distributed random 

variables. 

 

i.2. Moivre-Laplace formula. 

 

i.3. Central limit theorem for the average of independent identically distributed random 

variables. 

 

i.4. Central limit theorem for relative frequency. 
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i.1. Central limit theorem for the sum of independent identically distributed 

random variables 

 

In the previous section we have dealt with the difference of the average of many 

independent identically distributed random variables and their expectation. We have proved 

that the difference is small with large probability, if the number of random variables is large. 

In this chapter we deal with the distribution of the sum and the average of many independent 

random variables. We state that they are approximately normally distributed. We use this 

theorem for computations, as well. 

 

Theorem (Central limit theorem) Let ,...,...,, n21   be independent identically distributed 

random variables with expectation m)(E i   and dispersion  )(D i , ,...2,1i  . Then, 

)x(Φ)x
n

nm

(Plim

n

1i

i

n








 for any Rx . 

 

The proof of the theorem requires additional tools in probability theory and analysis, 

consequently we omit it. 

 

Remarks 

 )x
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n
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i





  is the value of the cumulative distribution function of the 

random variable 
n

nm
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i




  at the point x. 
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 . 

 The random variable 
n

nm
n

1i

i




  is usually called as standardized sum. 

 

 Central limit theorem states that the limit of the cumulative distribution function of 

the random variables 
n

nm
n

1i

i




  equals the cumulative distribution function of standard 

normally distributed random variables. Consequently, for large values of n, the cumulative 
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distribution function of the standardized sum is approximately the function Φ . It can be 

written in the form )x(Φ)x(F

n

nm
n

1i
i





 


. 

 Distribution of i  can be arbitrary. In practice, the approximation is good for 

n100 , in many times for n30 . 

 The relative frequencies of the standardized sums can be seen in the following 

Figs.i.1, i.2. and i.3., if we sum up n=1, n=2,n=5, n=10, 30n  , n=100 independent 

random variables. The random variables were uniformly distributed in ]1,0[ .Red line is the 

probability density function of standard normal distribution. One can see that the shape of 

histogram follows more and more the shape of the Gauss curve. 
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Figure i.1. The relative frequencies of the values of the standardized sums if we sum up 

n=1 and n=2 random variables 
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Figure i.2. The relative frequencies of the values of the standardized sums if we sum up 

n=5 and n=10 random variables 

-4 -3 -2 -1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 
-4 -3 -2 -1 0 1 2 3 4 5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 
Figure i.3. The relative frequencies of the values of the standardized sums if we sum up 

n=30 and n=100 random variables 
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 Distribution of i  can be arbitrary. In Figs. i.4., i.5. and i.6. the relative frequencies 

of standardized sum of n exponentially distributed random variables with expectation 




1
1)(E i  )100,30,10,5,2,1n(   are presented. One can realize that the shape of Gauss 

curve appears for larger values of n  than previously, due to the asymmetry of the 

exponential probability density function. 
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Figure i.4. The relative frequencies of the values of the standardized sums of 

exponentially distributed random variables, if we sum up n=1 and n=2 random variables 
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Figure i.5. The relative frequencies of the values of the standardized sums of 

exponentially distributed random variables, if we sum up n=5 and n=10 random 

variables 
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Figure i.6. The relative frequencies of the values of the standardized sums of 

exponentially distributed random variables, if we sum up n=30 and n=100 random 

variables 
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 Finally we illustrate the central limit theorem for the case when )1,0(N~i , and 

2
ii  , that is 




n

1i

2
ni ~ . Standardized sums are approximately normally distributed 

random variables. We note that many program languages have random number generator 

which provides normally distributed random variables, as well. 
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Figure i.7. The relative frequencies of the values of chi-squared distributed random 

variables with degree of freedom n=1 and n=2  
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Figure i.8. The relative frequencies of the values of chi-squared distributed random 

variables with degree of freedom n=5 and n=10 
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Figure i.9. The relative frequencies of the values chi-squared distributed random 

variables with degree of freedom n=30 and n=100 
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After illustrations we consider what can be stated about the distribution function of the 

sums, without standardization. 

 

Remark 

 The cumulative distribution function of the sum 



n

1i

i  is about normal distribution 

function with expectation mn   and dispersion n , that is )
n

nmx
(Φ)x(F n

1i
i 







. This 

can be supported as follows: )
n

nmy
(Φ)

n

nmy

n

nm

(P)y(P)y(F

n

1i
in

1i
in

1i
i 











 

 




, 

which coincides with the cumulative distribution function of )n,nm(N~  . We 

emphasize that  


n

1i
i nm)(E  and  



n

1i
i n)(D .  

 

Examples 

 

E1. Flip a fair coin. If the result is head, then you gain 10 HUF, if the result is 

tail, you pay 8 HUF. Applying central limit theorem, compute the probability, that after 100 

games you are in loss. Determine the same probability by computer simulation. 

Let i  the gain during the ith game. 









5.05.0

108
~i , 100,...,2,1i  . i  are independent, 

identically distributed random variables. Moreover, 1
2

1
10

2

1
8)(E i  , 

91
2

1
10

2

1
)8()(D 222

i  . The question is the probability )0(P
100

1i

i 


. Recall 

that )0(F)0(P 100

1i
i

100

1i

i





 . According to the central limit theorem, 

)
1009

1100x
(Φ)x(F100

1i
i 







, consequently,  

1336.0)111.1(Φ1)111.1(Φ)
1009

11000
(Φ)0(F100

1i
i










. 

 

In order to approximate the probability by relative frequency with accuracy 0.001, according 

to the previous section, we need 25000000 simulations. After making the required number 

of simulations, we get 
n

)n(k A 0.13568732 which is quite close to the approximate value 

got by the central limit theorem. 

 

E2. Supposing previous games, how many games have to be playd in order not 

to be in negative with probability 0.99? 

Our question is the value of  n for which 99.0)0(P
n

1i

i 


. This question can be 

expressed by the cumulative distribution function of the sum as follows: n=? 
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99.0)0(F1 n

1i
i





. As )
n9

1nx
(Φ)x(F n

1i
i 







, we have to solve the equation 

01.0)
n9

n0
(Φ 



. This was detailed in the subsection of normally distributed random 

variables in subsection g.3. 01.0)y(Φ   implies 3263.2y  , therefore 3263 -2.
n9

1n0





, 

,35.438n   that is 439n  . As a control, performing the simulation 25000000 times, the 

relative frequency was 0.98914. 

 

E3. The accounts in the shops are rounded to 0 or 5. If the finial digit of the 

account equals 0, 1, 2, 8, or 9 than the money to pay ends in 0. If the finial digit of the 

account equals 3, 4, 5, 6, or 7, then the money to pay ends in 5. Suppose that all final digits 

are equally probable and they are independent during different payments. Applying the 

central limit theorem, determine the probability that the loss of the shop due to 300 

payments is at least -30 and less than 30!  

Let the i  300,...,3,2,1i   be the loss of the shop during the ith payment. 








 


2.02.02.02.02.0

21012
~i , which are independent identically distributed random 

variables. The total loss during 300 payments equals 



300

1i

i . The question is 

)3030(P
300

1i

i  


 which can be expressed by the cumulative distribution function of 





100

1i

i  as follows: )30(F)30(F)3030(P 300

1i
i

300

1i
i

300

1i

i 





 . According to the central 

limit theorem, )
300

m300x
(Φ)x(F300

1i
i 







, where 

02.022.012.002.01.02.02)(Em i   and  

  202.012.022.002.0)1(2.02)(D 222222

i  . 

Consequently, 0.88966 )
3002

030
(Φ)30(F300

1i
i








, 

0.110340.88966-1 )
3002

030
(Φ)30(F300

1i
i








 and  

8.077932.011034.088966.0)30(F)30(F)3030(P 300

1i
i

300

1i
i

300

1i

i 





 . 

Give an interval in which the loss is situated with probability 0.99. 

The interval in which a normally distributed random variable with parameters m= 0 and 

600  takes its values with probability 0.99 is )1.63,1.63( . Therefore the loss is 

between -63.1 and 63.1 with probability 0.99. Notice that the loss may be -300, it is in a 

loose interval with large probability. This fact is appropriate for checking based on random 

phenomenon. 

 

E4. Throw a fair die 1000 times, repeatedly. At least how much is the sum of the results 

with probability 0.95? 
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Let the result of the ith throw be denoted by i , i=1,2,…,1000. Now 
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Central limit theorem states that )
n7078.1

5.3nx
(Φ)x(F n

1i
i







. The question is the value of  x 

for which 95.0)x(P
1000

1i
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, that is 95.0)x(F1 n

1i
i





. Solving the equation 

95.0)
10007078.1

5.31000x
(Φ1 




 , 645.1

10007078.1

5.31000x





2.3411x  . Summarizing, the sum of 

1000 throws is at least 3412 with probability 0.95. Although we do not know what happens 

during one experiment, the sum of 1000 experiments can be well predicted. 

 

i.2. Moivre-Laplace formula 

Moivre-Laplace formula is a special form of the central limit theorem, the form applied to 

the cumulative distribution function of binomially distributed random variable. 

 

Theorem (Moivre-Laplace formula) Let )n(k A  be the frequency of the event A 

( )1p0,p)A(P   during n2  independent experiments, that is )n(k A  is binomially 

distributed random variable with parameters n and p. Then, for any Rx ,  

)x(Φ)x
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Proof Recall that 
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A)n( 1k  A with 






erimentsexpiththeduringoccurnotdoesAif0

erimentsexpiththeduringAoccursif1i
A1 . 

i
A1  ,...2,1i  are independent, characteristically distributed random variables with parameter 

p , p)(E i
A 1 , )p1(p)(D i

A 1 . Apply the central limit theorem and we get the statement 

to be proved.  

 

Remarks 

 )x(P   equals the cumulative distribution function of )n(k A  at point x. 

 np))n(k(E A  , )p1(np))n(k(D A  . 

 Moivre-Laplace formula states that )x(Φ)x(F

)p1(np

np)n(kA




 . 

 )
p1(np

npx
(Φ)x(F )n(kA




 , which can be proved as follows: 
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)
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 For any ba  ,  
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 . 

