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CONTENTS 1

Notations
k, t normal lower case letters: scalar quantities
i, . . . , n (generally) integer quantities
v bold face, lower case: (column) vector
vi i-th component of vector v
vT transpose of v: a row vector
A bold face, capital: matrix
ai row i of matrix A (row vector!)
aj column j of matrix A
aij entry of matrix A at the intersection of row i and column j
m (generally) number of rows in a matrix or the dimension of a vector
n (generally) the number of columns in a matrix
Rm m dimensional Euclidean space of real numbers
Rm×n m× n dimensional Euclidean space of real numbers
F calligraphic capital: set
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Introduction

When learning a new discipline it is equally important to study the theoretical foundations
and also to practice the newly acquired knowledge by solving relevant problems. The
purpose of this collection is the assist the latter.

Operations research is a relatively new discipline. Sometimes it is referred to as the
science of decision making. As such, it is really application oriented though the theoreti-
cal foundations are based on unique mathematical techniques and algorithms. There exist
several textbooks on operations research even in Hungarian. Recently a new tendency
has emerged to help students in their studies by providing teaching material in English.
Publishing the current notes belongs to this trend.

The approach of these notes is different to other ones. This set is particularly meant for
advanced studies. In order to help the users some theoretical background is provided at the
front of some chapters in Part I, mostly for the simplex method of linear programming as
we deal with advanced solution algorithms. Volume restrictions do not make it possible to
provide extensive material and the number of exercises is also limited, while the scope of
operations research is rather wide. Thus, this collection is the result of some compromises.
However, we believe, even with these restrictions it can be of great help to interested
parties.

Users of these notes are assumed to have some prior knowledge of the theoretical
background of relevant areas, mostly in linear algebra and calculus. Successful comple-
tion of a introductory courses in optimization and, in particular, game theory are also
necessary.

The main areas covered by these notes are based on the most commonly used algo-
rithms in operations research. Naturally, there are several areas out of the scope of these
notes but the successful completion of these exercises yields a well-founded knowledge
for the learners. The principles covered here can enhance the understanding of other
books and publications. Generally these notes can help logistic students to improve their
knowledge, since transportation oriented problems are highlighted in a separate section.

These notes are divided into two parts. Part I contains the problems by subject areas.
In some cases a summary of the relevant theoretical background is provided. In Part II the
same structure is used. The description of problems is repeated here for easier reference
followed by the solution. Typically, for the first (or first few) problems model answers are
given so that the user can check the process of the solution. It enables him/her to solve
similar problems without any difficulty.
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The notes are not connected to any textbook. This is why some theory is also given
before the exercises are provided. Where such a summary is missing the user is supposed
to be knowledgeable about the topic or should do some exploratory work.

Current version of the notes will regularly be extended by adding new exercises and,
maybe, including more chapters of operations research. The version number of the notes
will change accordingly.

Veszpr July 2013

The Authors



Part I

Problems and Exercises
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Chapter 1

Basics of background of operations
research

1.1 Linear algebra

1.1.1 Exercises
1. What does triangle inequality say for the norms of two m dimensional vectors a

and b?

2. Which of the following pairs of vectors are orthogonal? Why?

(a) [1, 2] and [−1, 1],

(b) [2, 5, 1] and [−3, 1, 1],

(c) [0, 1,−1.98] and [1, 0.99, 1/2],

(d) [3, 5, 3,−4] and [4,−2, 2, 2].

3. Express b as a linear combination of a1 and a2.

(a) b = [4, 5], a1 = [1, 3]T and a2 = [2, 2]T ,

(b) b = [1,−2], a1 = [2, 1]T and a2 = [5, 5]T ,

(c) b = [1,−2], a1 = [2,−3]T and a2 = [2,−8]T ,

(d) b = [2,−15], a1 = [3,−4]T and a2 = [14, 6]T .

4. Which of the following sets of vectors are linearly independent:

(i) [1, 5], [2, 3];

(ii) [2, 1,−3], [−1, 1,−6], [1, 1,−4].

5. Show that vectors a1 = [2, 3, 1]T , a2 = [1, 0, 4]T , a3 = [2, 4, 1]T , a4 = [0, 3, 2]T

are linearly dependent.

7
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6. For each of the following statements, determine whether it is true or false. Justify
your answer.

(i) A basis must contain 0.

(ii) Subsets of linearly dependent sets are linearly dependent.

(iii) Subsets of linearly independent sets are linearly independent.

(iv) If λ1v1 + λ2v2 + · · ·+ λnvn = 0 then all scalars λj are zero.

(v) Any set of m vectors containing the null vector is linearly dependent.

(vi) The dot product of two, linearly dependent, nonzero vectors a,b ∈ Rm is
always equal to zero.

(vii) If a matrix is multiplied by a diagonal matrix, the result does not depend on
the order of multiplication.

(viii) The product of two square matrices is always defined.

7. Answer the following questions:

(a) How is the rank of an m× n matrix defined?

(b) What is the relationship between the row rank and column rank of an m × n
matrix A?

(c) What does full rank of an m× n matrix A mean?

8. Answer the following questions:

(a) How is the basis of a vector space defined?

(b) What is the size of a basis in Rn? Is a basis unique for Rn?

(c) Which, if any, of the following systems of vectors are bases in R3:

(i) [1, 3, 2], [3, 1, 3], [2, 10, 2].
(ii) [1, 2, 1], [1, 0, 2], [2, 1, 1].

9. Answer the following questions:

(a) How is the p-norm of a vector v ∈ Rm defined? What are the important
special cases?

(b) What does the triangle inequality say for the norms of two compatible matrices
A and B?

10. Determine norms ‖A‖1 and ‖A‖∞ of the given matrix A:

(a)

A =

 −9 2 3
−4 8 6
1 5 7

 .
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(b)

A =

 5 −8 3
−10 2 1

1 6 −8

 .

(c)

A =

 3 4 −2
−6 −4 1
4 3 9

 .

(d)

A =

 2 5 −2
−6 4 1
3 −3 7

 .

11. Solve the following system of equations using Gauss-Jordan elimination. Identify
basic variables. Express all solutions in terms of non-basic variables.

2x1 + x2 − x3 + 2x4 − x5 = −2
4x1 + 2x2 + 3x4 − 2x5 = 2
x1 + x2 + x3 + x4 + x5 = 3

12. For

A =

[
1 0 4

−3 2 5

]
, u =

 1
2

−1

 , v =

[
2
3

]
,

decide which of the following products are defined, and compute them:

(a) Au, (b) Av, (c) ATv, (d) uTv, (e) uvT .

13. Given matrices A and B:

A =

[
1 a
b 1

]
, B =

[
c 1
1 d

]
,

where a, b, c and d are scalars. Compute AB−BA.

Give conditions for AB = BA.

14. Under what conditions are the following matrix equalities true?

(a) (X+Y)2 = X2 + 2XY +Y2.

(b) (X+Y)(X−Y) = X2 −Y2.

15. Prove the following statements:
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(a) Show that for any m× n matrix A, both ATA and AAT are symmetric. Give
the dimensions of these matrices.

(b) Show that matrix ATA is positive semidefinite.

(c) Let A,B and C be nonsingular matrices. Prove that (ABC)−1 = C−1B−1A−1.

(d) Prove that (ABC)T = CTBTAT .

16. How is the inverse of a matrix defined? Which matrices have an inverse? What are
the main properties of the inverse?

1.2 The linear programming problem

1.2.1 Summary of theoretical background for this section
1.2.1.1 General form of LP problems

There are n decision variables x1, x2, . . . , xn called the structural variables of the LP
problem.

A linear function (called objective function) of these variables is to be minimized
subject to linear constraints:

min z = c1x1 + · · ·+ cnxn or z =
n∑

j=1

cjxj

The general constraints that involve more than one variable can have lower and upper
limits:

Li ≤
n∑

j=1

aijxj ≤ Ui, i = 1, . . . ,m,

where m is the number of such constraints. Individual constraints on variables (bounds)
in the general form look like:

`j ≤ xj ≤ uj j = 1, . . . , n.

Any of the lower bounds (Li or `j) can be −∞. Similarly, any of the upper bounds (Ui or
uj) can be +∞.

If uj = +∞ and `j is finite xj is called plus type variable, PL.
If `j = −∞ and uj is finite, then xj is of minus type, MI. An MI variable can be

converted into PL by multiplying it by −1.
If both `j and uj are finite, i.e., `j ≤ xj ≤ uj, then xj is called bounded variable,

BD. Special sub-case: `j = uj = xj. Such an xj is called fixed variable, FX.
If `j = −∞ and uj = +∞, i.e., −∞ ≤ xj ≤ +∞, xj is called unrestricted or free

variable, FR.
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Finite lower bounds on variables can be shifted to zero (translation).

If a variable takes a value within its bounds it is said to be at feasible level.

Based on the finiteness of the individual bounds of variables it is worth distinguishing
4 types of variables:

Feasibility range Type Reference
xj = 0 0 Fixed

0 ≤ xj ≤ uj 1 Bounded
0 ≤ xj ≤ +∞ 2 Nonnegative

−∞ ≤ xj ≤ +∞ 3 Free

General constraints can also be classified based on the finiteness of Li and Ui.

If Li = −∞ and Ui is finite:
∑n

j=1 a
i
jxj ≤ Ui. It is an LE, less than or equal to type

constraint that can be converted into equation: zi +
∑n

j=1 a
i
jxj = bi with bi ≡ Ui and

zi ≥ 0.

If Ui = +∞ and Li is finite: Li ≤
∑n

j=1 a
i
jxj which is known as GE or greater than

or equal to type constraint. Denoting bi = −Li, the equivalent form:
∑n

j=1(−aij)xj ≤ bi.

It can be converted into equation: zi +
∑n

j=1(−aij)xj = bi with zi ≥ 0.

If both Li and Ui are finite then we have two general constraints Li ≤
∑n

j=1 a
i
jxj

and
∑n

j=1 a
i
jxj ≤ Ui. They are equivalent to a general and an individual constraint:

zi +
∑n

j=1 a
i
jxj = Ui with 0 ≤ zi ≤ (Ui − Li). This is called a range constraint, RG.

Denoting bi = Ui and ri = (Ui −Li): zi +
∑n

j=1 a
i
jxj = bi with 0 ≤ zi ≤ ri. True even

if Li = Ui in which case zi = 0. This is referred to as an equality constraint, EQ.

If Li = −∞ and Ui = +∞ then with arbitrary bi, formally: zi +
∑n

j=1 a
i
jxj = bi

with zi unrestricted (free). This is called a non-binding constraint, NB.

With the addition of a proper zi logical variable each constraint becomes an equality.
Logical variables fall into the same 4 classes as the structural ones (see above).

By the introduction of logical variables any general constraint can be brought into the
form (computational form #1, CF #1) of:

min z =
n∑

j=1

cjxj

s.t. zi +
n∑

j=1

aijxj = bi, for i = 1, . . . ,m

and the type constraints on xj and zi variables.
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1.2.2 Exercises

1. Convert the following linear programming constraints into equalities. Indicate the
type of the associated logical variable. Try to combine constraints if possible.

2x1 − 3x2 + 4x3 − 5x4 ≤ 6 (1.1)
x1 + x2 − 3x3 − x4 ≤ −6 (1.2)

3x1 + x3 − x4 ≥ 2 (1.3)
−2x2 + 3x4 ≥ −1 (1.4)

2x3 + x4 ≤ 9 (1.5)
2x3 + x4 ≥ 4 (1.6)

12 ≥ 3x1 − x2 + x3 + 2x4 ≥ 5 (1.7)
x1 + x2 + x3 + x4 ./ 8 (1.8)
x1 + x2 − x3 − x4 = 0 (1.9)

Symbol ./ indicates “nonbinding” (NB) constraints.

2. Convert the following set of LP constraints to computational form #1. Indicate the
type of newly introduced variables (if any). Try to combine constraints if possible.

x1 + 2x3 ≤ 1− x4 (1.10)
2x1 + x2 − 3x3 − x4 ≤ −1 (1.11)

3x1 + x3 − x4 ≥ 0 (1.12)
x1 + 2x3 + x4 ≥ −1 (1.13)

9 ≥ 2x1 − x2 + x3 − 2x4 ≥ −1 (1.14)
x1 + x2 + x3 + x4 ./ 0 (1.15)
x1 + x2 − x3 = x4 (1.16)

Symbol ./ indicates “nonbinding” (NB) constraints.

3. The following LP problem has two general constraints and four variables:

2x1 − 3x2 + 4x3 − 5x4 ≤ 6

3x1 − 4x2 + 2x3 + 2x4 ≥ 5

−1 ≤ x1 ≤ 0, x2 ≥ 0, x3 ≤ −2, x4 free.
Convert the joint constraint into equalities. Reverse minus type variables, if any,
shift all finite lower bounds to zero. Indicate the type of newly created variables.
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4. Consider the following linear programming problem:

min −2x1 + 4x2 − 12x3

s.t.: −2x1 + 4x2 − 2x3 = 0
4 ≥ x1 − 3x2 + x3 ≥ 12

3x1 − 6x2 + 2x3 ≥ 5
x1 ≥ −2, x2 ≥ 0, −1 ≤ x3 ≤ 1

Convert the joint constraint into equalities. Reverse minus type variables, if any,
shift all finite lower bounds to zero. Indicate the type of newly created variables.
Don’t forget to convert the objective function too.

5. What is the approximate number of potentially different bases for an LP problem
with 27 constraints (m = 27) and 81 variables (n = 81).

Hint: use the Stirling formula

k! ≈
√
2πk

(
k

e

)k

.

Take π = 3.14 and e = 2.71 (calculator needed).

6. A chemical plant can produce 5 different types of fertilizer, F-1, . . . , F-5. The pro-
duction requires labour, energy, and processing on machines. These resources are
available in limited amounts. The company wants to determine what quantities to
produce that maximize the monthly revenue, assuming that any amount can be sold.
The following table describes the technological requirements of producing one unit
(tonne) of each product, the corresponding revenue and the monthly availability of
the resources.

F-1 F-2 F-3 F-4 F-5 Limit
Revenue 5 6 7 5 6
Machine hour 2 3 2 1 1 1050
Labour hour 2 1 3 1 3 1050
Energy 1 2 1 4 1 1080

For instance, to produce one tonne of F-3 1 unit of energy is needed.

Formulate the linear programming model of the problem.

7. A cattle farmer wants to minimize feeding costs while making sure the animals get
the necessary weekly quantities of the four main nutrients. They are available in
three stocks according to the following table.
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St-1 St-2 St-3 Required
Unit cost 8 9 7
Nutr-1 4 3 2 600
Nutr-2 1 3 3 550
Nutr-3 2 2 0 400
Nutr-4 4 5 7 800

For instance, one unit of St-2 contains 2 units of nutrient 3. Column “Required”
contains the minimum weekly requirements. One additional constraint is that no
more than 300 units of St-1 is available per week.

Formulate the linear programming model of the problem.

8. A cargo company is preparing a ship with three stowages: front deck, rear deck
and main stowage. Each stowage has a weight limit and a space capacity with the
following limits:

Stowage Weight (t) Space (m3)
Front deck 10 10000
Rear deck 6 4500
Main stowage 20 8000

The following four cargoes are waiting to be shipped:

Cargo Available quantity (t) Volume (m3/t) Profit ($/t)
C1 12 480 190
C2 10 550 220
C3 20 390 170
C4 16 600 250

Any proportion of the cargoes can be accepted if they are delivered. Formulate an
optimization problem to maximize the profit of the delivery.

9. The HR staff of a hospital would like to calculate the minimal number of nurses
required for appropriate operation. The nurses are scheduled weekly in three shifts
(6:00-14:00, 14:00-22:00, 22:00-06:00). The hospital needs nurses all the time, the
minimum number of nurses required in a working week is given for each shift in
the following table:

Mon Tue Wed Thu Fri Sat Sun
Morning 8 9 7 11 8 6 5
Afternoon 9 7 8 10 4 3 3
Night 4 3 3 4 3 2 2
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The work schedule of a nurse must meet the following requirements:

• Each nurse is assigned in the same shift (morning, afternoon or night) during
a working period.

• The working period of a nurse consists of five consecutive days during any
seven day long period.

Formulate an optimization problem that helps the HR staff determine the minimal
number of nurses.

10. An electric company runs two coal-fired power plants, a new and an old one. These
plants use different technologies. So, burning a ton of coal costs $20 in the new
plant or $15 in the old plant. They produce 6150 kW/h or 5500 kW/h of electricity,
respectively, while burning a ton of coal. There are three coal mines in the area.
The monthly available amounts, supplier prices ($) and the transportation costs ($)
are given in the following table:

Mine Available amount (t) Price $/t

Expensive 400 70
Faraway 600 55
Fair 300 60

Also the transportation costs (in $) for a ton of coal are different depending on the
physical locations of the mines and the plants:

New plant Old plant
Expensive 8 15
Faraway 30 25
Fair 12 13

Formulate a linear programming problem to maximize the monthly profit of the
plants, if the selling price of 1 kW/h power is $0.1 and each plant has a capacity
limit of 500 tons for a month, assuming there is no loss in the produced amounts.

11. A company is considering three new products to replace current ones that are being
discontinued. Management wants to determine which mix of these new products
should be produced while observing three factors: long-run profit, stability of the
workforce, and the level of capital investment in the new equipment. The goals in
quantitative terms are: profit should be at least e125M, current level of employ-
ment of 4000 workers should be maintained, and the capital investment should not
exceed e55M. Since goals may not be achievable, management decides to include
the following penalties for the deviations. Penalty of 5 units for eache1M for miss-
ing the profit level; 2 units per 100 employees for going over employment goal and
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4 units for going under the same goal; 3 units per e1M for exceeding the capital
investment goal.

It is assumed that the contribution of each new product to profit, employment and
capital investment level is proportional to the rate of production (linearity assump-
tion). The contributions per unit rate are the following:

Contribution Penalty
P1 P2 P3 Goal per unit

Long-run profit 12 9 15 at least 125 (in millions) 5
Employment level 5 3 4 exactly 40 (in hundreds) 2(+), 4(–)
Capital investment 5 7 8 at most 55 (in millions) 3

Set up a goal programming model for the problem. Hint: watch for the nature of
the different goals (‘at least’, ‘exactly’, ‘at most’).