 The approximation is good if  n100  and np10 . 
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Consequently,   knk
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  can be approximated by the help of the 

cumulative distribution function of a normally distributed random variable. The differences 

between the exact and the approximate values can be seen in Fig.i.10. The values of 

parameters are 100n   and 1.0p  . Largest difference between the exact and the 

approximate values is less then 0.01. 
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Figure i.10. The exact and the approximate probabilities and their differences in 

case of binomial distribution 
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probability density function of normally distributed random variable. From analysis one can 

recall that if the function G  is continuously differentiable in ]b,a[ , then 
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which coincides with the probability density function of a normally distributed random 

variable with expectation npm   and dispersion 
)p1(np

1


  at some point 

)1k,k(c  . 

If we choose the middle of he interval, that is  5.0kc   we get  )k)n(k(P A  

)
)p1(np

np5.0k
(

)p1(np

1







. The exact and the approximate probabilities and their 

differences are plotted in Fig.i.11. One can see that the largest difference between the 

approximate and exact probability is less than 0.01. 
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Figure i.11. The exact and the approximate probabilities and their differences in 

case of binomial distribution 

 

Example 

E1. In an airport, the number of tickets sold for a fly is 500. Suppose that all of 

ticket holders are at the checking with probability 0.95 independently of each other. 

Compute the probability that the number of people coming up at the checking is at least 490. 

Let   denote the number of people coming up at the checking.   is binomially distributed 

random variable with parameters 500n   and 95.0p  . The question is )490(P  . Now 

 )500(P...)493(P)492(P)491(P)490(P)490(P

00046.005.095.0
500

500
...05.095.0

491

500
05.095.0

490

500 0500949110490 

























. 

If one applies Moivre-Laplace formula, 

0.001040.998961)
05.095.0500

95.0500490
(Φ1)490(F1)490(P 




  . The difference 

between the exact and approximate probabilities is less than 0.001. One can conclude that 

that the probability of having at least 490 passengers on the fly is very small. More than 500 

tickets may be sold, if the number of places is 500 and we would like to have less than 0.01 

probability for overfilling. 

 

E2. How many tickets may be sold in order to assure that at least 500 passengers be at 

the checking? 

Let n  the number of passengers at the checking in case of n sold tickets. The question is 

the value n  for which 99.0)500(P n  . We require 99.0)501(F
n

 . Applying central 

limit theorem, )
05.095.0n

95.0nx
(Φ)x(F

n



 . Solving equation 99.0)

05.095.0n

95.0n501
(Φ 




 we 
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get 3263 2. 
05.095.0n

95.0n501





, which is a quadratic equation for n. Solving it, we ends in 

n=515. As a control, 

.99.09926.005.095.0
i

515
1)i(P1)i(P)500(P i515i

515

501i

515

501i

515

500

0i

515515 







 





 

E3.  How many passengers are at the checking most likely? Compute/approximate the 

probability belonging to the mode in case of n=515 sold tickets. 

Mode of binomially distributed random variable is       4902.49095.0516p)1n(  , 

as p)1n(   is not integer. 2-25490
515 100585 8.05.095.0

490

515
)490(P 








 . 

Approximating this value by normal cumulative distribution function, we get 

  )490(F)491(F)491490(P)490(P
515515515

078.00.56026 -0.63826 )
05.095.0515

95.0515490
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 . If we apply 

approximation by probability density function, we get  

2-
515 10×8125 7.)

05.095.0515

95.0515490
(

05.095.05152

1
)490(P 







 , which is 

almost the same as the previous approximation. 

 

E4. Flip a fair die 400 times repeatedly. Give approximately the probability that 

the number of heads is at least 480 and less than 520.  

Let 1000  be the frequency of heads in case of 1000 flips. 1000  is binomially distributed 

random variable with parameters 1000n   and 5.0p  . The question is 

)520480(P 1000  , which can be expressed by the cumulative distribution function of 

1000  by the following way: )480(F)520(F)520480(P
100010001000   . Applying 

Moivre-Laplace formula, )
5.05.01000

5.01000x
(Φ)x(F

1000



 , and  
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500520
(Φ)520480(P 1000

7941.01)
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20
(Φ2)
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500480
(Φ)
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500520
(Φ 





. 

Give an interval symmetric to 500 in which the number of heads is situated with probability 

0.99. 

If )250,500(N~ , then 99.0)2505758 2. 5002505758 2. 500(P  . That 

means 99.0)541459 (P 1000  . 

What do you think if you count 455 heads in case of 1000 flips? 

If we realize that the frequency of heads is less than 459, then there are two possibilities . 

First one is that an event with very small probability occurs. The second one is that the coin 

is not fair. People rather trust in the second one. This is the basic thinking of mathematical 

statistics. 

 

At the end of this subsection we present the approximation of Poisson distribution by 

normal distribution. The possibility of that is not surprising: Poisson distribution is the limit 

of binomial distribution. 
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Theorem Let n  be Poisson distributed random variable with parameters nn   .Then 

)x(Φ)x
n

n
(Plim n

n





. 

Proof n  can be written as the sum of n independent Poisson distributed random variables 

with parameter 1 , consequently central limit theorem provides the formula presented 

above. 

 

Remarks 

 Condition nn   is not crucial. Supposing that   is Poisson distributed random 

variable with parameter   and 10 , then )
x

(Φ)x(P



 . 

 Expectation of   )(E , dispersion of   )(D . Roughly spoken, the 

expectations of the approximated and the approximate distributions are the same values. 

Same can be stated about the dispersions. 

 Similarly to the binomially distributed random variable, 

)
k

(Φ)
1k

(Φ)1kk(Pe
!k

)k(P
k












  .The goodness of the 

approximation can be seen in Fig.i.12. in case of 10  and in Fig.i.13. in case of 50 . 
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Figure i.12. The exact and the approximate probabilities and their differences in 

case of Poisson distribution with parameter 10  
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Figure i.13. The exact and the approximate probabilities and their differences in 

case of Poisson distribution with parameter 50  

Example 

 

E5. Working times of a certain part of a machine between consecutive failings are supposed 

to be independent exponentially distributed random variable with expectation 24 hours. If a 
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part goes wrong, it is changed immediately. How many spare parts should be had in order to 

have enough for a time period 90 days with probability 0.99. 

Let T  be denote the failings from time 0t   to T . Recall that T  is Poisson distributed 

random variable with parameter TT  , where   is the parameter of the exponential 

distribution. Actually, if the time unit is day, then 1
1

1

)(E

1

i




 , where i  ,...3,2,1i   

denote the time between the i-1th and ith failings. Consequently, 90  is Poisson distributed 

random variable with parameter 9090  . The question is the value of x for which 

99.0)x(P 90  . )
90

90x
(Φ)x(F)x(P

9090


  . Solving the equation 

99.0)
90

90x
(Φ 


 we get 3263 2.

90

90x



, which implies 07.112903263 2.90x  . 

Consequently, we should have 113 spare parts in order not to run out them with probability 

0.99.  As a control, 0.99172 e
!i

90
)113(P 90

113

0i

i

90  



 , but 

0.98924e
!i

90
)112(P 90

112

0i

i

90  



 . This also supports the goodness of the presented 

method. 

 

i.3. Central limit theorem for the average of independent identically 

distributed random variables 

Central limit theorem was presented for the sum of many independent random variables. 

The average can be computed as a product of a sum and a constant value, consequently, 

central limit theorem can be written for the average, as well. 

 

Theorem Let ,...,...,, n21   be independent identically distributed random variables with 

expectation m)(E i   and dispersion  )(D i , ,...2,1i  . Then,  

)x(Φx

n

m
nPlim

n

1i

i

n


































 for any Rx . 

Proof Notice that  
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 . 

Therefore the statement is the straightforward consequence of the central limit theorem for 

sums. 

 

Remarks 
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 m)
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 is the cumulative distribution function of 
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, that is the 

standardized average. 
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. This can be proved as follows:  
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. 

 The cumulative distribution function of the average can be approximated by 

cumulative distribution function of a normally distributed random variable. The 

expectations of the approximated and the approximate distributions are the same and so are 

their dispersions. 

 Distribution of the averaged random variables can be arbitrary. 

 Approximation can be applied if the number of random variables is at least 100.  

 The fact, that the average is approximately normally distributed random variable 

and data are frequently averaged in statistics, is reason of the leading role of normal 

distribution in statistics. 

 

Example 

E1. Let us suppose that the lifetime of bulbs are independent exponentially 

distributed random variables with expectation 1000 hours. Give and interval symmetric to 

1000 in which the lifetime of one bulb is situated with probability 0.8.  

1000

11
)(E i 


 . As 865.0e1)2000(P 1000

2000

i 



, consequently, the interval looks 

)x1000,x1000(   with 1000x  . 























1000

x1000

1000

x1000

i e1e1)x1000(F)x1000(F)x1000x1000(P
ii

1000

x1000

1000

x1000

ee







 . Solving the equation 8.0ee 1000

x1000

1000

x1000









, we get  

1746 2.e8.0ee 1000

x

1000

x




. Defining the new variable 1000

x

ey   we get 

1746 2.
y

1
y  . This is a quadratic equation for the variable y . Solving it we ends in 
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-0.38993y   and 5645 .2y  . 1000

x

ey   can not be negative, therefore 5645 .2y  . This 

implies 76 941.2.5645) ln(1000x  .  

The interval looks 1.76)(58.24,19476) 941.76,1000 941.1000  .We note that the 

interval is quite large, almost 1900 hours is its length. 

As a control, 

8.0)e1(e1)24.58(F)76.1941(F)76.194124.58(P 1000

24.58

1000

76.1941

i ii





 . 

Give and interval symmetric to 1000 in which the average lifetime of 200 bulbs is situated 

with probability 0.8. 

Turning to the average, 

)y1000(F)y1000(Fy1000
n

y1000P

nn
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Taking into account that 
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, we should determine the value y for 

which 8.0
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1000y1000
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1000y1000
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 holds. This implies  

8.01

200

1000

y
Φ2 



















 , that is 2816.1
1000

200y
 , that is 623.90y  .  

The interval in which the average is situated with probability 0.8 is 

  )1091,909(90.623100090.623,1000  . Notice that its length is about 182 hours, 

which is much less than it was in the case of exponential distribution. 

 

i.4. Central limit theorem for relative frequency 

At the end of this chapter, we present the central limit theory for relative frequency. As the 

relative frequency is the average of independent characteristically distributed random 

variable with parameter p, this form of the central limit theorem is a special case of that 

concerning average. 

 

Theorem Let )n(k A  be the frequency of the event A for which 1p0,p)A(P  , during 

n2  independent experiments. Then, for any Rx , )x(Φx

n

)p1(p

p
n

)n(k

Plim

A

n


























. 

Remarks 
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 p)
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n
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 is the value of the cumulative distribution function of the 

standardized relative frequency. 

 Returning to the relative frequency, 
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1)
)p1(p

n
(Φ2 




 . 

 

It provides possibility to compute  

1. the reliability 1  in the function of   and n , 

2.   (accuracy) in the function of reliability 1  and n  

3. number of necessary experiments (n) in the function of   and 1 . 

 

 This formula can be directly applied if p is known. 

 

Example 

E1. Throw a fair die 500 times repeatedly. Compute the probability that the 

relative frequency of “six” is at least 0.15 and less than 0.18. 

Let A be the event that the result is “six” performing one throw. The question is 

)18.0
500

)500(k
15.0(P A  . Recall that  
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1

6

1
15.0

Φ

500
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6

1

6

1
18.0

Φ)15.0(F)18.0(F)18.0
500

)500(k
15.0(P

500

)500(k

500

)500(k
A

AA

0.630.6294815866.00.78814(-1)Φ-(0.8)Φ  . 
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Making computer simulations, applying 610  simulations, we get approximate value for 

)18.0
500

)500(k
15.0(P A  . This means that 86 10510500   random experiments were 

performed, which required 0.31 sec. Computer simulation resulted in 0.627480. 

 

E2. Throw a fair die repeatedly 500 times. At most how much is the difference 

between the exact probability and the relative frequency with reliability 0.9? 

 Applying 1)
)p1(p

n
(Φ2)p

n

)n(k
(P A 




 , 90.01)

)p1(p

n
(Φ2 




 implies 

645.1
)p1(p

n





. Substituting 500n  and 

6

1
p  , 0274.0

500

6

5

6

1
654.1





 . It means 

that 90.0)1941.0
500

)500(k
1393.0(P)0274.0

6

1

500

)500(k
0274.0

6

1
(P AA  . 

Computer simulation resulted in 0.907078. If we would like to increase the reliability, for 

example, 99.01  , then 99.01)
)p1(p

n
(Φ2 




, 5758.2

6

5

6

1

500





, 0.04293  . 

Consequently, the interval is 0.20960) .12374,0()04293.0
6

1
,04293.0

6

1
(  . We can 

realize that the greater the reliability, the larger the interval. 

 

E3. Throw a fair die 500 times repeatedly. How many throws should be done, if the 

relative frequency of “six” is closer to the exact probability than 01.0  with reliability 0.99? 

Apply again the formula 1)
)p1(p

n
(Φ2)p

n

)n(k
(P A 




  with 01.0  and 

99.01  . 99.01)
)p1(p

n
(Φ2 




 implies 5758.2)

)p1(p

n01.0



, that is 

6

5

6

1

01.0

5758.2
n  , 9215

6

5

6

1

01.0

5758.2
n

2















  instead of 500 experiments. As 

1)
)p1(p

n
(Φ2 




 is monotone increasing function of n, if we increase the value of n, we 

increase the reliability, as well. If we apply the estimation 
2

A

n

)p1(p
1)p

n

)n(k
(P




  

presented in the previous chapter, substituting 01.0  and 
6

1
p   and 

99.0
n

)p1(p
1

2





 we get 13900

01.001.0

6

5

6

1

n
2






  which is about the 1.5 times larger than 

the previously determined simulation number. It means that it is rather worth computing by 

central limit theorem, than by the law of large numbers. 

Note that if we would like to have accuracy 001.0 , then the number of simulation has to 

be 100102   times larger than in the case of 01.0 .  
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We would like to emphasize that in the previous examples the probability of the event A 

was known. But in many cases it is unknown and we would like to approximate the 

unknown probability by the relative frequency. In those cases we can apply upper estimation 

for the probability 1)
)p1(p

n
(Φ2 




. 

Theorem For any value of 1p0  , 1)
)p1(p

n
(Φ21)n2(Φ2 




 . 

Proof If 1p0  , then 
4

1
)p1(p  , moreover 

2

1
)p1(p  . This implies  

)p1(p

n

2

1

n







, that is 

)p1(p

n
n2




 . As Φ is monotone increasing function, so is 

1Φ2  , therefore 
)p1(p

n
n2




  implies 1)

)p1(p

n
(Φ21)n2(Φ2 




 , which 

is the statement to be proved. 

 

Remark 

 

 Formula 1)n2(Φ2  does not contain the unknown value of p , therefore  the 

inequality )p
n

k
(P1)n2(Φ2 A   is suitable for estimating the accuracy, the 

reliability and the necessary number of simulation in the case of unknown p  value. 

 

For the sake of applications, we determine the reliability in the function of n and   , the 

accuracy   in the case of n and reliability 1 , and the necessary number of simulations 

in the function of   and 1 . 

 

1. If n and   are fixed then )p
n

k
(P1)n2(Φ2 A   supply a direct lower 

bound for the reliability.  

2. If n and the reliability 1  are fixed, with the choice  11)n2(Φ2 , 








 
 

2
1Φn2 1  and 

n2

2
1Φ 1








 






. Notice that the accuracy   is proportional to the 

reciprocal of the square root of the number of simulations. We note that y
2

1Φ 1 






 
  

means that 
2

1)y(Φ


 . Summarizing, if 
n2

2
1Φ 1








 






, then )p
n

k
(P1 A  . 

 If the accuracy   and the reliability 1  are fixed, then  11)n2(Φ2  

serves again the formula 
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. If n increases, then 
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the reliability increases supposing   is fixed. If the reliability is fixed and n increases, then 

  decreases. Note that the required number of simulation is proportional to the square of the 

reciprocal of the accuracy. Summarizing, if n
2

2
1Φ

2

1






























 


, then 

)p
n

k
(P1 A  . 

 

Examples 

 

E1. At a survey, 1000n   people are asked about a yes/no question. The 

relative frequency of answer “yes” is 0.35. Estimate the probability that the relative 

frequency is closer to the probability of answer “yes” )p(  than 0.05, that is )4.0p3.0(P  . 

Let A be the event that the answer is yes, p)A(P   is unknown. Recalling 

)p
n

k
(P1)n2(Φ2 A    and substituting 1000n   and 05.0 , 

0.99922 )100005.02(Φ21)n2(Φ2  . Therefore, )05.0pk(P0.99922 A  . 

 

E2. At a survey, 1000n   people are asked about a yes/no question. How much 

is the largest difference between the relative frequency and the exact probability p  with 

reliability 95.0 ? 

We have a formula for accuracy, namely 
n2

2
1Φ 1








 






. Now, 95.01  , 

975.0
2

1 


 , 96.1
2

1Φ 1 






 
  and 031.0

10002

96.1

n2

2
1Φ 1










 


. That means 

)031.035.0
1000

k
031.035.0(P95.0 A  . This is the reason why surveys publish the 

results with %3  in case of 1000 people. 

 

E3. At a survey 1000n  some people are asked about a yes/no question. If we 

need accuracy 01.0  with reliability 0.95, how many people should be asked to be able to 

do this? 

Apply n
2

2
1Φ

2

1






























 


 with 01.0 , 95.01  . 

960498
01.02

96.1

2

2
1Φ

2

2

2

1








































 


. 

This is the reason why 10000people are asked to have accuracy 01.0  with reliability 0.95. 
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Summarizing our result, in case of n9604 , )35.0p34.0(P)01.0p
n

k
(P95.0 A  .  

Of course, the above questions should have been asked for computer simulation as well. The 

main difference between survey and computer simulation is that the number of simulation 

can be easily increased but the increment of number of people asked at a survey requires lots 

of money.  

 

Finally we present Tables i.1.and i.2., which contain the required number of simulations for 

given accuracy, in case of reliability levels 95.01   and 99.01  . These reliability 

levels are often used in practice. In Tables i.3. and i.4., we present accuracy at given 

numbers of simulation. 

95.01   

n   

10 0.3099 

100 0.098 

500 0.043827 

1000 0.03099 

5000 0.013859 

10000 0.0098 

50000 0.0043827 

100000 0.003099 

500000 0.0013859 

1000000 0.00098 

500000 0.00043827 

1000000 0.0003099 

5000000 0.00013859 

10000000 0.000098 

50000000 0.000043827 

100000000 0.00003099 

Table i.1.The accuracy in the function of number of simulations in case of reliability 

level 0.95 

 

99.01   

n   

10 0.40727 

100 0.12879 

500 0.05 7597 

1000 0.040727 

5000 0.018214 

10000 0.012879 

50000 0.005 7597 

100000 0.0040727 

500000 0.0018214 

1000000 0.0012879 

500000 0.0005 7597 

1000000 0.00040727 

5000000 0.00018214 

10000000 0.00012879 

50000000 0.00005 7597 

100000000 0.000040727 

Table i.2.The accuracy in the function of number of simulations in case of reliability 

level 0.95 
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95.01   

  n 

0.1 97 

0.05 385 

0.025 1537 

0.01 9604 

0.005 38416 

0.0025 153660 

0.001 960400 

0.0005 3841600 

0.00025 15366000 

0.0001 96040000 

 

Table i.3.Necessary number of simulations to a given accuracy in case of reliability 

level 0.95 

 

99.01   

  n 

0.1 166 

0.05 664 

0.025 2654 

0.01 16587 

0.005 66347 

0.0025 265390 

0.001 1658700 

0.0005 6634700 

0.00025 26539000 

0.0001 165870000 

 

Table i.4.Necessary number of simulations to a given accuracy in case of reliability 

level 0.99 
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j. Basic concepts of mathematical statistics  

 

The aim of this chapter 

 

In this chapter we present the basic concepts of mathematical statistics 

and we sketch of some branches of it. We introduce empirical cumulative 

distribution function, empirical density function, estimations of 

expectations and dispersions. We also present how to test hypothesis in 

some case.  

 

Preliminary knowledge 

 

Properties of average. Normal distribution. Student’s t distribution. Chi-

squared distribution. 