12. The Father & Son haulage company is planning an extension of its fleet. Three
types of trucks are included in the plan with the following characteristics:

Type Load capacity Cost
(tons) (e1000)

Light 5 18
Medium 10 34
Large 20 55

Market analysis shows it would be desirable to add 10 light, 12 medium and 8 large
models. The total capacity expansion should be around 300 tons and the total cost
is limited to e1,000,000.

Write a goal programming model for the above problem if

• the financial constraint cannot be exceeded,

• it is equally undesirable to underachieve the number of light and medium mod-
els and overachieve the number of large models,

• it is undesirable to overachieve or underachieve the 300 ton goal of capacity
expansion, underachievement being twice as bad as overachievement,

Explain your work.



Chapter 2

Graphical solution of linear
programming problems

2.1 Exercises

1. Find graphically the feasible region of the following linear programming problem.

max x1 + x2

subject to −0.5x1 + x2 ≤ 3
2x1 + x2 ≤ 8

x1, x2 ≥ 0.

Can you visually identify the optimal solution of this problem?

2. An auto company manufactures cars and trucks. Each vehicle must be processed in
the paint shop and body assembly shop. If the paint shop were only painting trucks,
then 40 per day could be painted. If the paint shop were only painting cars, then 60
per day could be painted. If the body shop were only producing cars, then it could
process 50 per day. If the body shop were only producing trucks, then it could
process 50 per day. Each truck contributes $300 to profit, and each car contributes
$200 to profit. Use LP to determine a daily production schedule that will maximize
the company’s profits.

3. Solve the following integer programming problem graphically:

max x1 + x2

subject to

17
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−10x1 + 4x2 ≤ −3.0
2.5x1 + x2 ≤ 6.75
5x1 − 2x2 ≤ 7.5

2.5x1 + x2 ≥ 3.75
0 ≤ x1, x2 ≤ 3 and integer.

4. Solve the following integer programming problem graphically:
max x1 + x2

subject to

−10x1 + 4x2 ≤ −3.0
2.5x1 + x2 ≤ 6.75
5x1 − 2x2 ≤ 7.5

2.5x1 + x2 ≥ 3.75
0 ≤ x1, x2 ≤ 3 and integer.



Chapter 3

Primal simplex: Phase II and Phase I

3.1 Summary of theoretical background for this chapter
We assume the problem is in CF #1.

Once the incoming nonbasic variable has been chosen the outgoing basic variable is
determined by using an appropriate ratio test (different in Phase II and Phase I). Phase II
assumes that a feasible basis is available and tries to improve the value of the objective
function until optimality or unboundedness is detected. In Phase I, however, the basic
solution is infeasible and the goal is to make basis changes that reduce the sum of infea-
sibilities until it reaches 0 at which point the solution becomes feasible and Phase II can
commence.

Let α = B−1a be the transformed column vector of the entering variable. The basic
solution is denoted by xB ≡ β = [β1, . . . , βm]

T , the upper bound of the i-th basic
variable is σi, i = 1, . . . ,m.

3.1.1 Optimality conditions
Assume problem is in CF #1 and a feasible basis B is known The basic solution is xB =
B−1(b −RxR), where R denotes the nonbasic (remaining) part of A. Substituting this
xB into the partitioned form of the objective function, z = cTBxB + cTRxR, we obtain
z = cTBB

−1(b−RxR) + cTRxR. Rearranged,

z = cTBB
−1b+ (cTR − cTBB

−1R)xR. (*)

In (*) the multiplier of nonbasic variable xk is called the reduced cost of xk

dk = ck − cTBB
−1ak.

(*) shows that if the displacement of xk is denoted by t the objective function changes by
tdk, z(t) = z + tdk, i.e., the rate of the change is dk. Since only feasible values of xk are
of interest, `k ≤ xk + t ≤ uk must hold for the displacement.

19
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Sufficient conditions of optimality. Basis B is optimal if for every k ∈ R:

Type(xk) Value dk Remark

0 xk = 0 Immaterial

1 xk = 0 ≥ 0

1 xk = uk ≤ 0 k ∈ U
2 xk = 0 ≥ 0

3 xk = 0 = 0

U is the index set of nonbasic variables at upper bound: U = {j : xj ∈ R, xj = uj}.

3.1.2 Ratio test in phase II
Two sets of basic positions are defined:

I+ = {i : αi > 0, type(βi) ∈ {0, 1, 2}},
I− = {i : αi < 0, type(βi) ∈ {0, 1}}.

If the feasible displacement of the incoming variable is positive the following minima
must be determined:

θ+ = min
i∈I+

{ti} = min
i∈I+

{
βi

αi

}
.

θ− = min
i∈I−

{ti} = min
i∈I−

{
βi − σi

αi

}
.

Let u denote the upper bound of the incoming variable (can be finite or infinite). Deter-
mine

θ = min{θ+, θ−, u}.

If this minimum is achieved by θ+ or θ− then the basic variable that defined the minimum
ratio leaves the basis (at lower or upper bound) and the entering variable takes its place
in the basis. If the minimum is defined by u there is no basis change and the “incoming”
variable does not become basic but goes to its other bound.

If the feasible displacement of the incoming variable is negative the above rules apply
with αi replaced by −αi.

3.1.3 Ratio test in phase I
Ratio test in phase I aims at improving the overall infeasibility of the solution, i.e., tries
to reduce the sum of infeasibilities. This procedure requires an improving (incoming)
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candidate column (variable). Here we assume it is column q ∈ R. Its updated form is
αq = B−1aq. The purpose of the ratio test is to determine the outgoing basic variable.

There are two main versions of the phase I ratio test. The traditional one determines
the leaving variable such that the all basic variables at feasible level remain feasible. In
practical terms, it takes the basic position that defines the smallest ratio.

The advanced one attempts to make the largest possible improvement towards fea-
sibility that can be achieved with the chosen improving variable. It allows free (maybe
infeasible) movements of basic variables. It may surpass the smallest ratio and consecu-
tive ratios as long as the sum of infeasibilities keeps improving along the piece-wise linear
function defined by the computed ratios (that act as break points).

Let I0, I1, I2 and I3 denote the basic positions of type(0), . . . , type(3) basic variables

and I =
3⋃

i=0

Ii. Furthermore, I` = I0 ∪I1 ∪I2 and Iu = I0 ∪I1. Obviously, |I| = m. If

the displacement of the incoming variable is positive the ratio test defines the following
ratios (break points).

Basic variables reach their lower bound or go below it at

τ`i =

{
βi/αi > 0 if αi 6= 0 and i ∈ I`,
0 if βi = 0, αi > 0 and i ∈ I`.

Basic variables reach their upper bound or go beyond it at

τui
=

{
(βi − σi)/αi > 0 if αi 6= 0 and i ∈ Iu,
0 if βi = σi, αi < 0 and i ∈ Iu.

If σi = 0 then τ`i = τui
provided αi 6= 0.

Having determined the τ break points they have to be put in an ascending order:

0 ≤ t1 ≤ · · · ≤ tS,

where S denotes the number of break points and t is used with simple subscript to denote
the elements of the ordered set of the τ`i and τui

values.
The traditional method chooses the smallest ratio, i.e., t1 and the basic variable that

defined t1 leaves the basis.
The advanced method works in the following way. Let r1 = −dq, where dq is the

phase I reduced cost of variable q and compute

rk+1 = rk − |αjk |, k = 1, 2, . . . (3.1)

Where αjk is the α component of the basic position that defined the k-th break point. Stop
at index s for which

rs > 0 and rs+1 ≤ 0 (3.2)

hold. ts is the displacement of the incoming variable and the basic variable that defined
ts leaves the basis.

If the displacement of the incoming variable is negative the above procedure is still
applicable with all occurrences of α replaced by −α.
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3.2 Exercises
1. Determine the type of each variable in the following problem. Is the given solution

feasible? Do the variables satisfy the optimality conditions? Also, identify if the
solution is degenerate and say why.

Problem: max cTx, Ax = b,

x1 x2 x3 x4 x5 x6

`j 0 0 −∞ 0 0 0
uj 1 +∞ +∞ 0 10 +∞

type(xj)

In the solution:
B/N B B B N N N

Value 1 1 −1 0 10 0
dj 0 0 0 −10 10 0

Opt. cond.
Y/N

2. Determine the type of each variable in the following problem. Is the given solution
feasible? Do the variables satisfy the optimality conditions? Also, identify if the
solution is degenerate and say why.

Problem: min cTx, Ax = b,

x1 x2 x3 x4 x5 x6

`j 0 0 0 −∞ 0 0
uj 0 +∞ +∞ +∞ 10 +∞

type(xj)

In the solution:
B/N B B B N N N

Value 0 1 11 0 10 0
dj 0 0 0 0 10 10

Opt. cond.
Y/N

3. Show that the reduced cost of every basic variable is zero for any feasible basis B
of a general linear programming problem.

4. Assume, we have an LP problem: min{cTx | Ax = b} and variables are subject
to type specifications. A basic feasible solution (BFS) with z = 11 and a type-2
incoming variable, xq = 0 with dq = −3, are given. Also, αq = B−1aq is available.
Is the BFS degenerate?
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Determine the ratios, the value of the incoming variable, the variable leaving the
basis (if any), the new BFS and the new value of the objective function. Is the new
BFS degenerate?

i xBi type(xBi) uBi αi
q ti

1 0 3 +∞ 1
2 2 2 +∞ -1
3 3 1 4 1
4 8 2 +∞ 2
5 2 1 6 -2
6 4 2 +∞ 1

5. Assume, we have an LP problem: max{cTx |Ax = b} and variables are subject to
type specifications. A basic feasible solution (BFS) with z = 10 is given. A type-1
variable is coming in from its upper bound of 3. Its reduced cost is −2. Also,
αq = B−1aq is available. Is the BFS degenerate?

Determine the ratios, the value of the incoming variable, the variable leaving the
basis (if any), the new BFS and the new value of the objective function. Is the new
BFS degenerate?

i xBi type(xBi) uBi αi
q ti

1 0 3 +∞ -1
2 2 2 +∞ 1
3 2 1 4 0
4 8 2 +∞ 2
5 0 0 0 0

6. Assume, we have an LP problem: min{cTx | Ax = b} and variables are subject
to type specifications. A basic feasible solution (BFS) with z = 3 and a type-2
incoming variable, xq = 0 with dq = −4, are given. Also, αq = B−1aq is available.
Is the BFS degenerate?

Determine the ratios, the value of the incoming variable, the variable leaving the
basis (if any), the new BFS and the new value of the objective function. Is the new
BFS degenerate?
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i xBi type(xBi) uBi αi
q ti

1 2 2 +∞ 2
2 2 2 +∞ -1
3 3 1 4 -1
4 8 2 +∞ 2
5 2 1 6 -2

7. Solve the following linear programming problem using the simplex method with all
types of variables

min z = −4x1 − 2x2 − 12x3

s.t. x1 + 3x2 − 2x3 ≤ 12
−3x1 + x2 + 2x3 = 0

−2 ≤ 4x1 − x2 + x3 ≤ 6
x1, x2 ≥ 0, 0 ≤ x3 ≤ 1

8. Let β = xB be a given infeasible basic solution and and type-2 incoming variable
with the corresponding αq = B−1aq column. Compute the phase-one reduced cost
of the incoming variable, the value of the phase-one objective function, determine
the outgoing variable, the steplength, the new objective value and the updated xB

values

(a) using the traditional method,

(b) using the advanced method.

i type(xBi) xBi uBi αi
q

1 0 2 0 -1
2 1 5 1 1
3 2 -14 ∞ -7
4 0 3 0 1
5 2 -4 ∞ -2
6 3 -2 ∞ -2

9. Let β = xB be a given infeasible basic solution and and type-1 incoming variable
(its upper bound value is 6) with the corresponding αq = B−1aq column. Compute
the phase-one reduced cost of the incoming variable, the value of the phase-one ob-
jective function, determine the outgoing variable, the steplength, the new objective
value and the updated xB values

(a) using the traditional method,
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(b) using the advanced method.

i type(xBi) xBi uBi αi
q

1 1 -2 5 0
2 0 -2 0 -1
3 1 5 1 -1
4 1 3 1 1
5 1 -40 2 4
6 3 -4 ∞ -2
7 2 -3 ∞ 3

10. Find a feasible solution (if any) for the following linear programming problem.

s.t. x1 − 3x2 + 2x3 ≤ −2
3x1 + 2x2 − 2x3 ≥ 6
x1 − x3 = 3

2x2 − x3 ≤ −1

x1 ≥ 0, x2 ≤ 0, 0 ≤ x3 ≤ 1.

11. Solve the following linear programming problems using the two phase primal sim-
plex method.

max z = −x1 + 2x2 − x3

s.t. 2x1 − 2x2 + x3 = 6
3x1 − 5x2 + 2x3 ≤ 15
x1 + x2 − x3 ≥ −3

−x1 + 3x2 − x3 ≤ −1

x1 ≥ 0, x2 free, 0 ≤ x3 ≤ 2.

12. Solve the following linear programming problems using the two phase primal sim-
plex method.

min z = −x1 + x2

s.t. 2x1 + x2 ≥ 1
x1 + x2 ≤ 3
x1 − x2 ≥ −1

x1, x2 ≥ 0
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Chapter 4

The dual simplex algorithm: Phase II
and Phase I

4.1 Summary of theoretical background for this chapter
We assume the problem is in computational form (CF) #1.

Phase II of the dual simplex method moves on dual feasible bases until optimality or
dual unboundedness (primal infeasibility) is detected. In dual phase I a search for a dual
feasible basis is performed.

Dual algorithms choose the outgoing variable first such that the phase specific objec-
tive function (dual objective function or sum of dual infeasibilities) can improve, then use
a phase specific ratio test to determine the incoming variable.

Dual feasibility conditions are identical to the primal optimality conditions (see chap-
ter 3).

Assume the p-th basic variable (xBp) is chosen to leave the basis. The updated (trans-
formed) pivot row is αp = ρT

pR = eTpB
−1R, where R is the nonbasic (remaining) part

of A.
In dual phase II indices participating in the ratio test are:
If xBp < 0

J = {j | (αp
j < 0 ∧ xj = 0) ∨ (αp

j > 0 ∧ xj = uj)}.

If xBp > uBp

J = {j | (αp
j > 0 ∧ xj = 0) ∨ (αp

j < 0 ∧ xj = uj)}.

The standard ratio test determines the dual steplength and the index q of the entering
variable:

θD =

∣∣∣∣ dqαp
q

∣∣∣∣ = min
j∈J

∣∣∣∣ djαp
j

∣∣∣∣ ,
where dj-s are the components of the updated objective row.
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The main logic of the dual phase II algorithm determines the αp
q pivot element. After

that a Gauss-Jordan elimination is performed (including the objective row) using this
pivot.

Remarks:

• Type-0 variables are not involved in the ratio test because any value of the corre-
sponding dj is dual feasible (DF).

• Type-3 variables are always involved in the dual ratio test if αp
j 6= 0 and they deter-

mine a 0 ratio.

• In this chapter we only deal with the standard ratio test (smallest ratio). While there
exists a generalized version as well it is rather involved and lies beyond the scope
of these notes.

Dual phase II algorithm is the main computational engine in (mixed) integer program-
ming if branch and bound type procedure is used (which is nearly almost the case).

Dual phase I algorithm is relatively complicated. It has a standard and also an ad-
vanced version. They are not covered in the current version of the notes.

4.2 Exercises
1. Formulate the dual of the following problem.

max z = x1 − 2x2 + 3x3 − 4x4

s.t. 2x1 + 5x2 − 4x3 + 9x4 ≤ 15
x1 + 4x2 + 2x3 − 6x4 ≥ −7

4x1 − 3x2 − 6x3 + 4x4 = 1
x1, . . . , x4 ≥ 0.

2. Write the dual of the problem given by

min z = −x1 + 2x2 + 6x3

s.t. x1 + 3x2 − 2x3 ≥ 0
−x1 − 2x2 + 5x3 = 0
2x1 + 3x2 + 4x3 ≤ 0
x1 ≤ 0, x2, x3 ≥ 0.

3. Formulate the dual of the following linear programming problem

(P) min cTx

s.t. Ax ≥ b,

x ≥ 0.

Show that the dual of the dual is the original primal problem (P).
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4. The weak duality theorem says that if an arbitrary primal feasible solution x is
given then for any dual feasible solution y the relation bTy ≤ cTx holds. The
strong duality theorem says that if a problem has a feasible finite solution then its
dual pair has a feasible finite optimum too, and the objective values are the same.
Prove these theorems.

5. Show that if the primal has an unbounded solution the dual problem has no feasible
solution (the dual problem is infeasible). Use the following primal-dual pair:

(P ) min cTx

s.t. Ax = b

x ≥ 0

(D) max bTy

s.t. ATy ≤ c

6. Investigate whether the following linear programming problem can be solved with
phase II of the dual simplex method. Explain your answer. If yes, convert the
problem into a form needed by the algorithm and solve it. Discuss the solution
steps in detail. Provide solutions for both the primal and dual.

max x1 − 4x2 − 2x3 − 2x4

s. t. −2x1 − x2 − x3 ≤ −1
2x1 + x2 + x3 + x4 ≤ 3

4x2 − x3 − 2x4 ≤ −2
x1 ≤ 0, xj ≥ 0, j = 2, . . . , 4

7. Solve the following linear programming problem using the dual simplex method.

min x1 − 2x2 + 4x3 + 4x4

s. t. 2x1 + 4x2 − 4x3 ≤ −1
x1 + 4x2 + 2x4 ≥ 2
x1 − x2 + x3 + x4 ≤ 3

xj ≥ 0, j = 1, 3, 4, x2 ≤ 0.

8. Solve the following linear programming problem using the dual simplex method.

min z = x1 + 2x2 + 3x3 + 4x4

s.t. x1 + x4 ≥ 4
x1 + x2 ≥ 8

x2 + x3 ≥ 8
x3 + x4 ≥ 6

x1, x2, x3, x4 ≥ 0
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9. Solve the following primal-dual pair with using the primal and the dual simplex
algorithms. Verify that the strong duality theorem holds for the solutions:

max z = −x2 − 2x3

s.t. x1 + x2 − 2x3 ≤ −2
2x1 − x2 + x3 ≤ −4

x1, x2, x3 ≥ 0.

min w = −2y1 − 4y2
s.t. y1 + 2y2 ≥ 0

y1 − y2 ≥ −1
−2y1 + y2 ≥ −2

y1, y2 ≥ 0.

10. Solve the following linear programming problem using the dual simplex method.

max z = −2x1 − x2 − 3x3 − x4

s.t. −x1 + 2x2 + x3 − x4 ≤ 3
−x1 − x2 + x3 + 2x4 ≥ 2
x1 − 2x2 − 3x3 − x4 ≤ −2

x1, . . . , x4 ≥ 0.
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Integer and mixed integer linear
programming

5.1 Exercises
1. In some model we have a variable x that is allowed to take a value from the follow-

ing set F = {0,−1,−2,−3}. How can you formulate this requirement with integer
programming constraint(s) and/or bounds?

2. Convert the following discrete optimization problem into a mixed integer linear
programming problem.

min cTx

s.t. Ax = b

y1 + y2 + . . .+ yr = 1

x ≥ 0

x1 ∈ {r1, r2, . . . , rq}.

Note: x = [x1, x2, . . . , xn]
T .

3. A trading company is considering four investments: Investment 1 will yield a net
present value (NPV) of $16,000; investment 2, an NPV of $22,000; investment 3, an
NPV of $12,000; and investment 4, an NPV of $8,000. Each investment requires a
certain cash outflow at the present time: investment 1, $5,000; investment 2, $7,000;
investment 3, $4,000; and investment 4, $3,000. Currently, $14,000 is available for
investment.

(a) Formulate an IP whose solution will tell the company how to maximize the
NPV obtained from investments 1–4.

(b) Modify the formulation to account for each of the following requirements:
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(i) The company can invest in at most two investments.
(ii) Investment 2 can be carried out only if investment 1 is done.

(iii) If investment 2 is selected, they can’t invest in investment 4.

4. The following euro coins are available: 1, 2, 5, 10, 20, 50 cents and 1, 2 euros. Write
a mathematical model to find the minimum number of coins needed to pay a given
quantity q expressed in euros.

5. A furniture company is capable of manufacturing three types of furniture: chair,
desk, and cabinets. The manufacturing of each type of furniture requires to have
the appropriate type of production line available. The line needed to manufacture
each type of furniture must be rented at the following rates: chair line, $200 per
week; desk line, $150 per week; cabinet line, $100 per week. The chair line can
produce a maximum of 40 chairs per week, the desk line can produce a maximum
of 53 desks per week, and the cabinet line can produce a maximum of 25 cabinets
per week. The manufacture of each type of furniture also requires some amount
of wood and labor as shown below. Each week, 150 hours of labor and 160 m2 of
wood are available. The variable unit cost and selling price for each type of furniture
are also give. Formulate an IP whose solution will maximize the company’s weekly
profits.

Furniture Type Labor (Hours) Wood (m2) Sales Price ($) Variable Cost ($)
Chair 2 3 8 4
Desk 3 4 12 6
Cabinet 6 4 15 8

6. You have 5 keys and 6 locks. Every key opens one or more locks as shown in the
following table:

Key1 Key2 Key3 Key4 Key5

Lock1 x x x

Lock2 x x

Lock3 x x

Lock4 x x x

Lock5 x x

Lock6 x x x

Write an optimization model that chooses the minimum number of keys such that
any of the locks can be opened.
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7. Company wants to build plants to supply customers. There are m customers and n
potential locations for plants.

Problem data:

n potential locations for plants
m number of customers
cij cost of supplying one unit of demand i from plant j
fj fixed cost of opening (building) a plant in location j
di demand of customer i
sj supply available at plant j (if open)

Decision variables:

xi
j units of product delivered from plant j to customer i

yj binary variable: = 1 if plant j is to be built, 0 otherwise.

Formulate a mixed integer LP problem to minimize costs.

8. A car manufacturing company is considering the production of three types of autos:
compact, midsize, and large. The resources required for, and the profits yielded by
each type of car are given in the table. Currently, 6,000 tons of steel and 60,000
hours of labor are available. For production of a type of a car to be economically
feasible, at least 1,000 cars of that type must be produced. Formulate an IP model
to maximize the company’s profit.

Car Type
Resource Compact Midsize Large
Steel required 1.5 tons 3 tons 5 tons
Labor required 30 hours 25 hours 40 hours
Profit ($) 2,000 3,000 4,000

9. Solve the following two dimensional mixed integer linear programming problem
graphically using your own drawing in a graph similar to the one below. It need not
be very accurate. If in doubt, rely on the given numerical data.

The objective is to maximize z = −x1 + 2x2, where x1 is a general nonnegative
integer, x2 is nonnegative. The feasible region of the LP relaxation of the problem
is determined by the polygon with vertices: P1(0, 0), P2(0, 1), P3(1, 3), P4(3, 4),
P5(4, 3) and P6(2, 0). Where are the feasible solutions of the problem located?
Determine an optimal solution. Is it unique? If not, can you find them all? How
many are there? Compare the situation with continuous LP.
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10. Find graphically the feasible region of the following integer linear programming
problem.

min −3x − 4y
s.t. x + 2y ≤ 10

x + y ≤ 7
0 ≤ x ≤ 6, 0 ≤ y ≤ 4

x, y integer

(i) Can you visually identify the optimal solution of this problem?

(ii) What is the optimal solution if the 2x + 2y ≤ 9 additional constraint is also
imposed on the LP?

11. Solve the following integer programming problem graphically:

max x + y
s.t. −10x + 4y ≤ −3.0

2.5x + y ≤ 6.75
5x − 2y ≤ 7.5

2.5x + y ≥ 3.75
0 ≤ x, y ≤ 3 and integer.

12. The objective is to maximize z = 2x1 + x2, where x2 is a general nonnegative
integer, x1 is nonnegative. The feasible region of the LP relaxation of the problem
is determined by the polygon with vertices: P1(0, 1), P2(0, 3.5) and P3(2.95, 0).
Where are the feasible solutions located? Determine an optimal solution graphi-
cally. Is it unique?
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Branch-and-bound techniques, cutting
plane algorithms

6.1 Exercises
1. Solve the following integer programming problem graphically using the B&B method.

min z = −3x1 − 4x2 + 20

s.t.
2

5
x1 + x2 ≤ 3

2

5
x1 − 2

5
x2 ≤ 1

x1, x2 ≥ 0 and integer.

2. Use branch-and-bound algorithm (B&B) to solve the following IP:

min z = −3x1 − x2 − x3 − x4

s.t. 5x1 + 2x2 + 2x3 + 2x4 ≤ 5

x1, x2, x3, x4 ∈ {0, 1}
3. Use branch-and-bound algorithm (B&B) to solve the following IP graphically:

max z = 8x1 + 5x2

s.t. x1 + x2 ≤ 6
9x1 + 5x2 ≤ 45

x1, x2 ≥ 0; x1, x2 integer
4. Use branch-and-bound (B&B) algorithm and Simplex Methods to solve the follow-

ing IP:
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max z = x1 + 4x2

s.t. 5x1 + 8x2 ≤ 40
−2x1 + 3x2 ≤ 9

x1, x2 ≥ 0; x1, x2 integer



Chapter 7

Network optimization

7.1 Exercises
1. Give the mathematical model of the transportation problem.

2. Find a starting basis of the following transportation problem using the North-West
Corner Rule Method. Is this basis optimal or not? Why?

s =

 4
7
2

 , d = (3, 5, 4, 1), C =

 4 2 5 6
4 1 3 7
8 6 5 4


3.

4. Find a starting basis of the following transportation problem using the Least Cost
Cell Method. Is this basis optimal or not? Why?

s =

 20
12
30

 , d = (15, 20, 15, 12), C =

 9 7 6 6
8 6 7 9
7 8 8 5


5. Solve the following transportation problem using the North-West Corner Rule Method.

s =

 3
5
4

 , d = (2, 4, 2, 2, 2), C =

 2 3 4 1 2
4 5 3 2 1
1 3 4 6 2


6. Solve the following transportation problem using the Least Cost Cell Method.
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s =


10
7
12
11

 , d = (10, 10, 10, 10, 10, 10), C =


2 6 5 3
4 3 4 2
2 6 4 4
6 8 7 9


7. Solve the following transportation problem using the North-West Corner Rule Method.

s =

 5
7
5

 , d = (4, 4, 4, 4, 4, 4), C =

 4 3 2 5 7 2
3 4 3 5 3 7
6 5 4 3 4 2


8. Solve the following transportation problem using the Least Cost Cell Method.

s =

 5
7
5

 , d = (4, 4, 4, 4, 4, 4), C =

 4 3 2 5 7 2
3 4 3 5 3 7
6 5 4 3 4 2


9. Solve the following transportation problem, where x11 = x12 = x23 = x34 = 0 (xij

is the quantity transported from node i to node j).

s =

 7
6
8

 , d = (5, 3, 5, 5, 3), C =

 2 3 4 2 5
3 3 1 4 3
2 2 4 3 4


10. Suppose that a taxi firm has four taxis available, and four customers wishing to be

picked up as soon as possible. The firm prides itself on speedy pickups, so for each
taxi the "cost" of picking up a particular customer will depend on the time taken for
the taxi to reach the pickup point (see the "cost" matrix C, where cij defines the dis-
tance in time between the taxi i and customer j). Give an optimal "taxi-customer"
assignment where the total waiting time of the customers is minimal.

C =


14 5 8 7
2 12 6 5
7 8 3 9
2 4 6 10





Chapter 8

Game theory

8.1 Exercises
1. A 2p0sg has the following reward matrix:

C’s strategy
R’s strategy C1 C2 C3

R1 17 23 48
R2 17 3 51
R3 6 17 3

Which strategy should each of the two players choose? One answer must be ob-
tained by applying the concept of dominated strategies to rule out a succession of
inferior strategies until only one choice remains.

2. Three linear functions y1, y2 and y3 are defined as follows:

y1 = 2 − x
y2 = x − 1
y3 = 2x − 6

Find min
x≥0

max
i

{yi}.

3. The manager of a multinational company and the union of workers are preparing
to sit down at the bargaining table to work out the details of a new contract for
the workers. Each side has developed certain proposals for the contents of the
new contract. Let us call union proposals “Prop-1”, “Prop-2” and “Prop-3, and the
manager proposals “Contr-A” (for contract), “Contr-B” and “Contr-C”. Both parties
are aware of the financial consequences of each proposalontract combination. The
pay-off matrix is:
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Manager’s
Workers’ Contr-A Contr-B Contr-C
Prop-1 8.5 7.0 7.5
Prop-2 12.0 9.5 9.0
Prop-3 9.0 11.0 8.0

These values are the contract gains that the workers’ union would secure and also
the cost the company would have to bear.

Is there a clearut contract combination agreeable to both parties, or will they find it
necessary to submit to arbitration in order to arrive at some sort of compromise?

4. Consider the same situation as in Problem 3, but with the following pay-off matrix:

Manager’s
Workers’ Contr-A Contr-B Contr-C
Prop-1 9.5 12.0 7.0
Prop-2 7.0 8.5 6.5
Prop-3 6.0 9.0 10.0

Is there an equilibrium point?

Find the mixed strategies for the union and the manager.

Formulate (but do not solve) the LP problem to determine the optimum strategy for
the union and the optimum strategy of the manager.
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Nonlinear programming

1. Determine whether the following functions are convex or not for x ∈ R1:

f(x) = 1 + 2x+ x2, g(x) = x2 + e−x, h(x) = x2 − ex.

2. Determine whether the following functions are convex for x > 0. Note, x =
(x1, x2).

f(x1, x2) = 4x2
1−4x1x2+x2

2−log(x1), g(x1, x2) = 4x2
1+x2

2+4x1x2+log(x1x2).

3. Show that the following function is convex and determine its minimum

f(x) =
11

273
x6 − 19

91
x4 + x2.

4. A furniture company makes wall cabinets. There is a fixed cost of production per
month of e6000. The cost of making a chair is e30. Sales price affects the quanti-
ties sold:

volume(v) = 500− 1.4 price(p).

Work out a profit function and determine the price that will maximize profit. Also,
compute the optimum value.

5. Find the extreme points of f(x) = x4 − 2x2 + 2. Determine whether they are local
or global minima/maxima. Having done so, determine the minimum of the same
function f(x) subject to −0.5 ≤ x ≤ 1.5.

6. Find the minimum of g(x) = x2 + e−x.

7. Solve the following nonlinear programming problem.

min f(x) =
1

4
x2 + x+ 1, subject to − 1 ≤ x ≤ 2.
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8. Determine which of the following functions is smooth/nonsmooth on the given do-
main. [Note: f(x) = f(x1, x2).]

(i) f(x) = log(x1x2)− (x1 + x2)
2, 0 < x1, x2 ≤ 100

(ii) g(x) = |x1 − 2|+ x3
2, 0 ≤ x1, x2 ≤ +∞

(iii) h(x) = |x1 + x2|2, −∞ ≤ x1, x2 ≤ +∞

9. Which of the following functions have local extreme points (minimum or maxi-
mum), and if so, where? Why? [Note: f(x) = f(x1, x2).]

(i) f(x) = 1− x1x2

(ii) f(x) = x2
1 − x3

2

(iii) f(x) = x2
1 + x2

2

10. Write the KKT conditions for the following problem:

min f(x) = x4
1 + 2x2

1 + 2x1x2 + 4x2
2

s.t. 2x1 + x2 = 10

x1 + 2x2 ≥ 10

x1, x2 ≥ 0.

11. Consider the following constrained nonlinear programming problem:

max f(x) = x1x2 + x1x3 + x2x3

s.t. x1 + x2 + x3 = 3.

Define the KKT conditions for the problem. Find a solution that satisfies the con-
ditions. Determine if it is a maximizer.

12. Consider the following nonlinear programming problem:

min 4(x1 − 2)2 + (x2 − 1)2

s.t. 16x1 + 6x2 = 63.

Write the L Lagrangian function of the problem. Define the necessary condition of
optimality for L and solve the resulting system.



Part II

Solutions
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Chapter 1

Basics of background of operations
research

1.1 Linear algebra
1. What does triangle inequality say for the norms of two m dimensional vectors a

and b?

Answer: ‖a+ b‖ ≤ ‖a‖+ ‖b‖ for any vector norm.

2. Which of the following pairs of vectors are orthogonal? Why?

(a) [1, 2] and [−1, 1],

(b) [2, 5, 1] and [−3, 1, 1],

(c) [0, 1,−1.98] and [1, 0.99, 1/2],

(d) [3, 5, 3,−4] and [4,−2, 2, 2].

Answer: For orthogonality of u and v the dot product must be zero: uTv = 0.
Therefore, (a) not orthogonal, (b), (c) and (d) are orthogonal.

3. Express b as a linear combination of a1 and a2.

(a) b = [4, 5], a1 = [1, 3]T and a2 = [2, 2]T ,

(b) b = [1,−2], a1 = [2, 1]T and a2 = [5, 5]T ,

(c) b = [1,−2], a1 = [2,−3]T and a2 = [2,−8]T ,

(d) b = [2,−15], a1 = [3,−4]T and a2 = [14, 6]T .

Answer: (a) 1/2a1 + 7/4a2, (b) 3a1 − a2., (c) 4/10a+1/10a2, (d) 3a1 − 1/2a2.

4. Which of the following sets of vectors are linearly independent:

45
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(i) [1, 5], [2, 3];
(ii) [2, 1,−3], [−1, 1,−6], [1, 1,−4].

Answer: Computing the determinants of the two sets, for (i) it is 6= 0, thus [1, 5]
and [2, 3] are linearly independent, for the (ii) it is = 0, thus [2, 1,−3], [−1, 1,−6]
and [1, 1,−4] are linearly dependent.

5. Show that vectors a1 = [2, 3, 1]T , a2 = [1, 0, 4]T , a3 = [2, 4, 1]T , a4 = [0, 3, 2]T

are linearly dependent.

Answer: No computations are needed. Here are 4 vectors all in R3. Only 3 of them
can be linearly independent. The fourth will be linearly dependent.

6. For each of the following statements, determine whether it is true or false. Justify
your answer.

(i) A basis must contain 0.
(ii) Subsets of linearly dependent sets are linearly dependent.

(iii) Subsets of linearly independent sets are linearly independent.
(iv) If λ1v1 + λ2v2 + · · ·+ λnvn = 0 then all scalars λj are zero.
(v) Any set of m vectors containing the null vector is linearly dependent.

(vi) The dot product of two, linearly dependent, nonzero vectors a,b ∈ Rm is
always equal to zero.

(vii) If a matrix is multiplied by a diagonal matrix, the result does not depend on
the order of multiplication.

(viii) The product of two square matrices is always defined.

Answer: (i) false, (ii) false, (iii) true, (iv) false, (v) true, as 0 can always be added
with nonzero multiplier, (vi) false, as two linearly dependent vectors are a and
λa, λ 6= 0 and aTλa = λaTa 6= 0 if a 6= 0, (vii) false, (viii) false, as they can
be of different dimensions.

7. Answer the following questions:

(a) How is the rank of an m× n matrix defined?
(b) What is the relationship between the row rank and column rank of an m × n

matrix A?
(c) What does full rank of an m× n matrix A mean?

Answer: (a) The column rank of a matrix A is the maximal number of linearly
independent columns of A, the row rank is the maximal number of linearly inde-
pendent rows of A. As they are always equal, they are simply called the rank ρ of
A. It follows that ρ(A) ≤ min{m,n}., (b) They are equal and they are called the
rank of the matrix., (c) ρ(A) = min{m,n}.
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8. Answer the following questions:

(a) How is the basis of a vector space defined?

(b) What is the size of a basis in Rn? Is a basis unique for Rn?

(c) Which, if any, of the following systems of vectors are bases in R3:

(i) [1, 3, 2], [3, 1, 3], [2, 10, 2].
(ii) [1, 2, 1], [1, 0, 2], [2, 1, 1].

Answer: (a) A basis is a set of vectors that, in a linear combination, can represent
every vector in a given vector space (any vector in the space can be expressed as a
linear combination of the vectors in the basis.)., (b) Any set of n linearly indepen-
dent n dimensional vectors is a basis for Rn. Thus, there can be infinitely many
bases., (c) To form a basis the vectors must be linearly independent. Determinant
of set in (i) is zero, the vectors are linearly dependent, no basis, determinant of set
in (ii) is nonzero, vectors form a basis.