 

Content 

 

j.1. Empirical cumulative distribution functions and histogram.  

 
j.2. Estimation of probability, expectation and variance. 

 

j.3. Testing hypothesis 
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j.1. Empirical cumulative distribution function and histogram 

In the previous chapters we have dealt with probabilities. In this last section we present how 

to draw conclusions from data on the basis of probabilistic argumentations. As the 

cumulative distribution function contains all information about the random variable, our 

primary aim is to approximate it on the basis of data. Data have dual nature, before 

performing the sampling they are random variables, after performing the sampling they are 

real numbers as the results of observations of a random phenomenon. The statistical 

methods are executed on the numbers, but they are elaborated for the random variables.  

 

First, clarify the concept of sample. 

 

Definition Sample is a series of independent observations concerning a random variable 

 *. More precisely, sample is ),...,,( n21  , i  n,...,2,1i   are independent identically 

distributed random variable with common distribution function F . The number of 

elements of the sample equals n. 

 

Definition Let the values of the sample be n21 x,...,x,x , Rx i  , i=1,2,…,n. Empirical 

cumulative distribution function belonging to the values of the sample )x,...,x,x(x n21  

is defined as   RR:F x,...,x,x 
n21

  

 

n

1

)z(F)z(F

n

1i

zx

ex,...,x,x

i





n21

. 

 

Remarks 

 Argument of the function is denoted by z because the letter x is related to the 

sample. 

   )z(F x,...,x,x n21
 is briefly denoted by )z(Fe . 

 Cumulative distribution function is the relative frequency of the event  z  if we 

perform independent experiments for this event. 

 

n
)z(F

n

1i

zx

e

i






1

 is a staggered function 

which has jumps at ixz  . It is constantly zero previous to the smallest element of the 

sample, and it is constantly 1 following the greatest one.  

 The elements of the sample ji xandx  may be equal. 

 The function )z(Fe  has all properties of cumulative distribution function. 

Namely,  

1.    






 
n

1i

yx

n

1i

zx ii
11  for any values of yz  , which implies monotone 

increasing property. 

2. Its limit is zero at   and 1 at  . 

3. It is left hand-side continuous. Consequently, it is really cumulative 

distribution function. 
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 The random variable 















n

1

n

1

n

1

x..xx

~
n21

 has the same cumulative 

distribution function if ix  are all different. If some ix  values are repeatedly in the sample, 

then the probability belonging to this value is the relative frequency of this element in the 

sample. 

 

Example 

E1. Let the elements of the sample be ,12x1  10x 2  , ,15x3   12x 4  , 13x5  . 

Draw the empirical cumulative distribution function belonging to these sample elements. 

 



































z15if1

15z13if
5

4

13z12if
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e
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This function can be seen in Fig.j.1. 
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Figure j.1. Empirical distribution function belonging to the sample elements 

in E.1. 

 

Theorem If )z(Fe  is the empirical cumulative distribution function belonging to the sample 

elements )x,....,x( n1  and )z(F  is the cumulative distribution function of i , ,...3,2,1i   , 

then for any value of Rx  and 0 , 1))z(F)z(F(P e   if n . 

Proof Let A be the event that the random variable  * is less than z, that is  zA  * . 

Now )z(Fe  is the relative frequency of A during n independent trials. Moreover, 

)A(P)z(F  . The law of large numbers states that the relative frequency of an event and the 

probability of that are close to each other, that is 

01
n

))z(F1)(z(F
1))z(F)z(F(P

2e 



 , supposing n . 
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Remarks 

 The above theorem is the consequence of the law of large numbers.  

 The theorem states that the values of the cumulative distribution function can be 

approximated by the empirical cumulative distribution function. The necessary number of 

simulations to a given accuracy can be determined by applying the central limit theorem 

presented in the previous section. For example, if 01.0 , then 9604n  , if the reliability 

level is 0.95. 

 

Example 

E1. Let *  be exponentially distributed random variable with parameter 1 . 

Take a sample of n elements independently with respect to * . Draw the empirical 

cumulative distribution function of the sample if n=10 and n=100 and 1000n  . 

The empirical cumulative distribution functions together with the exact one can be seen in 

Figs.j.2. and j.3. 
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Figure j.2. Empirical distribution function belonging to an exponentially distributed sample 

of 10 and 100 elements 
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Figure j.3. Empirical distribution function belonging to an exponentially distributed sample 

of 1000 elements and a segment of the function 

 

One can realize that there is hardly difference between the exact cumulative distribution 

function and the empirical one if the number of sample elements is large. 

 



 

 

Probability theory and math.statistics     Basic concepts of mathematical statistics 

 

179 

E2. The exact cumulative distribution function and the empirical one is presented in Fig. 

j.4. in case of 









5.05.0

10
~ . The number of sample elements was n=10 and n=100. 
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Fig.j.4. Empirical cumulative distribution function (blue) and exact one (red) in case of 10 

and 100 sample elements 

 

One can see that if the number of elements is large, then they are close to each other. 

 

The following statement is a stronger one than the previously proved statement. We present 

it without proof. 

 

Theorem (Glivenko) 

If  )z(Fe  is the empirical cumulative distribution function belonging to the sample elements 

)x,....,x( n1  and )z(F  is the cumulative distribution function of *  and i , ,...3,2,1i  . 

Then 0)z(F)z(Fsup e
Rz




 if n  with probability 1. 

 

Remarks 

 Glivenko’s theorem is often used as fundamental theorem of mathematical statistics. 

 Its philosophical interpretation is that the world is knowable. 

 The main differences of the Glivenko’s theorem and the theorem presented at the 

beginning of the section are that this later states uniform convergence (not for any z  

separately) and states probability 1 (strong law of large numbers). 

 Test for distribution function can be given on the maximal difference called as 

Kolmogorov-Smirnov’s test, and will be presented in the last subsection. 

 

Now we turn to the approximation of probability density function by histogram. Histograms 

were used for presentation of relative frequencies. We usually compared them to the 

probability density functions. 
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Definition Let n21 x,...,x,x  be value of the sample. Let i
n,..,2,1i

xmina


 , i
n,..,2,1i

xmaxb


  and 

m1  fixed. Then consider points 
m2
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ay0
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iyy 1ii


  , m,...,2,1i  . Let 
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otherwise0

m,...,2,1i)y,y[zif

m

ab

1
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)m,n(k

)z(f
i1i

i

e .  

The function )z(f e  is called as histogram with m equally lengthen subintervals belonging 

to the sample elements n21 x,...,x,x . 

 

Remarks 

 Histogram strongly depends on the value of m. If m is too small or too large as 

compared to n the shape of the graph of histogram will not be appropriate. To see this, we 

present Fig.j.5. The number of sample elements sample was n=100 in all cases. The sample 

was uniformly distributed, m=4, m=10, m=50 and m=100. The sample elements were the 

same in case of all histograms. 
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Figure j.5. Histograms of a sample of 100 elements in case of 5 and 11 subintervals  
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Figure j.6. Histograms of a sample of 100 elements in case of m=50 and m=100 

 

If the number of sample elements is 10000 and they are uniformly distributed in [0,1], then 

the histograms for 4m  , 10m  , 50m   and 100m  looks as follows: 
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j.5. Histograms of sample of 10000 elements in case of 5 and 11 subintervals 
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j.5. Histograms of sample of 10000 elements in case of 51 and 101 subintervals 

 

The histograms belonging to 4m   and 10m   seem to be better approximations of the 

probability density function of uniformly distributed random variable. The high of the first 

and last rectangular is the half of the others because the smallest value of the sample is 

about zero, the first subinterval is ]05.0,05.0[ , and 

05.0)05.00(P)05.005.0(P  , while 1.0)15.005.0(P  . The last 

subinterval is ]05.1,95.0( , 05.0)05.195.0(P  . 

 

 Although there are many theorems concerning the relationship of the empirical 

cumulative distribution function and the real cumulative distribution function, it is difficult 

to give limit theorem concerning the histogram and the probability density function. In 

abstruse phrasing, for appropriate fixed m values, the histogram is close the real probability 

density function, if n is large. Examples were presented in section g. 

 

j.2. Estimation of probability, expectation and variance 

 

After approximating the cumulative distribution function and the probability density 

function, we estimate the probability of an event, furthermore the expectation and the 

variance of a random variable. This will be done by a function of the sample. 

Definition Let ),...,,( n21   be sample and RRH:g n   a real valued function 

with HIm  . Then )(gg   is called statistics. 
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Remarks 

 Statistics are the function of the sample. The question in which cases which function 

should be applied is important question of mathematical statistics. 

 The function RΩ:g   is a random variable, and )x,...x,x(g n21  is a real 

number. The dual property appears in this case, as well. 

 

Estimation of probability  

 

Let ),...,,( n21   be a sample, i  
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  the sample average It can be considered 

as the relative frequency of an event A  with p)A(P  . Now, 
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))(g(D 


 . Consequently, if we estimate the 

probability )A(Pp   by 
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^








 , then the expectation of the estimation equals 

the exact probability p  and the dispersion of the estimation tends zero if n . These two 

properties implies the consistency of the estimation, which means that the estimate value 

fluctuates around the value to be estimated and the fluctuation tends zero if the number of 

sample elements tends to infinity. 

Moreover, applying the central limit theorem, for n100 , np10 , we can write that 
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Summarizing, the interval  

 

 

contains the exact probability p with probability (reliability level) 1 . This interval is 

usually called as confidence interval for the probability belonging to the reliability level 

1 . 
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Remarks 

 We list the values u  for some frequently used reliability levels 1 , and give 

confidence intervals for the probability  in case of  relative frequency 450.0
n

n

1i

i




  and 

n=500 in Table j.1. 

 

1  
u  Confidence interval 

0.9 1.645  0.487 0.413,  

0.95 1.960  0.493 0.406,  

0.98 2.326  0.5020.398,  

0.99 2.575  507.0,393.0  

 

Table j.1. Values u  and confidence intervals for the probability belonging to reliability 

level 1  

 

 The larger the reliability, the wider the interval. 