9. Answer the following questions:

(a) How is the p-norm of a vector v ∈ Rm defined? What are the important
special cases?

(b) What does the triangle inequality say for the norms of two compatible matrices
A and B?

Answer: (a) ‖x‖p =

(
m∑
i=1

|xi|p
)1/p

. Important special cases are p = 1, 2,∞,

giving ‖x‖1 =
m∑
i=1

|xi|, ‖x‖2 =

√√√√
m∑
i=1

x2
i , and ‖x‖∞ = max

1≤i≤m
|xi|., (b) ‖A+B‖ ≤

‖A‖+ ‖B‖ for any matrix norm.

10. Determine norms ‖A‖1 and ‖A‖∞ of the given matrix A:

(a)

A =

 −9 2 3
−4 8 6
1 5 7

 .

(b)

A =

 5 −8 3
−10 2 1

1 6 −8

 .
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(c)

A =

 3 4 −2
−6 −4 1
4 3 9

 .

(d)

A =

 2 5 −2
−6 4 1
3 −3 7

 .

Answer: As ‖A‖1 = max
j

‖aj‖1 is the maximum absolute column sum and ‖A‖∞ =

max
i

‖ai‖1 is the maximum absolute row sum: (a) ‖A‖1 = 16 and ‖A‖∞ = 18,

(b) ‖A‖1 = 16 and ‖A‖∞ = 16 (accidental coincidence), (c) ‖A‖1 = 13 and
‖A‖∞ = 16, (d) ‖A‖1 = 12 and ‖A‖∞ = 13.

11. Solve the following system of equations using Gauss-Jordan elimination. Identify
basic variables. Express all solutions in terms of non-basic variables.

2x1 + x2 − x3 + 2x4 − x5 = −2
4x1 + 2x2 + 3x4 − 2x5 = 2
x1 + x2 + x3 + x4 + x5 = 3

Answer: After pivoting down the diagonal: 1 0 0 0 −2 1
0 1 0 3/2 3 −1
0 0 1 −1/2 0 3

 ,

Basic variables are x1, x2 and x3. They are expressed in terms of nonbasic variables
as: x1 = 1 + 2x5, x2 = −1− 3

2
x4 − 3x5, x3 = 3 + 1

2
x4, with arbitrary values for

x4 and x5.

12. For

A =

[
1 0 4

−3 2 5

]
, u =

 1
2

−1

 , v =

[
2
3

]
,

decide which of the following products are defined, and compute them:

(a) Au, (b) Av, (c) ATv, (d) uTv, (e) uvT .

Answer: (a) Au = [−3,−4]T , (b) Av not defined, (c) ATv = [−7, 6, 23]T , (d)

uTv not defined as u ∈ R3, v ∈ R2, (e) uvT =

 2 3
4 6

−2 −3

, which is the outer

product of u and v.
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13. Given matrices A and B:

A =

[
1 a
b 1

]
, B =

[
c 1
1 d

]
,

where a, b, c and d are scalars. Compute AB−BA.

Give conditions for AB = BA.

Answer: AB−BA =

[
a− b ad− ac
bc− bd b− a

]
. If AB−BA = 0 then AB = BA

which holds if either (i) a = b = 0, in which case A is the 2× 2 unit matrix, or (ii)
a = b 6= 0 and c = d, in which case both A and B are symmetric.

14. Under what conditions are the following matrix equalities true?

(a) (X+Y)2 = X2 + 2XY +Y2.

(b) (X+Y)(X−Y) = X2 −Y2.

Answer: After performing the operations it becomes clear that in both cases XY =
YX is needed.

15. Proove the following statements:

(a) Show that for any m× n matrix A, both ATA and AAT are symmetric. Give
the dimensions of these matrices.

(b) Show that matrix ATA is positive semidefinite.

(c) Let A,B and C be nonsingular matrices. Prove that (ABC)−1 = C−1B−1A−1.

(d) Prove that (ABC)T = CTBTAT .

Answer: (a) Symmetry means: matrix is equal to its transpose, X = XT . ATA
is n × n; (ATA)T = AT(AT)T = ATA, thus it is symmetric. AAT is m × m;
(AAT)T = (AT)TAT = AAT, thus it is also symmetric., (b)Take any x 6= 0.
xT (ATA)x = (xTAT)(Ax) = (Ax)T (Ax) = ‖Ax‖22. But ‖Ax‖22 ≥ 0., (c)
(ABC)(C−1B−1A−1) = (AB)(CC−1)(B−1A−1) = A(BB−1)A−1 = AA−1 =
I., (d) Using that (XY)T = YTXT , we can write (ABC)T = [(AB)C]T =
CT (AB)T = CTBTAT .

16. How is the inverse of a matrix defined? Which matrices have an inverse? What are
the main properties of the inverse?

Answer: Inverse is defined for square matrices. A−1 is defined to satisfy A−1A =
AA−1 = I, where I is the identity matrix. If the columns of A are linearly inde-
pendent then A−1 exists (A is nonsingular), otherwise it does not (A is singular).
The inverse, if exists, is unique. The inverse of the inverse is the original matrix:
(A−1)−1 = A.
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1.2 The linear programming problem

1. Convert the following linear programming constraints into equalities. Indicate the
type of the associated logical variable. Try to combine constraints if possible.

2x1 − 3x2 + 4x3 − 5x4 ≤ 6 (1.1)
x1 + x2 − 3x3 − x4 ≤ −6 (1.2)

3x1 + x3 − x4 ≥ 2 (1.3)
−2x2 + 3x4 ≥ −1 (1.4)

2x3 + x4 ≤ 9 (1.5)
2x3 + x4 ≥ 4 (1.6)

12 ≥ 3x1 − x2 + x3 + 2x4 ≥ 5 (1.7)
x1 + x2 + x3 + x4 ./ 8 (1.8)
x1 + x2 − x3 − x4 = 0 (1.9)

Symbol ./ indicates “nonbinding” (NB) constraints.

Answer:

Adding different logical variables to the constraints and noticing that constraints
(1.5) and (1.6) can be combined into 4 ≤ 2x3+x4 ≤ 9, we obtain the following set
of equality constraints:

y1 + 2x1 − 3x2 + 4x3 − 5x4 = 6, y1 ≥ 0, type(y1) = 2

y2 + x1 + x2 − 3x3 − x4 = −6, y2 ≥ 0, type(y2) = 2

y3 − 3x1 − x3 + x4 = −2, y3 ≥ 0, type(y3) = 2

y4 + 2x2 − 3x4 = 1, y4 ≥ 0, type(y4) = 2

y5 + 2x3 + x4 = 9, 0 ≤ y5 ≤ 5, type(y5) = 1

y6 + 3x1 − x2 + x3 + 2x4 = 12, 0 ≤ y6 ≤ 7, type(y6) = 1

y7 + x1 + x2 + x3 + x4 = 8, y7 free, type(y7) = 3

y8 + x1 + x2 − x3 − x4 = 0, y8 = 0, type(y8) = 0.

2. Convert the following set of LP constraints to computational form #1. Indicate the
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type of newly introduced variables (if any). Try to combine constraints if possible.

x1 + 2x3 ≤ 1− x4 (1.10)
2x1 + x2 − 3x3 − x4 ≤ −1 (1.11)

3x1 + x3 − x4 ≥ 0 (1.12)
x1 + 2x3 + x4 ≥ −1 (1.13)

9 ≥ 2x1 − x2 + x3 − 2x4 ≥ −1 (1.14)
x1 + x2 + x3 + x4 ./ 0 (1.15)
x1 + x2 − x3 = x4 (1.16)

Symbol ./ indicates “nonbinding” (NB) constraints.

Answer:

First, variables are moved to the left hand side (where appropriate). Then, adding
different logical variables to the constraints and noticing that constraints (1.10) and
(1.13) can be combined into a single range constraint, we obtain the following set
of equality constraints:

y1 + x1 + 2x3 + x4 = 1, 0 ≤ y1 ≤ 2, type(y1) = 1

y2 + 2x1 + x2 − 3x3 − x4 = −1, y2 ≥ 0, type(y2) = 2

y3 − 3x1 − x3 + x4 = 0, y3 ≥ 0, type(y3) = 2

y4 + 2x1 − x2 + x3 − 2x4 = 9, 0 ≤ y4 ≤ 10, type(y4) = 1

y5 + x1 + x2 + x3 + x4 = 0, y5 free, type(y5) = 3

y6 + x1 + x2 − x3 − x4 = 0, y6 = 0, type(y6) = 0

3. The following LP problem has two general constraints and four variables:

2x1 − 3x2 + 4x3 − 5x4 ≤ 6

3x1 − 4x2 + 2x3 + 2x4 ≥ 5

−1 ≤ x1 ≤ 0, x2 ≥ 0, x3 ≤ −2, x4 free.
Convert the joint constraint into equalities. Reverse minus type variables, if any,
shift all finite lower bounds to zero. Indicate the type of newly created variables.

Answer:

First, convert into equalities:

y1 + 2x1 − 3x2 + 4x3 − 5x4 = 6, type(y1) = 2,

y2 − 3x1 + 4x2 − 2x3 − 2x4 = −5, type(y2) = 2,

−1 ≤ x1 ≤ 0, x2 ≥ 0, x3 ≤ −2, x4 free.
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Next, reverse x3 by defining x̄3 = −x3 for which x̄3 ≥ 2. We get

y1 + 2x1 − 3x2 − 4x̄3 − 5x4 = 6,

y2 − 3x1 + 4x2 + 2x̄3 − 2x4 = −5,

−1 ≤ x1 ≤ 0, x2 ≥ 0, x̄3 ≥ 2, x4 free.

Now, there are two variables with finite lower bound different from zero: x1 and x̄3.
We can define two translations: x̄1 = x1 − (−1), i.e., x̄1 = x1 +1 and ¯̄x3 = x̄3 − 2.
Substituting x1 = x̄1 − 1 and x̄3 = ¯̄x3 + 2 into the equations:

y1 + 2(x̄1 − 1)− 3x2 − 4(¯̄x3 + 2)− 5x4 = 6,

y2 − 3(x̄1 − 1) + 4x2 + 2(¯̄x3 + 2)− 2x4 = −5,

0 ≤ x̄1 ≤ 1, x2 ≥ 0, ¯̄x3 ≥ 0, x4 free,

which finally results in

y1 + 2x̄1 − 3x2 − 4¯̄x3 − 5x4 = 16,

y2 − 3x̄1 + 4x2 + 2¯̄x3 − 2x4 = −12,

0 ≤ x̄1 ≤ 1, x2 ≥ 0, ¯̄x3 ≥ 0, x4 free; type(x̄1) = 1, type(¯̄x3) = 2.

4. Consider the following linear programming problem:

min −2x1 + 4x2 − 12x3

s.t.: −2x1 + 4x2 − 2x3 = 0
4 ≥ x1 − 3x2 + x3 ≥ 12

3x1 − 6x2 + 2x3 ≥ 5
x1 ≥ −2, x2 ≥ 0, −1 ≤ x3 ≤ 1

Convert the joint constraint into equalities. Reverse minus type variables, if any,
shift all finite lower bounds to zero. Indicate the type of newly created variables.
Don’t forget to convert the objective function too.

Answer:

First, convert the constraints into equalities:

y1 − 2x1 + 4x2 − 2x3 = 0, type(y1) = 0,
y2 + x1 − 3x2 + x3 = 12, type(y2) = 1, 0 ≤ y2 ≤ 8,

y3 − 3x1 + 6x2 − 2x3 = 5, type(y3) = 2,
−2 ≤ x1, 0 ≤ x2, −1 ≤ x3 ≤ 1.
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Now define x̄1 = x1 + 2 and x̄3 = x3 + 1 to shift the finite lower bonds to zero.
This leads to:

min −2(x̄1 − 2) + 4x2 − 12(x̄3 − 1)
y1 − 2(x̄1 − 2) + 4x2 − 2(x̄3 − 1) = 0, type(y1) = 0,
y2 + (x̄1 − 2)− 3x2 + (x̄3 − 1) = 12, type(y2) = 1,

y3 − 3(x̄1 − 2) + 6x2 − 2(x̄3 − 1) = 5, type(y3) = 2,
0 ≤ x̄1, 0 ≤ x2, 0 ≤ x̄3 ≤ 2,
0 = y1, 0 ≤ y2 ≤ 8, 0 ≤ y3.

which finally results in

min −2x̄1 + 4x2 − 12x̄3 + 16
y1 − 2x̄1 + 4x2 − 2x̄3 = −6, type(y1) = 0,

y2 + x̄1 − 3x2 + x̄3 − 1) = 3, type(y2) = 1,
y3 − 3x̄1 + 6x2 − 2x̄3 = −8, type(y3) = 2,

0 ≤ x̄1, 0 ≤ x2, 0 ≤ x̄3 ≤ 2,
0 = y1, 0 ≤ y2 ≤ 8, 0 ≤ y3.

5. What is the approximate number of potentially different bases for an LP problem
with 27 constraints (m = 27) and 81 variables (n = 81).

Hint: use the Stirling formula

k! ≈
√
2πk

(
k

e

)k

.

Take π = 3.14 and e = 2.71 (calculator needed).

Answer:
With m = 27 and n = 81 the number of potentially different bases is(

n

m

)
=

n!

m! (n−m)!
=

(
81

27

)
=

81!

27! 54!
(1.17)

Some details of computing 81!:

81! ≈
√

(2)(3.14)(81)

(
81

2.71

)81

≈ (22.51)
(
3081

)
= (22.41)

(
1081

) (
381
)

≈ (22.41)
(
1081

)
(4.43)

(
1038

)
≈ 10121.

In a similar fashion, 27! ≈ 1.3× 1028 and 54! ≈ 3.3× 1071. Continuing (1.17):

81!

27! 54!
≈ 10121

(1.3) (1028) (3.3) (1071)
≈ 2.33× 1021.
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6. A chemical plant can produce 5 different types of fertilizer, F-1, . . . , F-5. The pro-
duction requires labour, energy, and processing on machines. These resources are
available in limited amounts. The company wants to determine what quantities to
produce that maximize the monthly revenue, assuming that any amount can be sold.
The following table describes the technological requirements of producing one unit
(tonne) of each product, the corresponding revenue and the monthly availability of
the resources.

F-1 F-2 F-3 F-4 F-5 Limit
Revenue 5 6 7 5 6
Machine hour 2 3 2 1 1 1050
Labour hour 2 1 3 1 3 1050
Energy 1 2 1 4 1 1080

For instance, to produce one tonne of F-3 1 unit of energy is needed.

Formulate the linear programming model of the problem.

Answer:
The decision variables are the unknown quantities of the products. They are de-
noted by x1, . . . , x5.

The revenue to be maximized is 5x1 + 6x2 + 7x3 + 5x4 + 6x5 + 7x6

The resource constraints are:

2x1 + 3x2 + 2x3 + 1x4 + 1x5 ≤ 1050

2x1 + 1x2 + 3x3 + 1x4 + 3x5 ≤ 1050

1x1 + 2x2 + 1x3 + 4x4 + 1x5 ≤ 1080

Since production must be nonnegative, we impose xj ≥ 0, j = 1, . . . , 5.

7. A cattle farmer wants to minimize feeding costs while making sure the animals get
the necessary weekly quantities of the four main nutrients. They are available in
three stocks according to the following table.

St-1 St-2 St-3 Required
Unit cost 8 9 7
Nutr-1 4 3 2 600
Nutr-2 1 3 3 550
Nutr-3 2 2 0 400
Nutr-4 4 5 7 800

For instance, one unit of St-2 contains 2 units of nutrient 3. Column “Required”
contains the minimum weekly requirements. One additional constraint is that no
more than 300 units of St-1 is available per week.
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Formulate the linear programming model of the problem.

Answer:

The decision variables are the unknown quantities of the stocks. They are denoted
by x1, x2, x3.

The costs to be minimized is z = 8x1 + 9x2 + 7x3.

Constraints of the required quantities of nutrients are:

4x1 + 3x2 + 2x3 ≥ 600

1x1 + 3x2 + 3x3 ≥ 550

2x1 + 2x2 + 0x3 ≥ 400

4x1 + 5x2 + 7x3 ≥ 800

Since the use of stocks must be nonnegative, we impose xj ≥ 0, j = 1, . . . , 3 and,
additionally, x1 ≤ 300.

8. A cargo company is preparing a ship with three stowages: front deck, rear deck
and main stowage. Each stowage has a weight limit and a space capacity with the
following limits:

Storage Weight (t) Space (m3)
Front deck 10 10000
Rear deck 6 4500
Main stowage 20 8000

The following four cargoes are waiting to be shipped:

Cargo Available quantity (t) Volume (m3/t) Profit ($/t)
C1 12 480 190
C2 10 550 220
C3 20 390 170
C4 16 600 250

Any proportion of the cargoes can be accepted if they are delivered. Formulate an
optimization problem to maximize the profit of the delivery.

Answer:

Let the decision variables describe the amounts of cargoes assigned to the stowages.
Let xij denote the the amount of the ith cargo assigned to the jth stowage unit (front
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deck, rear deck, main stowage). This way the weight and the space constraints can
be given as:

x11 + x21 + x31 + x41 ≤ 10

x12 + x22 + x32 + x42 ≤ 6

x13 + x23 + x33 + x43 ≤ 20

480x11 + 550x21 + 390x31 + 600x41 ≤ 10000

480x12 + 550x22 + 390x32 + 600x42 ≤ 4500

480x13 + 550x23 + 390x33 + 600x43 ≤ 8000

The available quantities can be handled this way too:

x11 + x12 + x13 ≤ 12

x21 + x22 + x23 ≤ 10

x31 + x32 + x33 ≤ 20

x41 + x42 + x43 ≤ 16

Since the shipped quantities must be nonnegative, we impose xij ≥ 0; i = 1, . . . , 4;
j = 1, . . . , 3. The objective function describing the the profit is: max 190(x11 +
x12 + x13) + 220(x21 + x22 + x23) + 170(x31 + x32 + x33) + 250(x41 + x42 + x43).