 

Estimation of the expectation in case of known value of dispersion 

 

Let ),...,,( n21   be a sample, i  are random variables with expectation m  and 

dispersion  . Let RR:g n   
n

y
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 . Then 
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sample average. Now,   m
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 . Consequently, if we 

estimate the expectation by the sample average, then  m)
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 , and 
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 . This means that the sample average is consistent estimation for the 

expectation. Note that the sample average is the expectation belonging to the empirical 

cumulative distribution function. Moreover, if ),m(N~i  , or n100 , then 

)
n

,m(N~
n

n

1i
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 , or this holds approximately. Applying the k  law with notation 
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 uk , we get 
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is an interval in which the expectation m is situated with probability 1 ,  It is called as 

confidence interval of the expectation belonging to the reliability level 1 . 

 

Remarks 

 

 The above formula can be applied in the case when the dispersion is given.  

 If we have the sample elements )x,...,x,x( n21 , we have to substitute these values 

into the formula 





































n
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n
,

n
u

n

n

1i

i

n

1i

i

 to get the confidence interval for the 

expectation belonging to the reliability level 1 . For example, if 5.1x1  , 7.1x 2  , 

4.1x3  , 9.1x 4  , 7.1x5   then  

64.1
5

7.19.14.17.15.1

5

xxxxx 54321 





. The confidence interval 

belonging to the reliability levels 9.0 , 95.0 , 98.0 and 99.0 are contained in the Table j.2. 

 

1  
u  









 

5

2.0
u64.1,

5

2.0
u64.1  

0.9 1.645  1.787 1.493,  

0.95 1.960  815.1,465.1  

0.98 2.326  848.1,432.1  

0.99 2.575  871.1,409.1  

Table j.2. Confidence intervals for the expectation in case of reliability level 1  

 

 If the reliability level is increased, then the length of the interval increases, as well. 

 If the number of sample elements tends to infinity, the length of the confidence 

interval tends to zero. 

 If the accuracy is given, we can compute the necessary number of sample elements 

to a given reliability level. For example, if we would like to have a confidence interval to 
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the reliability level 0.99 with length 0.1, then  
2

1.0

n
u 


 , n

05.0

u
2








  , that is . 

n1072.0
05.0

576.2
2









 . The number of the necessary elements is proportional to the 

variance and to the square of the reciprocal of the accuracy. 

 

If the dispersion of the random variable is not known then we have to estimate it on the 

basis of the sample. 

 

Estimation of the variance and the dispersion  

 

As the sample average is the expectation belonging to the empirical distribution function, it 

is coherent idea to estimate the variance 2  by the variance belonging to the empirical 

distribution function. 
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Consequently, 
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),...,,(s n21
2 *  is briefly denoted by 2s * . It can be proved that if )(E

4

i  exists, then 

0)),...,,(s(D n21
22 * , if n . Summarizing, 2*s  is consistent estimation of the 

variance. Now it is worth estimating the dispersion by the statistics 

 

1n
),...,(s),...,(s

n

1i

2

i

n21
2

n21







** . 

Definition The statistics 
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*  is called as corrected empirical 

dispersion. 

 

To construct confidence interval for the variance and the dispersion we state the following 

theorem without proof (Fisher-Cochran’s theorem) 

Theorem If  ),m(N~i  , then 2
1n2

n21
2

~
),...,(s

)1n( 





*
, furthermore   and 

),...,(s n21
2 *  are independent random variables. By definition of Student’s t 

distribution (see chapter g), this also implies that 1n

n21

~n
),...,(s

m






*
. 

 

Remarks 

 2
n  distributed random variables were presented in Chapter g. The explicit forms of 

their cumulative distribution functions are not usually used. There are tables (see Table 3.) 

which contain the real values 2
,n   for which   )(P 2

,n  supposing 2
n~  . This means 

that   1)(P 2
,n . These values 2

,n   are called as critical values belonging to the 

reliability level 1 . 

 By the help of the critical values belonging to 
2

1


  and 
2


 one can construct an 

interval in which the values of 2
n  distributed random variable are situated with probability 

1  . Namely, )(P 2
2/,n

2
2/1,n   . These intervals will be used to construct such 

intervals in which variance and dispersion are situated with probability 1 . 
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If  ),m(N~i  , then 
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. Summarizing, supposing normally 

distributed samples or large number of elements, the confidence interval for the variance 

belonging to the reliability level 1  looks like  
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and that for the dispersion it is  
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Remarks 

 Due to the central limit theorem, the assumption of normally distributed sample can 

be omitted if n is large. 

 If we have the value of the sample, we can construct the confidence intervals for the 

variance and the dispersion by the following steps: compute the value of 2*s , find the 

critical value belonging to the reliability levels 
2


 and 

2
1


 , then substitute them into the 

formulae in the boxes. 

 For example, assuming normally distributed sample, if 5.1x1  , 7.1x 2  , 

4.1x3  , 9.1x 4  , 7.1x5   then 64.1x   and 
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64.17.164.19.164.14.164.17.164.15.1
22222

0.038  .  

Confidence intervals belonging to the reliability levels 9.0 , 95.0 , 98.0 and 99.0  are 

included in Table j.3. 
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0.9 0.711 9. 488  0.214 0.016,   0.462,0.127,  

0.95 0.484 8. 496  0.314,0.018   0.560 0.134,  
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0.98 0.297 13.277  512.0,011.0   0.715 0.107,  

0.99 0.207 14. 86  734.0,010.0   0.857 0.101,   

Table j.3. Critical values and confidence intervals for the variance and dispersion in case 

of reliability levels 1  

 

 The greater reliability, the larger interval.  

 

Finally let us return to the estimation of the expectation in case of unknown dispersion. 

 

Estimation of the expectation in case of unknown dispersion 

 

Taking the sample average does not require the knowledge of the dispersion. Furthermore, 

estimating the expectation by the sample average, m)
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  holds in the case of unknown value of  , as well. 

 

Turning to the confidence interval for the expectation, apply Fisher-Cochran’ theorem and 

the formula 1n~n
s

m




*
 in case of normally distributed samples. 

There are tables of Student’s t distribution, in which one can find the real numbers ,t n  , 

for which   1)ttt(P ,nn,n . The value ,t n  is called as critical value belonging 

to the reliability level 1 . Now, 
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*
. Arranging both 

sides of the inequalities we ends in 
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Summarizing, the confidence interval for the expectation belonging to the reliability level 

1  is 








 







n

st
,

n

st ,1n,1n **
. 

 

Remarks 

 Note that the confidence intervals for the expectation are very similar in the cases of 

known and unknown dispersion. In case of unknown dispersion,   is replaced by its 

estimation, *s , and the critical value is  ,t 1n  instead of u . 

 The larger the reliability level, the larger the interval. 

 The larger the number of elements, the smaller the critical value. 

 The limit of the critical values ,nt  are u , that is 


 utlim ,n
n

.This is due to the 

statement that the cumulative distribution functions of Student’s t distributed random 

variables is the cumulative function of a standard normally distributed random variable. 
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 The confidence intervals belonging to a given reliability level can be constructed 

after executing the following steps: compute *s  on the basis of the sample, find the critical 

value and substitute into the above formula. In case of normally distributed sample and 

5.1x1  , 7.1x 2  , 4.1x3  , 9.1x 4  , 7.1x5  , 64.1x   and 0.038 *s  . The 

confidence intervals belonging to the reliability levels 9.0 , 95.0 , 0.98 and 0.99 are 

presented in Table j.5. 

 

1  
,4t  








 







5

st
,

5

st ,4,4 **
 

0.9 1. 533  774 1. 506, 1.  

0.95 2. 132  826.1,454 1.  

0.98 2. 999  901 1. 378, 1.  

0.99 3. 747  967 1. ,313 1.  

 

Table j.5. Critical values and confidence intervals for the expectation in case of unknown 

value of dispersion 

j.3. Testing hypothesis 

An important branch of mathematical statistics is testing hypothesis. Hypothesis is an idea 

about the value of probability, expectation, dispersion, a parameter or about the cumulative 

distribution function itself. We check that the hypothesis can be true or not, more exactly, 

data contradict to the hypothesis or not. The main idea of testing hypothesis is the following: 

if the hypothesis holds, then a certain function of the sample has a known distribution. This 

implies that one can determine an interval in which the function of the sample is situated 

with a given reliability 1 . If the hypothesis does hold, the values of the function (test 

function) are out that interval with probability  . The mentioned interval is called as 

acceptation region; its compliment is the critical region. Then, check whether the test 

function is really in the acceptation region. If it is, then the data do not contradict to the 

hypotheses. If it is not, two reasons for this may happen: the hypothesis does not hold or the 

hypothesis holds and an event with small probability   occurs. Statisticians vote for the 

later one, hence we do not accept the hypothesis, because we rather trust in the alternative 

than in the occurrence of rare event. Of course, the decision may be wrong. 

The name of the basic idea is null hypotheses ( 0H ), the name of the opposite is alternative 

hypothesis )H( 1 . They have to be mutually exclusive but they may not cover all 

possibilities concerning the parameter. For example, 0H  is that the probability of an event is 

0.4, the alternative hypothesis is that the probability of the event is smaller than 0.4.  

Decision, whether we accept (fail to reject) 0H  or reject it, may be right or wrong. 

Following four cases can be distinguished: 

 

 
0H  is accepted 0H  is rejected 

 0H  is true Right decision Wrong decision 

0H  is not true Wrong decision Right decision 

Table j.6. Possibilities concerning the decisions in testing a hypothesis 
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Decision that 0H  is true, although it is rejected is called as error of the first kind (type I. 

error), its probability is  . The probability of the first kind error is usually called as the 

level of significance.  

Decision that 0H  is not true, although it is not failed to reject is called as error of the second 

kind (type II. error). Its probability depends on the value of the tested parameter, for 

example. Consequences of the different kind of errors are of various severities. 

 

Remarks 

 Usually applied significance levels are 05.0  and 01.0 . 

 Some test functions are connected with the statistics presented in the previous 

subsection. 

 The elaborated tests can be executed as a recipe in the kitchen. Their steps are the 

followings: 

State 0H  and 1H , fix the level of significance. 

Determine the critical region and the acceptance region. 

Compute the actual value of the test function by substituting the values of the sample 

elements into the test function. 

Check weather the actual value of the test function is in the critical region or in the 

acceptance region. 

Make your decision: if the actual value of the test function is in the critical region, reject 

0H , if it is in the acceptance region, accept 0H . 

 If 0H  is accepted, then 0H  may be untrue but the data do not contradict to this 

assumption. If you doubt in 0H  you should take a sample of more elements. 

 

In the latest part of this subsection we present tests for the probability, expectation, variance 

and cumulative distribution function. We explain the task, present the test function, critical 

and acceptance region and decision itself in all cases, separately.  

 

Test for the probability 

 

During this problem we have to decide about the probability of an event, whether it can be a 

fixed number or not. Let ),...,,( n21    be the sample, 






erimentexpiththeatoccursAif0

erimentexpiththeatoccursAif1
1

i

Ai . Now , 



n

1i

Ai )n(k , the frequency of 

A , and 
n

)n(k

n

A

n

1i

i




  its relative frequency.  

Let ,p)A(P:H 00   01 p)A(P:H  , where 0p  is the idea about the probability of the event. 

If n100 , 0np10  is satisfied, then by the central limit theorem we can state, that 

)1,0(N~

n

)p1(p

p
n

)n(k

00

0
A





 supposing that 0H  holds. Consequently, let the test function 
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n

)p1(p

p
n

)n(k

u

00

0
A





 . If 0H  holds, then 




  1)u

n

)p1(p

p
n

)n(k

u(P

00

0
A

, where 

2
1)u(Φ


 , coinciding with the previous subsection. Critical region is 

     ,uu,  and acceptance region is   u,u . Critical value u  and its 

opposite are the bounds of the critical region. If the actual value of  

n

)p1(p

p
n

)n(k

00

0
A





 is in the 

interval   u,u , then 0H  is accepted, in the opposite case 0H  is rejected and 1H  is 

accepted. The level of significance equals  . 

 

Let 00 p)A(P:H   and 01 p)A(P:H   one sided alternative hypothesis. Then, if 0H  holds, 

then )1,0(N~

n

)p1(p

p
n

)n(k

00

0
A





, and 




  1)

n

)p1(p

p
n

)n(k

u(P

00

0
A

2  supposing n100 , 

0np10 . The critical region is   2u, , the acceptance region is    ,u 2 . If the 

actual value of the test function 

n

)p1(p

p
n

)n(k

00

0
A





 is at least  2u , then we accept 0H , if it is 

under  2u  we reject 0H  and we accept 1H . Data rather support that 0p)A(P   and they 

contradict to 0p)A(P  .  

 

Remarks 

 Alternative hypothesis pp:H 01   can be similarly handled. 

 The smaller the significance level, the larger the acceptance region.  

 The larger the number of sample elements, the smaller the value of 
n

)p1(p 00 
 

and the larger of its reciprocal. Consequently, smaller difference can be accepted between 

the relative frequency and the real probability in case of small number of sample elements. 

Same difference between the relative frequency and the real probability may result in 

acceptance of 0H  for small number of elements of sample and in rejection of 0H  in case of 

large number of elements of the sample. 

 Acceptance of 0H  in case of two sided alternative hypothesis and rejection of 0H  

in case of one sided alternative hypothesis may happen at the same significance level  . 

Example will be presented later. 

 Same difference between the relative frequency and the real probability may result 

in acceptance of 0H  for small number of elements of sample and in rejection of 0H  in case 

of large number of elements of the sample. 
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Example  

 

E1. Let the relative frequency of an event A during n independent experiment be 

35.0 . Test the hypothesis 4.0)A(P:H0   and 4.0)A(P:H1   in case of significance levels 

1.0 , 05.0 , 01.0 and number of sample elements 100n  , 300n  , 600n  . 

Results are included in Table j.7. 

 
n,  

u  Critical region Actual value of 

the test function 

Decision 

1.0 , 

n=100 

1.645     ,645.1645.1,  -1. 0206 
0H  is accepted 

1.0 , 

n=300 

645.1      ,645.1645.1,  -1. 7678 
0H  is rejected, 

1H  is accepted 

1.0 , 

n=600 

645.1      ,645.1645.1,  -2. 5 
0H  is rejected, 

1H  is accepted 

05.0 , 

n=100 

1.96     ,96.196.1,  -1. 0206 
0H  is accepted 

05.0 , 

n=300 

1.96     ,96.196.1,  -1. 7678 
0H  is accepted 

05.0 , 

n=600 

1.96     ,96.196.1,  -2. 5 
0H  is rejected, 

1H  is accepted 

01.0 , 

n=100 

576.2      ,576.2576.2,  -1. 0206 
0H  is accepted 

01.0 , 

n=300 

576.2      ,576.2576.2,  -1. 7678 
0H  is accepted 

01.0 , 

n=600 

576.2      ,576.2576.2,  -2. 5 
0H  is accepted 

Table j.7. Testing hypothesis 4.0p   with two sided alternative hypothesis 

 

E2. Let the relative frequency of an event A during n independent experiment be 35.0 . 

Test the hypothesis 4.0)A(P:H0   and  4.0)A(P:H1  in case of significance levels 

1.0 , 05.0 , 01.0 and number of elements of the samples 100n  , 300n  , 

600n  . Results are included in Table j.8. 

 
n,  

2u  Critical 

region 

Actual value of the test 

function 

Decision 

1.0 , 

n=100 

282.1   282.1,  -1. 0206 
0H  is accepted 

1.0 , 

n=300 

282.1   282.1,  -1. 7678 
0H  is rejected, 1H  is 

accepted 

1.0 , 

n=600 

282.1   282.1,  -2. 5 
0H  is rejected, 1H  is 

accepted 

05.0 , 

n=100 

1.645  645.1,  -1. 0206 
0H  is accepted 

05.0 , 

n=600 

1.645  645.1,  -1. 7678 
0H  is rejected, 1H  is 

accepted 

05.0 , 1.645  645.1,  -2. 5 
0H  is rejected, 1H  is 
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n=600 accepted 

01.0 , 

n=100 

326.2   326.2,  -1. 0206 
0H  is accepted 

01.0 , 

n=300 

326.2   326.2,  -1. 7678 
0H  is accepted 

01.0 , 

n=600 

326.2   326.2,  -2. 5 
0H  is rejected, 1H  is 

accepted 

Table j.8. Testing hypothesis 4.0p   with one sided alternative hypothesis 

 

 Test for the expectation in case of known value of dispersion 

 

Let ),...,,( n21   be a sample, i  are random variables with expectation m  and with 

known dispersion  . We would like to check weather 00 mm:H   holds or conversely, 

01 mm:H  . If ),m(N~i   or n100 , then )1,0(N~

n

m
n

n

1i

i








. Consequently, if 0H  

holds, then 
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n

m
nuP
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. The critical region is      ,uu, , the 

acceptance region is   u,u . Using the test function 

n

m
nu

0

n

1i

i












, if the actual value 

of the test  function is in the critical region 0H  is rejected, if it is in the acceptance region 

0H  is accepted. 

If the alternative hypothesis is 01 mm:H  , then the critical region is   2u, , the 

acceptance region is    ,u 2 . If the actual value of the test function 

n

m
nu

0

n

1i

i












 is in 

the acceptance region, then 0H  is accepted, if it is in the critical region, 0H   is rejected and 

1H  is accepted. 

 

Remarks 

 The alternative hypothesis mm:H 01   can be similarly handled. 

 The smaller the significance level, the larger the acceptance region. 



 

 

Probability theory and math.statistics     Basic concepts of mathematical statistics 

 

194 

 The larger the number of elements of the sample, the smaller difference 

between the average and the real expectation can be allowed if 0H  is accepted. 

 The necessary number of elements of the sample to detect difference    

between the real and the hypothetical expectation is n
u

2












 . It is proportional to 

variance and the square of the reciprocal of the difference to detect. 

 The case when applying two sided alternative hypothesis 0H  is rejected and 

applying one sided alternative hypothesis 0H  is accepted may occur. 

 The test function requires the knowledge of the dispersion.  

 

Example 

E3. Let ),m(N~i  . Let us assume that the dispersion of the random variable 

investigated equals 1.2. Sample average is supposed to be computed as 100.5. Test the 

hypothesis that 100m:H0   and 100m:H1   if the level is significance is 1.0 , 

05.0 , 01.0  and the number of sample elements are 10n  , 30n  , 50n  . 

Results are included in Table j.9. 

 
n,  

u  Critical region  Actual value of 

the test function 

Decision 

1.0 , 

n=10 

1.645     ,645.1645.1,  1. 3176 
0H  is accepted 

1.0 , 

n=30 

645.1      ,645.1645.1,  2. 2822 
0H  is rejected, 

1H  is accepted 

1.0 , 

n=50 

645.1      ,645.1645.1,  2. 9463 
0H  is rejected, 

1H  is accepted 

05.0 , 

n=10 

96.1      ,96.196.1,  1. 3176 
0H  is accepted 

05.0 , 

n=30 

1.96     ,96.196.1,  2. 2822 
0H  is rejected, 

1H  is accepted 

05.0 , 

n=50 

1.96     ,96.196.1,  2. 9463 
0H  is rejected, 

1H  is accepted 

01.0 , 

n=10 

2.576     ,576.2576.2,  1. 3176 
0H  is accepted 

01.0 , 

n=30 

576.2      ,576.2576.2,  2. 2822 
0H  is accepted 

01.0 , 

n=50 

576.2      ,576.2576.2,  2. 9463 
0H  is rejected, 

1H  is accepted 

 

Table j.9. Testing hypothesis 10m   with two sided alternative hypothesis 

 

E4. Let ),m(N~i  . Let us assume that the dispersion of the random variable 

investigated equals 1.2. Sample average is supposed to be computed as 100.5. Test the 

hypothesis that 100m:H0   and m100:H1  , if the level is significance is 1.0 , 

05.0 , 01.0  and the number of sample elements are 10n  , 30n  , 50n  . 