9. The HR staff of a hospital would like to calculate the minimal number of nurses
required for appropriate operation. The nurses are scheduled weekly in three shifts
(6:00-14:00, 14:00-22:00, 22:00-06:00). The hospital needs nurses all the time, the
minimum number of nurses required in a working week is given for each shift in
the following table:

Mon Tue Wed Thu Fri Sat Sun
Morning 8 9 7 11 8 6 5
Afternoon 9 7 8 10 4 3 3
Night 4 3 3 4 3 2 2

The work schedule of a nurse must meet the following requirements:

• Each nurse is assigned in the same shift (morning, afternoon or night) during
a working period.

• The working period of a nurse consists of five consecutive days during any
seven day long period.

Formulate an optimization problem that helps the HR staff determine the minimal
number of nurses.
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Answer:

Let the decision variables describe the number of nurses starting their working
period on a given day and shift. Let xij denote the the number of nurses starting
on the ith day of the week in the jth shift. For example x42 is the number of nurses
starting their working period on Thursday afternoon. This way the number of nurses
working on a given day and shift can be calculated from the work requirements. The
constraints for Monday and Tuesday can be formulated as follows (for the other
days the method of the formulation is similar):

x41 + x51 + x61 + x71 + x11 ≤ 8

x42 + x52 + x62 + x72 + x12 ≤ 9

x43 + x53 + x63 + x73 + x13 ≤ 4

x51 + x61 + x71 + x11 + x21 ≤ 9

x52 + x62 + x72 + x12 + x22 ≤ 7

x53 + x63 + x73 + x13 + x23 ≤ 3

The objective function is simply the sum of the variables min
∑7

i=1

∑3
j=1 xij . Don’t

forget to formulate the trivial non-negativity constraints as individual lower bounds
xij; i = 1, . . . , 7; j = 1, . . . , 3.

10. An electric company runs two coal-fired power plants, a new and an old one. These
plants use different technologies. So, burning a ton of coal costs $20 in the new
plant or $15 in the old plant. They produce 6150 kW/h or 5500 kW/h of electricity,
respectively, while burning a ton of coal. There are three coal mines in the area.
The monthly available amounts, supplier prices ($) and the transportation costs ($)
are given in the following table:

Mine Available amount (t) Price $/t

Expensive 400 70
Faraway 600 55
Fair 300 60

Also the transportation costs for a ton of coal are different depending on the physical
locations of the mines and the plants:

New plant Old plant
Expensive 8$ 15$
Faraway 30$ 25$
Fair 12$ 13$
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Formulate a linear programming problem to maximize the monthly profit of the
plants, if the selling price of 1 kW/h power is $0.1 and each plant has a capacity
limit of 500 tons for a month, assuming there is no loss in the produced amounts.

Answer:

Let the decision variables describe the amounts of coal bought by the plants. Let
x11 and x12 be the amount bought from the mine called Expensive by the plants
New and Old respectively. Similarly, x21, x22 denote the quantities bought from
the Faraway mine and x31, x32 denote the amounts bought from the Fair mine. The
constraints describing the available quantities and the plant capacities can be for-
mulated as:

x11 + x12 ≤ 400

x21 + x22 ≤ 600

x31 + x32 ≤ 300

x11 + x21 + x31 ≤ 500

x12 + x22 + x32 ≤ 500

All the other data given in the problem have to be considered in the objective func-
tion, which is: max 0.1(6150(x11+x21+x31)+5500(x21+x22+x23))−20(x11+
x21+x31)− 15(x11+x21+x31)− 78x11− 85x12− 85x21− 80x22− 72x31− 73x32

Finally, the trivial non-negativity constraints for the variables: xij ≥ 0; i = 1, 2, 3;
j = 1, 2.

11. A company is considering three new products to replace current ones that are being
discontinued. Management wants to determine which mix of these new products
should be produced while observing three factors: long-run profit, stability of the
workforce, and the level of capital investment in the new equipment. The goals in
quantitative terms are: profit should be at least e125M, current level of employ-
ment of 4000 workers should be maintained, and the capital investment should not
exceed e55M. Since goals may not be achievable, management decides to include
the following penalties for the deviations. Penalty of 5 units for eache1M for miss-
ing the profit level; 2 units per 100 employees for going over employment goal and
4 units for going under the same goal; 3 units per e1M for exceeding the capital
investment goal.

It is assumed that the contribution of each new product to profit, employment and
capital investment level is proportional to the rate of production (linearity assump-
tion). The contributions per unit rate are the following:
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Contribution Penalty
P1 P2 P3 Goal per unit

Long-run profit 12 9 15 at least 125 (in millions) 5
Employment level 5 3 4 exactly 40 (in hundreds) 2(+), 4(–)
Capital investment 5 7 8 at most 55 (in millions) 3

Set up a goal programming model for the problem. Hint: watch for the nature of
the different goals (‘at least’, ‘exactly’, ‘at most’).

Answer:
Let the production levels of P1, P2 and P3 be denoted by x1, x2 and x3. The goals
can be stated as

Profit goal: 12x1 + 9x2 + 15x3 ≥ 125
Employment goal: 5x1 + 3x2 + 4x3 = 40

Investment goal: 5x1 + 7x2 + 8x3 ≤ 55

Note, there is no overshoot penalty for profit and no undershoot penalty for invest-
ment. We introduce the following variables. Undershoot for profit, employment
and investment: sP , sE, sI and overshoot for the same: tP , tE, tI . The goals now
can be expressed as constraint

12x1 + 9x2 + 15x3 + sP − tP = 125
5x1 + 3x2 + 4x3 + sE − tE = 40
5x1 + 7x2 + 8x3 + sI − tI = 55

with all variables nonnegative. The objective function is:

min z = 5sP + 4sE + 2tE + 3tI

This is an LP problem that can be solved by standard methods. Note, tP and sI are
not involved in the objective function.

12. The Father & Son haulage company is planning an extension of its fleet. Three
types of trucks are included in the plan with the following characteristics:

Type Load capacity Cost
(tons) (e1000)

Light 5 18
Medium 10 34
Large 20 55

Market analysis shows it would be desirable to add 10 light, 12 medium and 8 large
models. The total capacity expansion should be around 300 tons and the total cost
is limited to e1,000,000.

Write a goal programming model for the above problem if
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• the financial constraint cannot be exceeded,

• it is equally undesirable to underachieve the number of light and medium mod-
els and overachieve the number of large models,

• it is undesirable to overachieve or underachieve the 300 ton goal of capacity
expansion, underachievement being twice as bad as overachievement,

Explain your work.

Answer:
First, the decision variables have to be defined. They are the # of new trucks of ca-
pacities 5, 10, and 20 tons. The variables are denoted by x1, x2 and x3, respectively;
xj-s are integers.

First of all, the financial constraint is “hard”, as such it cannot be exceeded. How-
ever underachievement is allowed without penalty. Therefore,

18x1 + 34x2 + 55x3 + s1 = 1000 (in thousands),

where s1 is the deviational variable for underachievement (which, by the way, is not
penalized).

Deviational variables for the total capacity expansion are denoted by s2, t2. Thus

5x1 + 10x2 + 20x3 + s2 − t2 = 300.

Since the desired quantities of the trucks may not be achievable, nonnegative de-
viational variables have to be introduced: s3, s4, s5 and t3, t4, t5 for under and
overachievement, respectively. Now we can write

x1 + s3 − t3 = 10
x2 + s4 − t4 = 12
x3 + s5 − t5 = 8

To minimize the “undesirabilities”, we set up an objective function that penalizes
the unwanted deviations. p+2 and p−2 denote the penalties of over- and underachiev-
ing the total capacity by one ton with p−2 = 2p+2 (underachievement is twice as
‘costly’). p denotes the penalty of underachieving the number of light and medium,
and overachieving the number of large models. So, the objective function is

min 2p−2 s2 + p−2 t2 + ps3 + ps4 + pt5

with respect to the five equality constraints above and all structural (x) and devia-
tional (s and t) variables are nonnegative, structural variables are integers. Note, s1
is not included in the objective function.



Chapter 2

Graphical solution of linear
programming problems

2.1 Exercises
1. Solve the following integer programming problem graphically:

max x1 + x2

subject to

−10x1 + 4x2 ≤ −3.0
2.5x1 + x2 ≤ 6.75
5x1 − 2x2 ≤ 7.5

2.5x1 + x2 ≥ 3.75
0 ≤ x1, x2 ≤ 3 and integer.

While the LP relaxation of the problem has an optimal solution, the feasible domain
does not contain any point with all-integer coordinates, therefore, it is integer infeasible.
The diagram below highlights the situation.

0 1 2 3 4
0

1

2

3

4
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Chapter 3

The primal simplex algorithms: Phase I
and Phase II

1. Determine the type of each variable in the following problem. Are the given so-
lutions feasible? Do they satisfy the optimality conditions? Also, identify which
solution is degenerate, if any, and say why.

Problem: max cTx, Ax = b,

x1 x2 x3 x4 x5 x6

`j 0 0 −∞ 0 0 0
uj 1 +∞ +∞ 0 10 +∞

type(xj)

In the solution:
B/N B B B N N N

Value 1 1 −1 0 10 0
dj 0 0 0 −10 10 0

Opt. cond.
Y/N

Answer:
The solution is feasible.

The types of variables are 1, 2, 3, 0, 1, 2. The optimality conditions are all satis-
fied (only nonbasic variables have to be considered) given this is a maximization
problem.

The solution is degenerate because basic variable x1 = 1 which is its upper bound.

2. Determine the type of each variable in the following problem. Are the given so-
lutions feasible? Do they satisfy the optimality conditions? Also, identify which
solution is degenerate, if any, and say why.

63
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Problem: min cTx, Ax = b,

x1 x2 x3 x4 x5 x6

`j 0 0 0 −∞ 0 0
uj 0 +∞ +∞ +∞ 10 +∞

type(xj)

In the solution:
B/N B B B N N N

Value 0 1 11 0 10 0
dj 0 0 0 0 10 10

Opt. cond.
Y/N

Answer:

The solution is feasible but not optimal.

The types of variables are 0, 2, 2, 3, 1, 2. Not all optimality conditions are satis-
fied: x5 is of type-1, is nonbasic at upper bound, d5 should be ≤ 0 given this is a
minimization problem.

The solution is degenerate because basic variable x1 = 0 which is its both lower
and upper bound.

3. Show that the reduced cost of every basic variable is zero for any feasible basis B
of a general linear programming problem.

Answer:

There are several ways to prove the statement. One of them is this. Let aj the p-th
basic variable. Then cBp = cj and B−1aj = ep because aj is basic in position p in
the basis. By definition: dj = cj − cTBB

−1aj = cj − cTBep = cj − cj = 0.

4. Assume, we have an LP problem: min{cTx | Ax = b} and variables are subject
to type specifications. A basic feasible solution (BFS) with z = 11 and a type-2
incoming variable, xq = 0 with dq = −3, are given. Also, αq = B−1aq is available.
Is the BFS degenerate?

Determine the ratios, the value of the incoming variable, the variable leaving the
basis (if any), the new BFS and the new value of the objective function. Is the new
BFS degenerate?
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i xBi type(xBi) uBi αi
q ti

1 0 3 +∞ 1
2 2 2 +∞ -1
3 3 1 4 1
4 8 2 +∞ 2
5 2 1 6 -2
6 4 2 +∞ 1

Answer:

The BSF is not degenerate despite of xB1 = 0. This is a type-3 variable, therefore,
0 is neither its lower nor its upper bound.

The ratios {−, −, 3, 4, 2, 4} tp = min{3, 4, 2, 4} = 2 with p = 5 (the row index
that defines the minimum). θ = min{2, +∞} = 2. Now, as p = 5 and xB5 = 6,
xB5 leaves the basis at its upper bound of 6. xq becomes the new xB5 with a value
of x̂q = xq + θ = 0 + 2 = 2.

x̂B = xB(0)− θαq which expands to

x̂B =


0
2
3
8
2
4

− 2


1

−1
1
2

−2
1

 =


−2
4
1
4
6
2

 and xB̂ =


−2
4
1
4
2
2


The new BSF xB̂ is not degenerate.

The new objective value ẑ = z + θdq = 11 + (2)× (−3) = 5.

5. Assume, we have an LP problem: max{cTx |Ax = b} and variables are subject to
type specifications. A basic feasible solution (BFS) with z = 10 is given. A type-1
variable is coming in from its upper bound of 3. Its reduced cost is −2. Also,
αq = B−1aq is available. Is the BFS degenerate?

Determine the ratios, the value of the incoming variable, the variable leaving the
basis (if any), the new BFS and the new value of the objective function. Is the new
BFS degenerate?
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i xBi type(xBi) uBi αi
q ti

1 0 3 +∞ -1
2 2 2 +∞ 1
3 2 1 4 0
4 8 2 +∞ 2
5 0 0 0 0

Answer:

This BSF is degenerate because xB5 = 0 which is its lower bound. Note, xq is
coming from its upper bound, its displacement is negative. No ratio is defined, xq

can be decreased by any value and the basic solution remains feasible.

However, type(xq) = 1, therefore −θ = min{+∞, 3} = 3 ⇒ θ = −3. There is
no basis change but bound swap: x̂q = xq + θ = 3 + (−3) = 0.

The new BFS is 
0
2
2
8
0

− (−3)


−1
1
0
2
0

 =


−3
5
2
14
0


The solution remains degenerate. The new objective value ẑ = z + θdq = 10 +
(−3)× (−2) = 16 (maximization problem!).

6. Assume, we have an LP problem: min{cTx | Ax = b} and variables are subject
to type specifications. A basic feasible solution (BFS) with z = 3 and a type-2
incoming variable, xq = 0 with dq = −4, are given. Also, αq = B−1aq is available.
Is the BFS degenerate?

Determine the ratios, the value of the incoming variable, the variable leaving the
basis (if any), the new BFS and the new value of the objective function. Is the new
BFS degenerate?

i xBi type(xBi) uBi αi
q ti

1 2 2 +∞ 2
2 2 2 +∞ -1
3 3 1 4 -1
4 8 2 +∞ 2
5 2 1 6 -2

Answer:
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The BFS is not degenerate. The ratios {1, −, 1, 4, 2}, tp = min{1, 1, 4, 2} = 1.
Now p is either 1 or 3. Any of them can be chosen. In both cases, we have θ =
min{1,+∞} = 1.

The BFS after transformation is

x̂B =


2
2
3
8
2

− 1×


2

−1
−1
2

−2

 =


0
3
4
6
4


If p = 1 is chosen then xB1 leaves the basis at lower bound and xq becomes the new
xB1. In case of p = 3, xB3 leaves the basis at upper bound and xq will be the new
xB3. In both cases the value of xq will be 1.

If p = 1 xB̂ =


1
3

4
6
4

 ; if p = 3 xB̂ =


0
3
1
6
4

 .

In either case the solution becomes degenerate. Degenerate positions are boxed.
This example demonstrates how degeneracy is created.

The new objective value ẑ = z + θdq = 3 + (1)× (−4) = −1.

7. Solve the following linear programming problem using the simplex method with all
types of variables

min z = −4x1 − 2x2 − 12x3

s.t. x1 + 3x2 − 2x3 ≤ 12
−3x1 + x2 + 2x3 = 0

−2 ≤ 4x1 − x2 + x3 ≤ 6
x1, x2 ≥ 0, 0 ≤ x3 ≤ 1

Answer:
First, convert every constraint into equality by adding appropriate logical variables
to them.

min z = −4x1 − 2x2 − 12x3

s.t. x1 + 3x2 − 2x3 +y1 = 12
−3x1 + x2 + 2x3 +y2 = 0
4x1 − x2 + x3 +y3 = 6

x1, x2 ≥ 0, 0 ≤ x3 ≤ 1, y1 ≥ 0, y2 = 0, 0 ≤ y3 ≤ 8
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Starting basic feasible solution: y1 = 12, y2 = 0 and y3 = 6. The problem in
tabular form (UB is the column of upper bounds of basic variables):

x1 x2 x3 y1 y2 y3 xB UB

u ∞ ∞ 1 ∞ 0 8

y1 1 3 −2 1 12 ∞
y2 −3 1 2 1 0 0

y3 4 −1 1 1 6 8

dT −4 −2 −12 0 0 0 0

incoming: x3, min{0
2
, 6
1
} = 0, p = 2

y1 −2 4 0 1 1 0 12 ∞
x3 −3

2
1
2

1 0 1
2

0 0 1

y3
11
2

−3
2

0 0 −1
2

1 6 8

dT −22 4 0 0 6 0 0

incoming: x1, min{ 0−1
−3/2

, 6
11/2

} = 2
3
, p = 2, x3 leaves at UB of 1

x1 x2 x3 y1 y2 y3 xB UB

u ∞ ∞ 1 ∞ 0 8

y1 0 10
3

−4
3

1 1
3

0 40
3

∞

x1 1 −1
3

−2
3

0 −1
3

0 2
3

∞
y3 0 1

3
11
3

0 4
3

1 7
3

8

dT 0 −10
3

−44
3

0 −4
3

0 44
3

incoming: x2, min{40/3
10/3

, 7/3
1/3

} = 4, p = 1

x2 0 1 −2
5

3
10

1
10

0 4 ∞
x1 1 0 −4

5
1
10

− 3
10

0 2 ∞
y3 0 0 19

5
− 1

10
13
10

1 1 8

dT 0 0 −16 1 −1 0 28

Optimal solution: z = −28, x1 = 2, x2 = 4, x3 = 1, y3 = 1, y1 = y2 = 0.