Results are in Table j.10. 
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n,  
2u  Critical 

region  

Actual value of the test 

function 

Decision 

1.0 , 

n=10 

282.1   ,282.1  1. 3176 
0H  is rejected 

1.0 , 

n=30 

282.1   ,282.1  2. 2822 
0H  is rejected, 1H  is 

accepted 

1.0 , 

n=50 

282.1   ,282.1  2. 9463 
0H  is rejected, 1H  is 

accepted 

05.0 , 

n=10 

1.645  ,645.1  1. 3176 
0H  is accepted 

05.0 , 

n=30 

1.645  ,645.1  2. 2822 
0H  is rejected, 1H  is 

accepted 

05.0 , 

n=50 

1.645  ,645.1  2. 9463 
0H  is rejected, 1H  is 

accepted 

01.0 , 

n=10 

326.2   ,326.2  1. 3176 
0H  is accepted 

01.0 , 

n=30 

326.2   ,326.2  2. 2822 
0H  is accepted 

01.0 , 

n=50 

326.2   ,326.2  2. 9463 
0H  is rejected, 1H  is 

accepted 

Table j.10. Testing hypothesis 10m   with one sided alternative hypothesis 

 

Test for the expectation in case of unknown value of dispersion 

 

Let ),...,,( n21   be the sample, i  are random variables with expectation m  and 

dispersion   but the value of the dispersion is unknown. Let us assume that ),m(N~   or 

the number of the elements of the sample is large. We would like to check weather 

00 mm:H   holds or conversely, 01 mm:H  . If ),m(N~i   or n100 , then 

)1,0(N~
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m
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1i
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. As we do not know the value of  , we can not compute the actual 

value of  the above statistics. If we use *s  instead of  , 1n
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The critical region is      ,tt, ,1n,1n , the acceptance region is   ,1n,1n t,t . 

Using the test function 

n

s

m
nt

0

n

1i

i

*










, if the actual value of the test  function is in the 

critical region 0H  is rejected, if it is in the acceptance region 0H  is accepted. 

If the alternative hypothesis is 01 mm:H  , then the critical region is   2t, , the 

acceptance region is    ,t 2 . If the actual value of the test function, that is 

n

s

m
n

x

0

n

1i

i

*






, 

is in the acceptance region, then 0H  is accepted, if it is in the critical region, 0H   is rejected 

and 1H  is accepted. 

If  00 mm:H   and  01 mm:H  , then the critical region is )t,( 2,n   and acceptance 

region is    ,t 2 . If the actual value of the test function is in the acceptance region, then 

0H  is accepted, if it is in the critical region, 0H   is rejected and 1H  is accepted. 

 

Remarks 

 Alternative hypothesis mm:H 01   can be similarly handled. 

 The smaller the significance level, the larger the acceptance region. 

 The larger the number of elements of the sample, the smaller difference between the 

average and the real expectation can be allowed if 0H  is expected. 

 The case when applying two sided alternative hypothesis 0H  is rejected and applying 

one sided alternative hypothesis 0H  is accepted may occur. 

 Note that test functions in case of known and unknown dispersion are very similar.  

 

Example 

 

E5. Let ),m(N~i  . Let us assume that the corrected empirical dispersion computed 

from the sample equals 1.2. Sample average is supposed to be 100.5. Test the hypothesis 

that 100m:H0   and 100m:H1  , if the level is significance are 1.0 , 05.0 , 

01.0  and the number of sample elements are 10n  , 30n  , 50n  . 

The results can be seen in Table j.11. 

 
n,  

t  Critical region  Actual value 

of the test 

function 

Decision 

1.0 , n=10 1. 383     ,383 1.383 1.,  1. 3176 
0H  is 

accepted 

1.0 , n=30 1. 311     ,311.1311.1,  2. 2822 
0H  is 

rejected, 1H  

is accepted 



 

 

Probability theory and math.statistics     Basic concepts of mathematical statistics 

 

197 

1.0 , n=50 1. 299     ,299 1.299 1.,  2. 9463 
0H  is 

rejected, 1H  

is accepted 

05.0 , 

n=10 

1. 311     ,311.1311.1,  1. 3176 
0H  is 

rejected, 1H  

is accepted 

05.0 , 

n=30 

1. 833     ,833.1833.1,  2. 2822 
0H  is 

rejected, 1H  

is accepted 

05.0 , 

n=50 

1. 699     ,699.1699.1,  2. 9463 
0H  is 

rejected, 1H  

is accepted 

01.0 , 

n=10 

2. 821     ,821 2.821 2.,  1. 3176 
0H  is 

accepted 

01.0 , 

n=30 

2. 462     ,462 2. 462 2. ,  2. 2822 
0H  is 

accepted 

01.0 , 

n=50 

2. 405     ,405 2.405 2.,  2. 9463 
0H  is 

rejected, 1H  

is accepted 

Table j.11. Testing hypothesis 100m   in case of unknown dispersion with two sided 

alternative hypothesis 

 

E6. Let ),m(N~i  . Let us assume that corrected empirical dispersion computed by 

the sample equals 1.2. Sample average is supposed to be 100.5. Test the hypothesis that 

100m:H0   and m100:H1   if the level is significance are 1.0 , 05.0 , 01.0  

and the number of sample elements are 10n  , 30n  , 50n  .  

Results can be followed in Table j.12.  
n,  

2t  Critical region  Actual value 

of the test 

function 

Decision 

1.0 , n=10 0.883  ,0.883  1. 3176 
0H  is rejected 

1.0 , n=30 0.854  ,0.854  2. 2822 
0H  is 

rejected, 1H  is 

accepted 

1.0 , n=50 0.849  ,0.849  2. 9463 
0H  is 

rejected, 1H  is 

accepted 

05.0 , 

n=10 

1. 383  ,383.1  1. 3176 
0H  is 

accepted 

05.0 , 

n=30 

1. 311  ,311.1  2. 2822 
0H  is 

rejected, 1H  is 

accepted 

05.0 , 

n=50 

1. 299  ,299.1  2. 9463 
0H  is 

rejected, 1H  is 
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accepted 

01.0 , 

n=10 

398 2.   ,398.2  1. 3176 
0H  is 

accepted 

01.0 , 

n=30 

150 2.   ,150 2.  2. 2822 
0H  is rejected 

1H  is 

accepted 

01.0 , 

n=50 

110 2.   ,110 2.  2. 9463 
0H  is 

rejected, 1H  is 

accepted 

Table j.12. Testing hypothesis 100m   in case of unknown dispersion with one sided 

alternative hypothesis 

 

 

Test for the value of variance 

 

Let ),...,,( n21   be a sample, i  are random variables with expectation m  and 

dispersion  .  We would like to check weather 2
0

2
0 :H   holds or conversely, 

2
0

2
1 :H  . Recall that if ),m(N~i   or n is large, then 2

1n2
0

2

~
*s)1n(





 supposing 

0H  holds. Consequently, 



  1)

*s)1n(
(P 2

2/,1n2
0

2
2

2/1,1n . The test function is 

2
0

2
2 *s)1n(




 . The critical region is   ),(,0 2

2/,1n
2

2/1,1n   , the acceptance region 

is  2
2/,1n

2
2/1,1n ,   . If the actual value of the test function is in the acceptance region 0H  

is accepted, if it is in the critical region, 0H  is rejected and 1H  is accepted. 

If the alternative hypothesis is 2
0

2
1 :H  , then 




  1)

s)1n(
(P

2
0

2
1,1n

2
*

. Now, 

critical region is ),( 2
1,1n   , acceptance region is  2

1,1n,0  . If the actual value of the 

test function is in the acceptance region, 0H  is accepted, if it is in the critical region, 0H  is 

rejected and 1H  is accepted. 

Finally, if the alternative hypothesis is 22
01 :H  , then apply 





 1)

*s)1n(
(P 2

,1n2
0

2

. Now, critical region is  2
,1n,0  , acceptance region is 

   ,2
,1n . If the actual value of the test function is in the acceptance region, 0H  is 

accepted, if it is in the critical region, 0H  is rejected and 1H  is accepted. 

 

E7. Let ),m(N~i  . Let us assume that corrected empirical dispersion computed by 

the sample equals *s =1.3. Test the hypothesis that 1.1:H0   and 1.1:H1   if the level 

is significance are 1.0 , 05.0 , 01.0  and the number of sample elements are 

10n  , 30n  , 50n  . 
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n,  
2/1   

2/  Critical region  Actual 

value of 

the test 

statistics 

Decision 

1.0 , 

n=10 

16. 919 3. 325     919, 16.3.325,0  12. 57 
0H  is 

accepted 

1.0 , 

n=30 

42. 557 17. 708     557, 42.708 17.,0  40. 504 
0H  is 

accepted 

1.0 , 

n=50 

66. 339 33. 93     557, 42.93 33.,0  68. 438 
0H  is 

rejected, 

1H  is 

accepted 

05.0 , 

n=10 

19. 023 2. 7004     19.023,93 3.7004.2,0  12. 57 
0H  is 

accepted 

05.0 , 

n=30 

45. 722 16. 047     45.722,16047,0  40. 504 
0H  is 

accepted 

05.0 , 

n=50 

70. 222 31. 555     222, 70.555 31.,0  68. 438 
0H  is 

rejected, 

1H  is 

accepted 

01.0 , 

n=10 

23. 589 1. 7349     23.589,7349.1,0  12. 57 
0H  is 

accepted 

01.0 , 

n=30 

52. 336 13. 121     52.336,121.13,0  40. 504 
0H  is 

rejected 

1H  is 

accepted 

01.0 , 

n=50 

78. 231 23. 983     231, 78.983.23,0  68. 438 
0H  is 

accepted 

Table j.13. Testing hypothesis 1.1  with two sided alternative hypothesis 

 

E8. Let ),m(N~i  . Let us assume that corrected empirical dispersion 

computed by the sample equals *s =1.3. Test the hypothesis that 1.1:H0   and 

1.1:H1  if the level is significance are 1.0 , 05.0 , 01.0  and the number of 

sample elements are 10n  , 30n  , 50n  .  

 
n,  

  Critical region  Actual 

value of 

the test 

statistics 

Decision 

1.0 , 

n=10 

14. 684  684, 14.  12. 57 
0H  is accepted 

1.0 , 

n=30 

39. 087  087, 39.  40. 504 
0H  is rejected, 1H  is 

accepted 

1.0 , 

n=50 

62. 038  038, 62.  68. 438 
0H  is rejected, 1H  is 

accepted 

05.0 , 16. 919  919, 16.  12. 57 
0H  accepted 
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n=10 

05.0 , 

n=30 

42. 557  557, 42.  40. 504 
0H  is accepted 

05.0 , 

n=50 

66. 339  339, 66.  68. 438 
0H  is rejected, 1H  is 

accepted 

01.0 , 

n=10 

21. 666  , 666 21.  12. 57 
0H  is accepted 

01.0 , 

n=30 

49. 588  588, 49.  40. 504 
0H  is rejected 

1H  is accepted 

01.0 , 

n=50 

74. 919  919, 74.  68. 438 
0H  is accepted 

Table j.12. Testing hypothesis 2.1  with one sided alternative hypothesis 

 

 

Kolmogorov-Smirnov’ test for the cumulative distribution function 

 

Finally, we present Komogorov-Smirnov’ test to test the distribution of the sample. Namely, 

the hypothesis is that the cumulative distribution function is a given function or data 

contradict to that. To do that we use the maximum difference between the empirical 

distribution function constructed by the sample and the hypothetical distribution function. 