8. Let β = xB be a given infeasible basic solution and and type-2 incoming variable
with the corresponding αq = B−1aq column. Compute the phase-one reduced cost
of the incoming variable, the value of the phase-one objective function, determine
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the outgoing variable, the steplength, the new objective value and the updated xB

values

(a) using the traditional method,
(b) using the advanced method.

i type(xBi) xBi uBi αi
q

1 0 2 0 -1
2 1 5 1 1
3 2 -14 ∞ -7
4 0 3 0 1
5 2 -4 ∞ -2
6 3 -2 ∞ -2

Answer:
As the incoming variable is a type-2 variable we are in the t ≤ 0 case. First we have
to evaluate the phase I objective function, which is w = (−1−4)−(2+(5−1)+(3−
0)) = −27, and the phase I reduced cost, which is d = (−7− 4)− (−1+ 1+ 1) =
−12. After that we must determine the τ`i and the τui

breakpoints. Using the
formulas shown in the problems part we get:

i type(xBi) xBi uBi αi
q τ`i τui

1 0 2 0 -1 - -
2 1 5 1 1 5 4
3 2 -14 ∞ -7 2 -
4 0 3 0 1 3 3
5 2 -4 ∞ -2 1 -
6 3 -2 ∞ -2 - -

(a) If we apply the traditional method, the smallest ratio determines the outgoing
variable. This way we get that the displacement is t = 1. Applying x̂B = xB − tαq

and ŵ = w − td we get the new values of the basic variables and the new objective
value:

x̂B =



2

5

−14

3

−4

−2


− 1



−1

1

−7

1

−2

−2


=



3

4

−7

2

0

0


and xB̂ =



3

4

−7

2

1

0
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ŵ = −27− (1×−12) = −15

(b) To determine the outgoing variable and the steplength using the advanced method
a table must be set up in which we are looking for the best objective value. The table
is created by ordering the breakpoints:

k rk αjk
q tk w(tk) jk

0 - - 0 -27 0
1 12 -4 1 -15 5
2 8 -7 2 -7 3
3 1 1 3 -6 4
4 0 1 3 -6 -4
5 -1 1 4 -7 -2
6 -2 1 5 -9 2

The table shows that the biggest improvement in the objective function can be
achieved if the steplength is t = 3 ad the outgoing variable is xB4 . It can go out
from the basis on its lower bound or upper bound too, since it is a type-0 variable.
Using this displacement the new objective value is ŵ = −6 and xB̂:

x̂B =



2

5

−14

3

−4

−2


− 3



−1

1

−7

1

−2

−2


=



5

2

7

0

2

4


and xB̂ =



5

2

7

3

2

4



9. Let β = xB be a given infeasible basic solution and and type-1 incoming variable
(its upper bound value is 6) with the corresponding αq = B−1aq column. Compute
the phase-one reduced cost of the incoming variable, the value of the phase-one ob-
jective function, determine the outgoing variable, the steplength, the new objective
value and the updated xB values

(a) using the traditional method,

(b) using the advanced method.



71

i type(xBi) xBi uBi αi
q

1 1 -2 5 0
2 0 -2 0 -1
3 1 5 1 -1
4 1 3 1 1
5 1 -40 2 4
6 3 -4 ∞ -2
7 2 -3 ∞ 3

Answer:
As the incoming variable is bounded and coming from its upper bound we are in
the t ≤ 0 case. First we have to evaluate the phase I objective function, which is
w = (−2− 2− 40− 3)− ((5− 1)+ (3− 1)) = −53, and the phase I reduced cost,
which is d = (0 − 1 + 4 + 3) − (−1 + 1) = 6. After that we must determine the
−τ`i and the −τui

breakpoints. Using the formulas shown in the problems part we
get:

i type(xBi) xBi uBi αi
q −τ`i −τui

1 1 -2 5 0 - -
2 0 -2 0 -1 - -
3 1 5 1 -1 5 4
4 1 3 1 1 - -
5 1 -40 2 4 10 -
6 3 -4 ∞ -2 - -
7 2 -3 ∞ 3 1 -

(a) If we apply the traditional method, the smallest ratio determines the outgoing
variable. This way we get that the displacement is t = 1. Applying x̂B = xB − tαq

and ŵ = w − td we get the new values of the basic variables and the new objective
value:

x̂B =



−2

−2

5

3

−40

−4

−3


− (−1)



0

−1

−1

1

4

−2

3


=



−2

−2

4

4

−36

−6

0


and xB̂ =



−2

−2

4

4

−36

−6

1
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ŵ = −53− (−1× 6) = −47

(b) To determine the outgoing variable and the steplength using the advanced method
a table must be set up in which we are looking for the best objective value. The table
is created by ordering the breakpoints:

k rk αjk
q tk w(tk) jk

0 - - 0 -53 0
1 6 3 1 -47 7
2 3 -1 4 -38 -3
3 2 -1 5 -36 3
4 1 4 10 -31 5

The table shows that the biggest improvement in the objective function can be
achieved if the steplength is t = 10 ad the outgoing variable is xB5 . There is an
interesting situation here, because the computed steplength is bigger then the upper
bound of the incoming variable. We have two options here. We can make a bound
flip or further investigate the objective function. If the incoming variable enters the
basis at an infeasible level, we have to consider it in the sum of infeasibilities. This
means that if t < 6 it contributes in w with −t− 6, which means that the objective
remains the same for t = −6 and t = −10, both gives ŵ = −35. This means that
we can choose any t between -6 and -10. Since t = −6 can be achieved with a
boundflip iteration, which is simpler than the basis change we choose that. Using
this displacement the new objective value is ŵ = −35, the basis remains the same
and xB̂:

x̂B =



−2

−2

5

3

−40

−4

−3


− (−6)



0

−1

−1

1

4

−2

3


=



−2

−8

−1

9

−16

−16

15


10. Find a feasible solution (if any) for the following linear programming problem.

x1 − 3x2 + 2x3 ≤ −2

3x1 + 2x2 − 2x3 ≥ 6

x1 − x3 = 3

2x2 − x3 ≤ −1



73

x1 ≥ 0, x2 ≤ 0, 0 ≤ x3 ≤ 1.

Answer:

First, convert every constraint into equality by adding appropriate logical variables
to them.

x1 + 3x2 + 2x3 + y1 = −2

−3x1 + 2x2 + 2x3 + y2 = 6

x1 − x3 + y3 = 3

−2x2 − x3 + y4 = −1

x1 ≥ 0, x2 ≥ 0, 0 ≤ x3 ≤ 1, y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, y4 ≥ 0.

Set up the first tableau and determine the phase I reduced costs:

x1 x2 x3 y1 y2 y3 y4 xB UB

u ∞ ∞ 1 ∞ ∞ 0 ∞

y1 1 3 2 1 0 0 0 −2 ∞
y2 −3 2 2 0 1 0 0 −6 ∞
y3 1 0 −1 0 0 1 0 3 0

y4 0 −2 −1 0 0 0 1 1 ∞

dT −3 5 5 − − − − −11

Since all the xi variables are at their lower bounds, an appropriate displacement
should be negative (t < 0). Such a displacement is defined by x1, it will be the
candidate to enter the basis. The only ratio definined by the phase I ratio test defines
the outgoing variable y2. After the transformation we get:

x1 x2 x3 y1 y2 y3 y4 xB UB

u ∞ ∞ 1 ∞ ∞ 0 ∞

y1 0 −11
3

8
3

1 1
3

0 0 −4 ∞
x1 1 −2

3
−2

3
0 −1

3
0 0 2 ∞

y3 0 2
3

−1
3

0 1
3

1 0 1 0

y4 0 −2 −1 0 0 0 1 1 ∞

dT − 3 3 − 0 − − −5
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Here we can see that there is no improving candidate but the current solution is
infeasible, thus there is no feasible solution for the problem.

11. Solve the following linear programming problems using the two phase primal sim-
plex method.

max z = −x1 + 2x2 − x3

s.t. 2x1 − 2x2 + x3 = 6

3x1 − 5x2 + 2x3 ≤ 15

x1 + x2 − x3 ≥ −3

−x1 + 3x2 − x3 ≤ −1

x1 ≥ 0, x2 free, 0 ≤ x3 ≤ 2.

Answer:

First, convert every constraint into equality by adding appropriate logical variables
to them.

min −z = x1 − 2x2 + x3

s.t. 2x1 − 2x2 + x3 + y1 = 6

3x1 − 5x2 + 2x3 + y2 = 15

−x1 − x2 + x3 + y3 = 3

−x1 + 3x2 − x3 + y4 = −1

x1 ≥ 0, x2 free, 0 ≤ x3 ≤ 2, y1 ≥ 1, y2 ≥ 0, y3 ≥ 0, y4 ≥ 0.

First, we have to set up the tableau. The initial solution is infeasible, so we have
to compute the phase I reduced costs and perform an iteration based on the phase I
ratio test. If we apply the advanced method during the ratio test we immediatly get
a basic feasile solution. After that we have to be aware that x2 is a free variable, so
it will be a candidate to enter the basis. After this transtormation we get the optimal
solution. The tableaux are the following:
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x1 x2 x3 y1 y2 y3 y4 xB UB

u ∞ ∞ 2 0 ∞ ∞ ∞

y1 2 −2 1 1 0 0 0 6 0

y2 3 −5 2 0 1 0 0 15 ∞
y3 −1 −1 1 0 0 1 0 3 ∞
y4 −1 3 −1 0 0 0 1 −1 ∞

dT 1 −2 −1 0 0 0 0 0

dT
I −3 5 −2 − − − − −7

x1 1 −1 1
2

1
2

0 0 0 3 ∞
y2 0 −2 1

2
−3

2
1 0 0 6 ∞

y3 0 −2 3
2

1
2

0 1 0 6 ∞
y4 0 2 −1

2
1
2

0 0 1 2 ∞

dT 0 −1 1
2

3
2

0 0 0 −3

x1 1 0 1
4

3
4

0 0 1
2

4 ∞
y2 0 0 −3

2
−2 1 0 1 8 ∞

y3 0 0 −1
2

1 0 1 1 8 ∞
x2 0 1 −1

4
1
4

0 0 1
2

1 ∞

dT 0 0 1
4

7
4

0 0 1
2

−2

Optimal solution: z = −2, x1 = 4, x2 = 1, y2 = 8, y3 = 8, and x3 = y1 = y2 = 0.

12. Solve the following linear programming problems using the two phase primal sim-
plex method.

min z = −x1 + x2

s.t. 2x1 + x2 ≥ 1

x1 + x2 ≤ 3

x1 − x2 ≥ −1

x1, x2 ≥ 0

Answer:

First, convert every constraint into equality by adding appropriate logical variables
to them.
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min −z = −x1 + x2

s.t. −2x1 − x2 + y1 = −1

x1 + x2 + y2 = 3

−x1 + x2 + y3 = 1

x1, x2, y1, y2, y3 ≥ 0.

First, we have to set up the tableau. The initial solution is infeasible, so we have
to compute the phase I reduced costs and perform an iteration based on the phase
I ratio test. The traditional and the advanced method also reach a feasible solution
in one iteration, we are using the smallest ration in the computation now. After that
only one phase II itaeration is necessary to reach optimality. The tableaux are the
following:

x1 x2 y1 y2 y3 xB

y1 -2 −1 1 0 0 −1

y2 1 1 0 1 0 3

y3 −1 1 0 0 1 1

dT 1 1 0 0 0 0

dT
I −2 −1 − − − −1

x1 1 1
2

−1
2

0 0 1
2

y2 0 −1
2

1
2

1 0 5
2

y3 0 3
2

−1
2

0 1 3
2

dT 0 3
2

−1
2

0 0 1
2

x1 1 0 0 1 0 3

y1 0 1 1 2 0 5

y3 0 1 0 1 1 4

dT 0 1 0 1 0 3

Optimal solution: z = −2, x1 = 2, x2 = 0, y1 = 5, y2 = 0, y3 = 4
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The dual simplex algorithms: Phase I
and Phase II

1. Formulate the dual of the following problem.

max z = x1 − 2x2 + 3x3 − 4x4

s.t. 2x1 + 5x2 − 4x3 + 9x4 ≤ 15
x1 + 4x2 + 2x3 − 6x4 ≥ −7

4x1 − 3x2 − 6x3 + 4x4 = 1
x1, . . . , x4 ≥ 0.

Answer:

min 15y1 − 7y2 + y3
s.t. 2y1 + y2 + 4y3 ≥ 1

5y1 + 4y2 − 3y3 ≥ −2
−4y1 + 2y2 − 6y3 ≥ 3
9y1 − 6y2 + 4y3 ≥ −4

y1 ≥ 0, y2 ≤ 0, y3 free.

2. Write the dual of the problem given by

min z = −x1 + 2x2 + 6x3

s.t. x1 + 3x2 − 2x3 ≥ 0
−x1 − 2x2 + 5x3 = 0
2x1 + 3x2 + 4x3 ≤ 0
x1 ≤ 0, x2, x3 ≥ 0.

Answer:
There is no objective function here because all coefficients are zero. So, the dual
reduces to a feasibility problem.
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Find a feasible solution to

y1 − y2 + 2y3 ≥ −1
3y1 − 2y2 + 3y3 ≤ 2

−2y1 + 5y2 + 4y3 ≤ 6
y1 ≥ 0, y2 free, y3 ≤ 0.

3. Formulate the dual of the following linear programming problem

(P) min cTx

s.t. Ax ≥ b,

x ≥ 0.

Show that the dual of the dual is the original primal problem (P).

Answer:
The dual of (P) is

(D) max bTy

s.t. ATy ≤ c

y ≥ 0

which can be written as

−min (−bTy)

−ATy ≥ −c

y ≥ 0

This is the form of (P). Therefore, we can apply the method of writing its dual and
obtain

−max (−cTx)

−Ax ≥ −b

x ≥ 0

that is equivalent to
min cTx

Ax ≤ b

x ≥ 0

which is the primal.

4. The weak duality theorem says that if an arbitrary primal feasible solution x is
given than for any dual feasible solution y the relation bTy ≤ cTx holds. The
strong duality theorem says that if a problem has a feasible finite solution then its
dual pair has a feasible finite optimum too, and the objective values are the same.
Prove these theorems.

Answer: First we start with the weak duality theorem:

Let’s assume that the primal problem is in standard from, which implies that x ≥ 0
and the y variables are free. From the primal problem we know that b = Ax
because x is a primal solution. We can multiply this equation from the left by yT

because it is a vector of free variables, which leads to yTb = yTAx. For a dual
feasible solution the yTA ≤ c inequality must hold. If we apply this inequality to
the previous equation (remember, x ≥ 0 we will have yTb = yTAx ≤ cx, which
is exactly the inequality we wold like to proof.
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Proving strong duality:

Let’s assume the standard form again. If the primal problem has a feasible finite
solution then an optimal basis B can be found. The optimal solution is x∗ = B−1b.
If the solution is optimal, all the reduced costs satisfy the optimality conditions, so
cT − cTBB

−1A ≥ 0. If we denote cTBB
−1 as yT and transform the equation we get

yTA = c,which means that y is a dual feasible solution. To prove the theorem we
have to check the equality of the objective values too: z = cTBxB = cTBB

−1b =
yTb. This means that the two objective values are the same, strong duality holds.

5. Show that if the primal has an unbounded solution the dual problem has no feasible
solution (the dual problem is infeasible). Use the following primal-dual pair:

(P ) min cTx

s.t. Ax = b

x ≥ 0

(D) max bTy

s.t. ATy ≤ c

Answer:

Assume the primal has an unbounded solution and the dual still has a feasible solu-
tion, denoted by y. This will lead to a contradiction. According to the weak duality
theorem, for every primal feasible solution the yTb ≤ cTx relation holds. How-
ever, it is impossible as cTx → −∞. Therefore, such a y cannot exists, the dual
has no feasible solution.

6. Investigate whether the following linear programming problem can be solved with
the dual simplex method. Explain your answer. If yes, convert the problem into
a form needed by the algorithm and solve it. Discuss the solution steps in detail.
Provide solutions for both the primal and dual.

max x1 − 4x2 − 2x3 − 2x4

s. t. −2x1 − x2 − x3 ≤ −1
2x1 + x2 + x3 + x4 ≤ 3

4x2 − x3 − 2x4 ≤ −2
x1 ≤ 0, xj ≥ 0, j = 2, . . . , 4

Answer:

The problem is suitable for the dual simplex algorithm if some simple transforma-
tions are performed: (i) convert x1 ≤ 0 to x1 ≥ 0 by reversing the sign of the
coefficients of x1 in the objective function and in the constraints (and remember to
undo it in the final solution), (ii) convert the problem to minimization by reversing
the signs of the objective coefficients (and remember it when declaring the optimal
solution). The resulting problem is
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min x1 + 4x2 + 2x3 + 2x4

s. t. 2x1 − x2 − x3 ≤ −1
−2x1 + x2 + x3 + x4 ≤ 3

4x2 − x3 − 2x4 ≤ −2
xj ≥ 0, j = 1, . . . , 4

After adding type-2 logical variables to each constraint (x5, x6 and x7, respectively)
they become equalities so that the dual simplex can commence.

The bottom row contains the dual logical variables. Pivot elements of the next
iteration are boxed. The following steps are performed.

B x1 x2 x3 x4 x5 x6 x7 xB

x5 2 −1 −1 0 1 −1

x6 −2 1 1 1 1 3

x7 0 4 −1 −2 1 −2

wT 1 4 2 2 0 0 0 0

B x1 x2 x3 x4 x5 x6 x7 xB

x5 2 −1 −1 0 1 −1

x6 −2 3 1/2 0 0 1 1/2 2

x4 0 −2 1/2 1 0 0 −1/2 1

wT 1 8 1 0 0 0 1 −2

The next tableau

B x1 x2 x3 x4 x5 x6 x7 xB

x3 −2 1 1 0 −1 0 0 1

x6 −1 5/2 0 0 1/2 1 1/2 3/2

x4 1 −5/2 0 1 1/2 0 −1/2 1/2

wT 3 7 0 0 1 0 1 −3

is primal (and dual) feasible, thus optimal. The optimal basis is B = {3, 6, 4} The
optimal solution is x1 = x2 = x5 = x7 = 0, x3 = 1, x4 = 0.5 and x6 = 1.5. The
value of the objective function is −3.

The dual solution is obtained from its definition of yT = cTBB
−1. The inverse of

the basis B−1 can found in the final tableau just above the logical variables, while
cB = [−2, 0,−2]T. Therefore, the dual solution is yT = [1, 0, 1]T which gives a dual
objective value of −3, the same as the primal (cTBxB = bTy).
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7. Solve the following linear programming problem using the dual simplex method.

min x1 − 2x2 + 4x3 + 4x4

s. t. 2x1 + 4x2 − 4x3 ≤ −1
x1 + 4x2 + 2x4 ≥ 2
x1 − x2 + x3 + x4 ≤ 3

xj ≥ 0, j = 1, 3, 4, x2 ≤ 0.

Answer:
First, x2 is replaced by its negative to make it a type-2 variable. This is achieved by
reversing the sign of every coefficient multiplying it.

Next, the second constraint (≥) is multiplied by −1 to make it ≤. The resulting
problem becomes

min x1 + 2x2 + 4x3 + 4x4

s. t. 2x1 − 4x2 − 4x3 ≤ −1
−x1 + 4x2 − 2x4 ≤ −2
x1 + x2 + x3 + x4 ≤ 3

xj ≥ 0, j = 1, 2, 3, 4.

After adding a type-2 logical variable si to each row, the following tableau can be
set up:

B x1 x2 x3 x4 s1 s2 s3 xB

s1 2 −4 −4 0 1 −1

s2 −1 4 0 −2 1 −2

s3 1 1 1 1 1 3

dj 1 2 4 4 0 0 0 0

s1 0 4 −4 −4 1 2 −5

x1 1 −4 0 2 0 −1 2

s3 0 5 1 −1 0 1 1 1

dj 0 6 4 2 0 1 0 −2

x4 0 −1 1 1 −1
4

−1
2

0 5
4

x1 1 −2 −2 0 1
2

0 0 −1
2

s3 0 4 2 0 −1
4

1
2

1 9
4

dj 0 8 2 0 1
2

2 0 −9
2

x4
1
2

−2 0 1 0 −1
2

0 1

x3 −1
2

1 1 0 −1
4

0 0 1
4

s3 1 2 0 0 1
4

1
2

1 7
4

dj 1 6 0 0 1 2 0 −5
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Thus the solution is x3 = 1/4, x4 = 1, s3 = 7/4 and x1 = x2 = s1 = s2 = 0.

The value of the objective function is 5.

8. Solve the following linear programming problem using the dual simplex method.

min z = x1 + 2x2 + 3x3 + 4x4

s.t. x1 + x4 ≥ 4
x1 + x2 ≥ 8

x2 + x3 ≥ 8
x3 + x4 ≥ 6

x1, x2, x3, x4 ≥ 0

Answer:
First, multiply all the constraints by -1 to make them <= constraints and add type-2
logical variables (yi) to all of them. The resulting problem is in CF-1:

min z = x1 + 2x2 + 3x3 + 4x4

s.t. −x1 − x4 + y1 = 4
−x1 − x2 + y2 = 8

− x2 − x3 + y3 = 8
− x3 − x4 + y4 = 6

x1, x2, x3, x4, y1, y2, y3, y4 ≥ 0

The following tableau can be set up:

B x1 x2 x3 x4 s1 s2 s3 s4 xB

s1 −1 0 0 −1 1 0 0 0 −4

s2 −1 −1 0 0 0 1 0 0 −8

s3 0 −1 −1 0 0 0 1 0 −8

s4 0 0 −1 −1 0 0 0 1 −6

dj 1 2 3 4 0 0 0 0 0

s1 0 1 0 −1 1 −1 0 0 4

s2 1 1 0 0 0 −1 0 0 −8

s3 0 −1 −1 0 0 0 1 0 −8

s4 0 0 −1 −1 0 0 0 1 −6

dj 0 1 3 4 0 1 0 0 −8

s1 0 0 −1 −1 −1 0 1 0 −4

s2 0 1 −1 0 −1 0 1 0 0

s3 0 1 1 0 0 0 −1 0 8

s4 0 0 -1 −1 0 0 0 1 −6

dj 0 0 2 4 1 0 1 0 −16
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So the final tableau is:

B x1 x2 x3 x4 s1 s2 s3 s4 xB

s1 0 0 0 0 −1 0 1 −1 2

s2 1 0 0 1 −1 0 1 −1 6

s3 0 1 0 −1 0 0 −1 1 2

s4 0 0 1 1 0 0 0 1 6

dj 0 0 0 2 1 0 1 2 −28

Thus the solution is x1 = 6, x2 = 2, x3 = 6, s1 = 2 and x4 = s2 = s3 = s4 = 0.

The value of the objective function is 28.

9. Solve the following primal-dual pair with using the primal and the dual simplex
algorithms. Verify that the strong duality theorem holds for the solutions:

max z = −x2 − 2x3

s.t. x1 + x2 − 2x3 ≤ −2
2x1 − x2 + x3 ≤ −4

x1, x2, x3 ≥ 0.

min w = −2y1 − 4y2
s.t. y1 + 2y2 ≥ 0

y1 − y2 ≥ −1
−2y1 + y2 ≥ −2

y1, y2 ≥ 0.

Answer:

First, investigate the structure of the primal dual pair. If we construct the CF-1 for
both problems, we will get the following form:

min −z = x2 + 2x3

s.t. x1 + x2 − 2x3 + s1 = −2
2x1 − x2 + x3 + s2 = −4

x1, x2, x3, s1, s2 ≥ 0.

min w = −2y1 − 4y2
s.t. −y1 − 2y2 + d1 = 0

−y1 + y2 + d2 = 1
2y1 − y2 + d3 = 2

y1, y2, d1, d2, d3 ≥ 0.
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The first problem is suitable to solve with the dual algorithm, since the right hand
side vector contains negative elements, and the second one is suitable for the primal
algorithm.

Let’s start with the first one, which gives the following tableau:

B x1 x2 x3 s1 s2 xB

s1 1 1 −2 1 0 −2

s2 2 −1 1 0 1 −4

dj 0 1 2 0 0 0

s1 3 0 −1 1 1 −6

x1 −2 1 −1 0 −1 4

dj 2 0 3 0 1 −4

So the final tableau is:

B x1 x2 x3 s1 s2 xB

x2 −3 0 1 −1 −1 6
x1 1 1 0 1 0 10
dj 11 0 0 3 4 −22

This gives a solution with x1 = 10, x2 = 6, x3 = 0, s0 = 1, s2 = 0 and the
objective value is z = −22 (note that we multiplied the objective function by -1 in
the first step). We can also read the dual solution from the final tableau (from the
reduced costs of the logical variables), we expect the dual variables to be y1 = 3
and y2 = 4 from the dual problem. Let’s solve it with the primal simplex algorithm.
The tableaux during computation are the following:

B y1 y2 d1 d2 d3 xB

d1 −1 −2 1 0 0 0

d2 −1 1 0 1 0 1

d3 2 −1 0 0 1 2

wj −2 −4 0 0 0 0

d1 −3 0 1 −1 0 0

y2 −1 1 0 1 0 1

d3 1 0 0 2 1 2

wj −6 0 0 −2 0 4

So the final tableau is:



85

B x1 x2 x3 s1 s2 xB

d1 0 0 1 5 3 11
y2 0 1 0 −1 1 4
y1 1 0 0 2 1 3
wj 0 0 0 10 6 22

Thus the solution is y1 = 3, y2 = 4, d1 = 11, d2 = 0, d3 = 0, which is exactly the
same as what we expected. Also the optimal solution verifies strong duality, both
problems gave −22 as the objective value.

10. Solve the following linear programming problem using the dual simplex method.

max z = −2x1 − x2 − 3x3 − x4

s.t. −x1 + 2x2 + x3 − x4 ≤ 3
−x1 − x2 + x3 + 2x4 ≥ 2
x1 − 2x2 − 3x3 − x4 ≤ −2

x1, . . . , x4 ≥ 0.

Answer:

First convert the problem to CF-1:

min −z = 2x1 + x2 + 3x3 + x4

s.t. −x1 + 2x2 + x3 − x4 + s1 = 3
x1 + x2 − x3 − 2x4 + s2 = −2
x1 − 2x2 − 3x3 − x4 + s3 = −2

x1, . . . , x4, s1, . . . , s3 ≥ 0.

Because all the coefficients in the objective function is positive we can apply the
algorithm. The first tableau:

B x1 x2 x3 x4 sy1 s2 s3 xB

s1 −1 2 1 −1 1 0 0 3

s2 1 1 −1 −2 0 1 0 −2

s3 1 −1 −1 −1 0 0 1 −2

dj 2 1 3 1 0 0 0 0

For the outgoing variable we choose y3 because there are only 1 and -1 int the third
row:
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B x1 x2 x3 x4 s1 s2 s3 xB

s1 1 0 −1 −3 1 0 −2 −1

s2 1 0 −2 −3 0 0 1 −4
x2 −1 1 1 1 0 0 −1 2
dj 3 0 2 0 0 0 1 −2

This transformation leads to the final tableau:

B x1 x2 x3 x4 s1 s2 s3 xB

s1 0 0 1 0 1 −1 −3 −3
x4 −1

3
0 −2

3
1 0 −1

3
−1

3
4
3

x2 −2
3

1 1
3

0 0 1
3

−1
3

2
3

dj 3 0 2 0 0 0 1 −2

Thus the solution is x2 = −2
3
, x4 = −4

3
, s1 = 3 and x1 = x3 = s2 = s3 = s4 = 0.

The value of the objective function is 28.



Chapter 5

Integer and mixed integer linear
programming

5.1 Exercises

1. In some model we have a variable x that is allowed to take a value from the follow-
ing set F = {0,−1,−2,−3}. How can you formulate this requirement with integer
programming constraint(s) and/or bounds?

Answer:

We can consider a couple of different solutions for this problem:

(i) The trivial solution for the problem is to give individual bounds on x and, so
−3 ≤ x ≤ 0, integer.

(ii) We can give a more general solution if we consider the set of feasible values
we can assign a new variable for each. Let y0, y1, y2 and y3 be new binary
variables (0 ≤ yi ≤ 1, integer; i = 0, . . . , 3). If we introduce a constraint that
only one of the yi variables can be 1 (so they are mutually exclusive) we get
y0+y1+y2+y3 = 1. This way x can be modeled as x = 0y0−1y1−2y2−3y3.

(iii) The situation can be simplified if we omit y0 and modify the constraint on the
yi variables: x = −y1 − 2y2 − 3y3; y1 + y2 + y3 ≤ 1; 0 ≤ y1, y2, y3 ≤
1, integer.

(iv) If we are using binary variables and notice that the values are specific in the
given feasibility set we can further simplify the formulation as: x = −y1 −
2y2; 0 ≤ y1, y2 ≤ 1, integer.

2. Convert the following discrete optimization problem into a mixed integer linear
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programming problem.

min cTx

s.t. Ax = b

x ≥ 0

x1 ∈ {r1, r2, . . . , rq}.

Note: x = [x1, x2, . . . , xn]
T .

Answer:

The situation here is a bit similar to the previous example but there is a significant
difference. Since the values are not given here we must use a general formalism to
handle the feasibility set of the variable x1. We have to set up a binary variable for
each ri value. So the solution is:

min cTx

s.t. Ax = b

x1 = r1y1 + r2y2 + . . .+ rqyq

x ≥ 0

0 ≤ yi ≤ 1, integer; i = 1, . . . , r

3. A trading company is considering four investments: Investment 1 will yield a net
present value (NPV) of $16,000; investment 2, an NPV of $22,000; investment 3, an
NPV of $12,000; and investment 4, an NPV of $8,000. Each investment requires a
certain cash outflow at the present time: investment 1, $5,000; investment 2, $7,000;
investment 3, $4,000; and investment 4, $3,000. Currently, $14,000 is available for
investment.

(a) Formulate an IP whose solution will tell the company how to maximize the
NPV obtained from investments 1–4.

(b) Modify the formulation to account for each of the following requirements:

(i) The company can invest in at most two investments.
(ii) Investment 2 can be carried out only if investment 1 is done.

(iii) If investment 2 is selected, they can’t invest in investment 4.

Answer:

To give the maximal NPV that can be achieved the objective function must contain
the result of the investments. The budget gives a constraint on the investments and
each investment (or a decision) can be modeled using a binary variable. Thus we
have:
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max 16000x1 + 22000x2 + 12000x3 + 80000x4

s.t. 5000x1 + 7000x2 + 4000x3 + 3000x4 ≤ 14000

0 ≤ xi ≤ 1, integer; i = 1, . . . , 4

Each of the modifications (a)-(c) give new constraints for the problem:

(i) x1 + x2 + x3 + x4 ≤ 2,

(ii) x1 ≥ x2,

(iii) x2 + x4 ≤ 1.

4. The following euro coins are available: 1, 2, 5, 10, 20, 50 cents and 1, 2 euros. Write
a mathematical model to find the minimum number of coins needed to pay a given
quantity q expressed in euros.

Answer:
A variable is assigned to each of the coin types whose sum we want to minimize:

min x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8

s.t. 1x1 + 2x2 + 5x3 + 10x4 + 20x5 + 50x6 + 100x7 + 200x8 = q

xi ≥ 0, integer; i = 1, . . . , 8

5. A furniture company is capable of manufacturing three types of furniture: chair,
desk, and cabinets. The manufacturing of each type of furniture requires to have
the appropriate type of production line available. The line needed to manufacture
each type of furniture must be rented at the following rates: chair line, $200 per
week; desk line, $150 per week; cabinet line, $100 per week. The chair line can
produce a maximum of 40 chairs per week, the desk line can produce a maximum
of 53 desks per week, and the cabinet line can produce a maximum of 25 cabinets
per week. The manufacture of each type of furniture also requires some amount
of wood and labor as shown below. Each week, 150 hours of labor and 160 m2 of
wood are available. The variable unit cost and selling price for each type of furniture
are also give. Formulate an IP whose solution will maximize the company’s weekly
profits.

Furniture Type Labor (Hours) Wood (m2) Sales Price ($) Variable Cost ($)
Chair 2 3 8 4
Desk 3 4 12 6
Cabinet 6 4 15 8
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Answer:

First, we assign three variables x1, x2, x3 to the produced quantities of chairs, desks
and cabinets, respectively. Furthermore three more variables must express the us-
age of the production lines (y1, y2, y3). The objective is to maximize the total profit,
which can be obtained from the sales prices the variable costs and the line rates.
Constraints on the labor and wood capacity are trivial and also the model must guar-
antee that production can be done only if the corresponding line is rented. These
constraints use the upper bounds on the produced quantities. So the IP model is:

max (8− 4)x1 + (12− 6)x2 + (15− 8)x3 − 200y1 − 150y2 − 100y3

s.t. 2x1 + 3x2 + 6x3 ≤ 150

3x1 + 4x2 + 4x3 ≤ 160

x1 ≤ 40y1

x2 ≤ 53y2

x3 ≤ 25y3

xi ≥ 0, integer; 0 ≤ yi ≤ 1, integer; i = 1, . . . , 3

6. You have 5 keys and 6 locks. Every key opens one or more locks as shown in the
following table:

Key1 Key2 Key3 Key4 Key5

Lock1 x x x

Lock2 x x

Lock3 x x

Lock4 x x x

Lock5 x x

Lock6 x x x

Write an optimization model that chooses the minimum number of keys such that
any of the locks can be opened.

Answer:

A binary variable must be assigned to each key and we want to minimize the sum
of these variables. The working logic of the keys can be modeled in the constraints,
each lock is represented by a constraint if at least one of the applicable keys is
chosen. The IP model is:
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min
5∑

i=1

xi

s.t. x1 + x2 + x3 ≥ 1

x3 + x4 ≥ 1

x1 + x5 ≥ 1

x1 + x2 + x5 ≥ 1

x2 + x4 ≥ 1

x2 + x4 + x5 ≥ 1

0 ≤ xi ≤ 1, integer; i = 1, . . . , 5

7. Company wants to build plants to supply customers. There are m customers and n
potential locations for plants.

Problem data:

n potential locations for plants
m number of customers
cij cost of supplying one unit of demand i from plant j
fj fixed cost of opening (building) a plant in location j
di demand of customer i
sj supply available at plant j (if open)

Decision variables:

xi
j units of product delivered from plant j to customer i

yj binary variable: = 1 if plant j is to be built, 0 otherwise.

Formulate a mixed integer LP problem to minimize costs.

Answer: The objective is to minimize cost while satisfying every customer demand
and ensuring that a plant is built if delivery is planned from this site. The MILP
model for the problem is:
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min
m∑
i=1

n∑
j=1

cijxij −
n∑

j=1

fjyj

s.t.
n∑

j=1

xij = di, i = 1, . . . ,m

n∑
i=1

xij − sjδj ≤ 0, j = 1, . . . , n

xij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n

0 ≤ δj ≤ 1, integer, j = 1, . . . , n.

8. A car manufacturing company is considering the production of three types of autos:
compact, midsize, and large. The resources required for, and the profits yielded by
each type of car are given in the table. Currently, 6,000 tons of steel and 60,000
hours of labor are available. For production of a type of a car to be economically
feasible, at least 1,000 cars of that type must be produced. Formulate an IP model
to maximize the company’s profit.

Car Type
Resource Compact Midsize Large
Steel required 1.5 tons 3 tons 5 tons
Labor required 30 hours 25 hours 40 hours
Profit ($) 2,000 3,000 4,000

Answer:

Decision variables xi correspond to the produced quantities of the different types
of cars. The constraints on the available material and manpower are trivial. Also,
the objective function can be modeled easily. To model that the production is eco-
nomically feasible, we must introduce a new binary variable to denote whether the
produced quantities are zero or not and we can use it to give a lower bound on the
production if necessary. We can use one of the given constraints (e.g., the steel
constraint) to compute the upper bounds on the xi variables. Thus our model is:
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max 2000x1 + 3000x2 + 4000x3

s.t. 1.5x1 + 3x2 + 5x3 ≤ 6000

30x1 + 25x2 + 40x3 ≤ 60000

1000y1 ≤ x1 ≤ 3000y1

1000y2 ≤ x2 ≤ 2000y2

1000y3 ≤ x3 ≤ 1200y3

xi ≥ 0, integer; 0 ≤ yi ≤ 1, integer; i = 1, . . . , 3

9. Solve the following two dimensional mixed integer linear programming problem
graphically using your own drawing in a graph similar to the one below. It need not
be very accurate. If in doubt, rely on the given numerical data.

The objective is to maximize z = −x1 + 2x2, where x1 is a general nonnegative
integer, x2 is nonnegative. The feasible region of the LP relaxation of the problem
is determined by the polygon with vertices: P1(0, 0), P2(0, 1), P3(1, 3), P4(3, 4),
P5(4, 3) and P6(2, 0). Where are the feasible solutions of the problem located?
Determine an optimal solution. Is it unique? If not, can you find them all? How
many are there? Compare the situation with continuous LP.

Answer:

The feasible region is shown in the figure below. Since the variable x1 is integer,
the feasible solutions are show in green. The objective function and the optimal
solutions are highlighted in red. The optimal solution is not unique, there are three
of them. The objective value is 5.