Let ),...,,( n21   be the sample, its values are n21 x,...,x,x . Let  )z(Fe  be the 

empirical distribution function constructed on the basis of the sample. Let the null 

hypothesis be 00 FF:H   and 01 FF:H  . If 0H  holds, then 

)y)z(F)z(Fsupnlim(P)y(K e
Rzn




 can be given for any value of y. The values of this 

function are included in Table 4. 

Therefore, if 0H  holds,, fixing the value 1 , then one can find the value k  for which 

 




1)k)z(F)z(Fsupniml(P e

Rz
n

. The critical region is   ,k , acceptance region 

is  k,0 . Test function is )z(F)z(Fsupn e
Rz




. If the actual value of the test function is in 

the critical region then 0H  is rejected, if it is in the acceptance region 0H  is accepted. 

Referring to the shape of the empirical distribution function, the supremum can be computed 

as the maximal difference of the cumulative distribution function and the empirical 

distribution function and its right hand side limit at the points of the values of the sample. 

Consequently, it is enough to compute the values of the empirical distribution function at 

the points of the sample values, the right hand side limit of that at the same points, 

furthermore the values of the empirical distribution function and their limits at these points. 

Taking the differences, and their maximum we get the actual value of the test function.  

 

Example 

 

E9. Let the elements of the sample be 2x1  , 5.0x 2  , 1.0x3  , 7.0x 4  , 2.0x5  . 

Test that z
0 e1)z(F:H  , z

1 e1)z(F:H  . 

First note that the basis of Kolmogorov’s test is an asymptotic theorem, hence it is not 

recommended using for a sample of 5 elements. Nevertheless, for the sake of simplicity we 

do that.  
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Empirical cumulative distribution function is 






























z2if1

2z7.0if8.0

7.0z5.0if6.0

5.0z2.0if4.0

2.0z1.0if2.0

1.0zif0

)z(Fe . 

 

ix  )x(F ie  )z(Flim e
xz i 

 )x(F i0  )x(F)x(F i0ie   
)x(F)z(Flim i0e

xz i




 

0.1 0 0.2 0.095 0.195 0.105 

0.2 0.2 0.4 0.181 0.019 0.219 

0.5 0.4 0.6 0.393 0.077 0.277 

0.7 0.6 0.8 0.503 0.097 0.297 

2 0.8 1 0.865 0.065 0.135 

Table j.13. Testing hypothesis ze1)z(F   

 

One can see that 195.0)x(F)x(Fmax i0ie  , 297.0)x(F)z(Flimmax i0e
xz i




, therefore 

297.0)x(F)x(Fmax 0e
Rx




. The actual value of the test function is 664.0297.05  . 

 

The critical values for 1.0 , 05.0 , 01.0  are , consequently 0H  is accepted in all 

cases of level of significance. One can check that the hypothesis z1.1
0 e1)z(F:H    is 

also excepted on the basis of this data. This means that conclusion „ 0H  is accepted” means 

that data do not contradict to the hypothesis.  

 

Of course, many other tests exist for testing hypothesis, but their presentations are out of the 

frame of this booklet. 
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Cumulative distribution function of standard normally distributed 

random variables 
)x(P)x(Φ   

)1,0(N~  
 

x .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 

3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993 

3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 

3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997 

3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998 

3.5 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 

3.6 .9998 .9998 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 

3.7 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 

3.8 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 

Table 1. Cumulative distribution function of standard normally distributed random 

variables 
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Critical values of Student’s t distributed random variables 

 
 ),t(P n  

n~   

 
n\  0.2 0.1 0.05 0.025 0.01 0.001 

1 3.078 6.314 12.706 25.452 63.657 636.621 

2 1.886 2.920 4.303 6.205 9.925 31.599 

3 1.638 2.353 3.182 4.177 5.841 12.924 

4 1.533 2.132 2.776 3.495 4.604 8.610 

5 1.476 2.015 2.571 3.163 4.032 6.869 

6 1.440 1.943 2.447 2.969 3.707 5.959 

7 1.415 1.895 2.365 2.841 3.499 5.408 

8 1.397 1.860 2.306 2.752 3.355 5.041 

9 1.383 1.833 2.262 2.685 3.250 4.781 

10 1.372 1.812 2.228 2.634 3.169 4.587 

11 1.363 1.796 2.201 2.593 3.106 4.437 

12 1.356 1.782 2.179 2.560 3.055 4.318 

13 1.350 1.771 2.160 2.533 3.012 4.221 

14 1.345 1.761 2.145 2.510 2.977 4.140 

15 1.341 1.753 2.131 2.490 2.947 4.073 

16 1.337 1.746 2.120 2.473 2.921 4.015 

17 1.333 1.740 2.110 2.458 2.898 3.965 

18 1.330 1.734 2.101 2.445 2.878 3.922 

19 1.328 1.729 2.093 2.433 2.861 3.883 

20 1.325 1.725 2.086 2.423 2.845 3.850 

25 1.316 1.708 2.060 2.385 2.787 3.725 

30 1.310 1.697 2.042 2.360 2.750 3.646 

35 1.306 1.690 2.030 2.342 2.724 3.591 

40 1.303 1.684 2.021 2.329 2.704 3.551 

50 1.299 1.676 2.009 2.311 2.678 3.496 

60 1.296 1.671 2.000 2.299 2.660 3.460 

70 1.294 1.667 1.994 2.291 2.648 3.435 

80 1.292 1.664 1.990 2.284 2.639 3.416 

90 1.291 1.662 1.987 2.280 2.632 3.402 

100 1.290 1.660 1.984 2.276 2.626 3.390 

  1.282 1.645 1.960 2.241 2.576 3.291 

Table 2. Critical values of Student’s t distributed random variables 
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Critical values of 2  distributed random variables 

 

  )(P 2
,n  

2
n~   

 

n\  0.999 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.001 

1 .00 .00 .00 .00 .02 2.71 3.84 5.02 6.63 10.83 

2 .00 .02 .05 .10 .21 4.61 5.99 7.38 9.21 13.82 

3 .02 .11 .22 .35 .58 6.25 7.81 9.35 11.34 16.27 

4 .09 .30 .48 .71 1.06 7.78 9.49 11.14 13.28 18.47 

5 .21 .55 .83 1.15 1.61 9.24 11.07 12.83 15.09 20.52 

6 .38 .87 1.24 1.64 2.20 10.64 12.59 14.45 16.81 22.46 

7 .60 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48 24.32 

8 .86 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09 26.12 

9 1.15 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67 27.88 

10 1.48 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21 29.59 

11 1.83 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.72 31.26 

12 2.21 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22 32.91 

13 2.62 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69 34.53 

14 3.04 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14 36.12 

15 3.48 5.23 6.26 7.26 8.55 22.31 25.00 27.49 30.58 37.70 

16 3.94 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00 39.25 

17 4.42 6.41 7.56 8.67 10.09 24.77 27.59 30.19 33.41 40.79 

18 4.90 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34.81 42.31 

19 5.41 7.63 8.91 10.12 11.65 27.20 30.14 32.85 36.19 43.82 

20 5.92 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57 45.31 

25 8.65 11.52 13.12 14.61 16.47 34.38 37.65 40.65 44.31 52.62 

30 11.59 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 59.70 

35 14.69 18.51 20.57 22.47 24.80 46.06 49.80 53.20 57.34 66.62 

40 17.92 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69 73.40 

50 24.67 29.71 32.36 34.76 37.69 63.17 67.50 71.42 76.15 86.66 

60 31.74 37.48 40.48 43.19 46.46 74.40 79.08 83.30 88.38 99.61 

70 39.04 45.44 48.76 51.74 55.33 85.53 90.53 95.02 100.43 112.32 

80 46.52 53.54 57.15 60.39 64.28 96.58 101.88 106.63 112.33 124.84 

90 54.16 61.75 65.65 69.13 73.29 107.57 113.15 118.14 124.12 137.21 

100 61.92 70.06 74.22 77.93 82.36 118.50 124.34 129.56 135.81 149.45 

 

Table 3.Critical values of 2 distributed random variables 
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Kolmogorov’s function 

 

)y)z(F)z(Fsupnlim(P)y(K e
Rzn




 

 

 

y .01 .02 .03 .04 .05 .06 .07 .08 .09 

0.4 .003 .004 .005 .007 .010 .013 .016 .020 .025 

0.5 .036 .043 .050 .059 .068 .077 .088 .099 .110 

0.6 .136 .149 .163 .178 .193 .208 .224 .240 .256 

0.7 .289 .305 .322 .339 .356 .373 .390 .406 .423 

0.8 .456 .472 .488 .504 .519 .535 .550 .565 .579 

0.9 .607 .621 .634 .647 .660 .673 .685 .696 .708 

1.0 .730 .741 .751 .761 .770 .780 .789 .798 .806 

1.1 .822 .830 .837 .845 .851 .858 .864 .871 .877 

1.2 .888 .893 .898 .903 .908 .912 .916 .921 .925 

1.3 .932 .935 .939 .942 .945 .948 .951 .953 .956 

1.4 .960 .962 .965 .967 .968 .970 .972 .973 .975 

1.5 .978 .979 .980 .981 .983 .984 .985 .986 .986 

1.6 .988 .989 .989 .990 .991 .991 .992 .992 .993 

1.7 .994 .994 .995 .995 .995 .996 .996 .996 .996 

1.8 .997 .997 .997 .998 .998 .998 .998 .998 .998 

1.9 .999 .999 .999 .999 .999 .999 .999 .999 .999 

 

Table 4. Kolmogorov’s function 

 