If we drop the integer constraint (continuous case) the feasible solutions are covered
by the polygon itself and there are infinitely many optimal solutions on the red line.

0 1 2 3 4 5 6
0

1

2

3

4

10. Find graphically the feasible region of the following integer linear programming
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problem.

min −3x − 4y
s.t. x + 2y ≤ 10

x + y ≤ 7
0 ≤ x ≤ 6, 0 ≤ y ≤ 4

x, y integer

(i) Can you visually identify the optimal solution of this problem?

(ii) What is the optimal solution if the 2x + 2y ≤ 9 additional constraint is also
imposed on the LP?

Answer:

The feasible region is shown in gray in the figure below. This region can be obtained
by drawing the lines determined by the constraints. The vertices of the feasible
polygon are: (0, 0), (0, 4), (2, 4), (4, 3), (6, 1), (6, 0).

(i) First, determine the slope of the objective function. Then move it up so that it
touches the feasible region in an integer point. This is the red dot in the figure
below.

0 1 2 3 4 5 6
0

1

2

3

4

(ii) The optimal solution changes if we add the new constraint given in (ii), repre-
sented by the dashed line. It also can be obtained visually. We have to consider
that we are interested only in integer solutions that satisfy the new constraint
within the given polygon. The solution is, again, denoted by a red dot.
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0 1 2 3
0

1

2

3

11. Solve the following integer programming problem graphically:

max x + y
s.t. −10x + 4y ≤ −3.0

2.5x + y ≤ 6.75
5x − 2y ≤ 7.5

2.5x + y ≥ 3.75
0 ≤ x, y ≤ 3 and integer.

Answer:
If we draw the feasible region of the problem, we obtain a polygon that does not
contain integer solutions, thus the problem is integer infeasible:

0 1 2 3 4
0

1

2

3

4

12. The objective is to maximize z = 2x1 + x2, where x2 is a general nonnegative
integer, x1 is nonnegative. The feasible region of the LP relaxation of the problem
is determined by the polygon with vertices: P1(0, 1), P2(0, 3.5) and P3(2.95, 0).
Where are the feasible solutions located? Determine an optimal solution graphi-
cally. Is it unique?

Answer:
The feasible solutions of the problem are located within the given polygon. They
correspond to the convex hull of the integer points within the polygon. The optimal
solution is uniquely determined, the optimum value is 5.
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0 1 2 3
0

1

2

3



Chapter 6

Branch-and-bound techniques, cutting
plane algorithms

1. Solve the following integer programming problem using the B&B method.

min z = −3x1 − 4x2 + 20

s.t.
2

5
x1 + x2 ≤ 3

2

5
x1 − 2

5
x2 ≤ 1

x1, x2 ≥ 0 and integer.

Answer:

P0 : LP relaxation

0 1 2 3
0

1

2

3

S

At S0 : x1 = 3
13

14
, x2 = 1

3

7
; z0 = 2

1

2

Both variables have fractional value. Branch on x2 ⇒ P1 := P0 & x2 ≤ 1; P2 :=
P0 & x2 ≥ 2. Branching on x1 could also have been performed.

Examine waiting (pending) nodes: W = {P1, P2}.

First investigate P1 := P0 & x2 ≤ 1 by solving its LP relaxation:

97
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0 1 2 3
0

1

2

3

S2

At S1 : x1 = 3
1

2
, x2 = 1; z1 = 5

1

2

The LP relaxation is not integer feasible as x1 is not integer.

Next, investigate P2 := P0 & x2 ≥ 2:

0 1 2 3
0

1

2

3

S3

At S2 : x1 = 2
1

2
, x2 = 2; z2 = 4

1

2
.

Again, the LP relaxation is not integer feasible as x1 is not integer.

From among the two pending nodes choose P1 and branch on x1 and generate P3 :=
P1 & x1 ≤ 3 and P4 := P1 & x1 ≥ 4.

Now we have three waiting nodes: W = {P2, P3, P4}.

Investigate P3 := P1 & x1 ≤ 3:

0 1 2 3
0

1

2

3

S5

At S3 : x1 = 3, x2 = 1; and z3 = 7.

Solution is integer feasible with Z = z3 = 7.

The remaining waiting nodes: W = {P2, P4}.

Choose P4 := P1 & x1 ≥ 4:

No feasible solution because x1 cannot be greater than 3.93 (see P0).

Waiting node: W = {P2}.

Take P2 and branch on x1. It results in P5 := P2 & x1 ≤ 2 and P6 := P2 & x1 ≥ 3.
Waiting nodes: W = {P5, P6}.

Investigate P5 := P2 & x1 ≤ 2 first:
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0 1 2 3
0

1

2

3

At S5 : x1 = 2, x2 = 2
1

5
; and z5 = 5

1

5
.

This node is pending as in the solution x2 is not integer.

Waiting nodes: W = {P5, P6}.
Take P6 := P2 & x1 ≥ 3:

No feasible solution because x1 cannot be greater than 3 if x2 ≥ 2. (The LP solver
would notice this infeasibility of P6.)

Choose P5, branch on x2 resulting in P7 := P5 & x2 ≤ 2 and P8 := P5 & x2 ≥ 3.
Waiting nodes: W = {P7, P8}.
Select P8 := P5 & x2 ≥ 3:

0 1 2 3
0

1

2

3

S7

At S8 : x1 = 0, x2 = 3; z8 = 8.

Integer solution but worse than Z = z3 = 7.

Remaining waiting node: W = {P7}.
Select P7 := P5 & x2 ≤ 2:

At S7 : x1 = 2, x2 = 2; and z7 = 6.

Integer solution, better than Z. Therefore, Z := z7 = 6.

No more pending nodes: z7 is an optimal solution!
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Chapter 7

Network optimization

7.1 Exercises
1. Give the mathematical model of the transportation problem.

Answer:
Let M and N be two sets:

• M: set of supply nodes

• N : set of demand nodes

Let the parameters be the following:

• m: number of supply nodes

• n: number of demand nodes

• si: supply at node i (i = 1, . . . ,m)

• dj: demand at node j (j = 1, . . . , n)

• cij: cost of transporting one unit from supply node i to demand node j

Variable:

• xij: quantity transported from node i to node j

Assumption: Total supply is equal to total demand.

Objective: To satisfy every demand at minimal total cost.

min
∑
i∈M

∑
j∈N

cijxij

∑
i∈M

xij = dj, j = 1, . . . , n

101
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j∈N

xij = si, i = 1, . . . ,m

∑
i∈M

si =
∑
j∈N

dj

xij ≥ 0, ∀(i, j)

2. Find a starting basis of the following transportation problem using the North-West
Corner Rule Method. Is the starting basis optimal?

s =

 4
7
2

 , d = (3, 5, 4, 1), C =

 4 2 5 6
4 1 3 7
8 6 5 4


Answer:

The total supply and the total demand is equal to 13. We have to solve the aug-
mented problem:

4

7

2

3 5 4 1

4 2 5 6

4 1 3 7

8 6 5 4

Cost coefficients

D e m a n d

Supply

For a starting basis, the North-West corner rule is used. This basis is:
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4

7

2

3 5 4 1

4 2 5 6

4 1 3 7

8 6 5 4

3 1

4 3

1 1

The starting basis is optimal, because the reduced costs of nonbasic cells are non
negative.

3. Find a starting basis of the following transportation problem using the Least Cost
Cell Method. Is this basis optimal?

s =

 20
12
30

 , d = (15, 20, 15, 12), C =

 9 7 6 6
8 6 7 9
7 8 8 5


Answer:

The starting basis using the Least Cell Cost Method is the following:

20

12

30

15 20 15 12

9 7 6 6

8 6 7 9

7 8 8 5

5 15

12

15 3 12

The starting basis is optimal, because the reduced costs of nonbasic cells are non
negative.
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4. Solve the following transportation problem using the North-West Corner Rule Method.

s =

 3
5
4

 , d = (2, 4, 2, 2, 2), C =

 2 3 4 1 2
4 5 3 2 1
1 3 4 6 2


Answer:

An optimal solution is:

3

5

4

2 4 2 2 2

2 3 4 1 2

4 5 3 2 1

1 3 4 6 2

1 2

1 2 2

2 2

Objective value = 26

5. Solve the following transportation problem using the Least Cost Cell Method.

s =


10
7
12
11

 , d = (10, 10, 10, 10, 10, 10), C =


2 6 5 3
4 3 4 2
2 6 4 4
6 8 7 9


This basis is optimal because all

6. Solve the following transportation problem using the North-West Corner Rule Method.

s =

 5
7
5

 , d = (4, 4, 4, 4, 4, 4), C =

 4 3 2 5 7 2
3 4 3 5 3 7
6 5 4 3 4 2
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7. Solve the following transportation problem using the Least Cost Cell Method.

s =

 5
7
5

 , d = (4, 4, 4, 4, 4, 4), C =

 4 3 2 5 7 2
3 4 3 5 3 7
6 5 4 3 4 2


8. Solve the following transportation problem, where x11 = x12 = x23 = x34 = 0 (xij

is the quantity transported from node i to node j).

s =

 7
6
8

 , d = (5, 3, 5, 5, 3), C =

 2 3 4 2 5
3 3 1 4 3
2 2 4 3 4


9. Suppose that a taxi firm has four taxis available, and four customers wishing to be

picked up as soon as possible. The firm prides itself on speedy pickups, so for each
taxi the "cost" of picking up a particular customer will depend on the time taken for
the taxi to reach the pickup point (see the "cost" matrix C, where cij defines the dis-
tance in time between the taxi i and customer j). Give an optimal "taxi-customer"
assignment where the total waiting time of the customers is minimal.

C =


14 5 8 7
2 12 6 5
7 8 3 9
2 4 6 10
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Chapter 8

Game theory

8.1 Exercises
1. A 2p0sg has the following reward matrix:

C’s strategy
R’s strategy C1 C2 C3

R1 17 23 48
R2 17 3 51
R3 6 17 3

Which strategy should each of the two players choose? One answer must be ob-
tained by applying the concept of dominated strategies to rule out a succession of
inferior strategies until only one choice remains.

First, apply the notion of dominance.

At the initial table (reward matrix) there are no dominated strategies for C. How-
ever, for R, strategy R3 is dominated by R1 because the latter has larger payoffs
regardless of what C does. Eliminating strategy R3 from further consideration the
following reward matrix is obtained:

C’s strategy
R’s strategy C1 C2 C3

R1 17 23 48
R2 17 3 51

C now has a dominated strategy which is C3. It is dominated by both strategies
C1 and C2 because they always have smaller losses. Eliminating this strategy we
obtain the following reward matrix:

107
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C’s strat
R’s strategy C1 C2

R1 17 23
R2 17 3

Now strategy R2 for R becomes (weakly) dominated by strategy R1 for. Eliminat-
ing the dominated strategy the following table is obtained:

C’s strat
R’s strategy C1 C2

R1 17 23

Strategy C2 for C is dominated by C1, as 17 < 23. Consequently, both players
should choose strategy 1.

If we follow the steps of finding a saddle point, where max of row minima is equal
to min of col maxima, we notice that in this game saddle point does exist and it
is achieved if both players choose their respective first strategies. The value of the
game is 17.

2. Three linear functions y1, y2 and y3 are defined as follows:

y1 = 2 − x
y2 = x − 1
y3 = 2x − 6

Find min
x≥0

max
i

{yi}.

One possibility to solve the problem is to introduce an auxiliary variable, say x0

and then to solve the equivalent problem with x ≥ 0:

min x0

s.t. 2 − x ≤ x0

x − 1 ≤ x0

2x − 6 ≤ x0

After rearranging:
min x0

s.t. x0 + x ≥ 2
x0 − x ≥ −1
x0 − 2x ≥ −6

x ≥ 0

Optimal solution is: x = 1.5, x0 = 0.5.

Problem can also be solved graphically. Try it.
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3. The manager of a multinational company and the union of workers are preparing
to sit down at the bargaining table to work out the details of a new contract for
the workers. Each side has developed certain proposals for the contents of the
new contract. Let us call union proposals “Prop-1”, “Prop-2” and “Prop-3, and the
manager proposals “Contr-A” (for contract), “Contr-B” and “Contr-C”. Both parties
are aware of the financial consequences of each proposalontract combination. The
pay-off matrix is:

Manager’s
Workers’ Contr-A Contr-B Contr-C
Prop-1 8.5 7.0 7.5
Prop-2 12.0 9.5 9.0
Prop-3 9.0 11.0 8.0

These values are the contract gains that the workers’ union would secure and also
the cost the company would have to bear.

Is there a clearut contract combination agreeable to both parties, or will they find it
necessary to submit to arbitration in order to arrive at some sort of compromise?

The workers’ union is the row player and the manager is the column player. We
have to check if this game has an equilibrium point.

First, determine union’s optimal strategy: compute row minima.

Manager’s
Workers’ Contr-A Contr-B Contr-C Row minimum
Prop-1 8.5 7.0 7.5 7.0
Prop-2 12.0 9.5 9.0 9.0
Prop-3 9.0 11.0 8.0 8.0

As the largest row minimum is at proposal-2 the union will select this strategy.

In a similar way we find the manager optimal strategy. The maximum “loss” of the
manager for each strategy of the union is shown in the “Col max” row of the fol-
lowing table. The minimum of these maximum pay-outs is 9.0 in the third column.
Consequently the manager would select Contr-C as his optimal one.

Manager’s
Workers’ Contr-A Contr-B Contr-C Row minimum
Prop-1 8.5 7.0 7.5 7.0
Prop-2 12.0 9.5 9.0 9.0
Prop-3 9.0 11.0 8.0 8.0
Col max 12.0 11.0 9.0
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In this game both of the players will select a strategy that has the same value. The
min value in row 2 is also the max value in column C, so the solution is an equilib-
rium or saddle point.

min{col max} = min{12, 11, 9} = 9 = max{row min} = max{7, 9, 8}.

The two sides can reach an agreement. There is no need for arbitration.

4. Consider the same situation as in Problem 3, but with the following pay-off matrix:

Manager’s
Workers’ Contr-A Contr-B Contr-C
Prop-1 9.5 12.0 7.0
Prop-2 7.0 8.5 6.5
Prop-3 6.0 9.0 10.0

Is there an equilibrium point?

Find the mixed strategies for the union and the manager.

Formulate (but do not solve) the LP problem to determine the optimum strategy for
the union and the optimum strategy of the manager.

First, determine row minima and column maxima.

Manager’s
Workers’ Contr-A Contr-B Contr-C Row minimum
Prop-1 9.5 12.0 7.0 7.0
Prop-2 7.0 8.5 6.5 6.5
Prop-3 6.0 9.0 10.0 6.0
Col max 9.5 12.0 10.0

There is no equilibrium point as max row min = 7.0 and it is not equal to min col
max = 9.5. Randomized strategies have to be used.

Let x1, x2, x3 denote the (currently unknown) probabilities of the union where xi

represents the probability that union chooses the i-th proposal. The manager’s prob-
abilities of choosing the j-th contract are denoted by y1, y2, y3.

If the union chooses the mixed strategy (x1, x2, x3) then their expected reward
against each of manager’s strategies are:

Manager chooses Union’s reward
Contr-A 9.5x1 + 7x2 + 6x3

Contr-B 12x1 + 8.5x2 + 9x3

Contr-C 7x1 + 6.5x2 + 10x3
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By the basic assumption the manager will choose a strategy that makes union ex-
pected reward equal to

min{(9.5x1 + 7x2 + 6x3), (12x1 + 8.5x2 + 9x3), (7x1 + 6.5x2 + 10x3)} (8.1)

and at the same time the union should choose the strategy (x1, x2, x3) to make (8.1)
as large as possible:

max{min{(9.5x1 + 7x2 + 6x3), (12x1 + 8.5x2 + 9x3), (7x1 + 6.5x2 + 10x3)}}.

Therefore the union’s strategy is the solution of the following LP:

max v
s.t. v − 9.5x1 − 7.0x2 − 6.0x3 ≤ 0

v − 12.0x1 − 8.5x2 − 9.0x3 ≤ 0
v − 7.0x1 − 6.5x2 − 10.0x3 ≤ 0

x1 + x2 + x3 = 1
x1, x2, x3 ≥ 0

In a similar fashion the manager strategy will be determined by the solution of the
following LP problem:

min w
s.t. w − 9.5y1 − 12.0y2 − 7.0y3 ≥ 0

w − 7.0y1 − 8.5y2 − 6.5y3 ≥ 0
w − 6.0y1 − 9.0y2 − 10.0y3 ≥ 0

y1 + y2 + y3 = 1
y1, y2, y3 ≥ 0
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Chapter 9

Nonlinear programming

1. Determine whether the following functions are convex or not for x ∈ R1:

f(x) = 1 + 2x+ x2, g(x) = x2 + e−x, h(x) = x2 − ex.

Answer:
f(x) is convex as it can be written as (1 + x)2, and a quadratic function is convex.

g(x) is convex as it is the sum of two convex functions.

h(x) is not convex as it is dominated by −ex which is a concave function. h(x) is
the sum of a convex and a concave function.

2. Determine whether the following functions are convex for x > 0. Note, x =
(x1, x2).

f(x1, x2) = 4x2
1−4x1x2+x2

2−log(x1), g(x1, x2) = 4x2
1+x2

2+4x1x2+log(x1x2).

Answer:
f can be written as (2x1−x2)

2− log(x1) which is the sum of two convex functions
(− log(x1) is convex). Therefore, f is convex.

g can be written as (2x1 + x2)
2 + log(x1x2) which is the sum of a convex and a

concave function, thus g is not convex.

3. Show that the following function is convex and determine its minimum

f(x) =
11

273
x6 − 19

91
x4 + x2.

Answer:

f
′′
(x) =

330

273
x4 − 228

91
x2 + 2. First show that f ′′

(x) is always positive (thus f is

convex). It can be done by substituting y = x2 and noticing that the discriminant of
the resulting quadratic equation is negative, thus there is no solution, the x axis is
never crossed. Having done so, solve f

′
(x) = 0 which gives x = 0 and f(x) = 0.
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4. A furniture company makes wall cabinets. There is a fixed cost of production per
month of e6000. The cost of making a chair is e30. Sales price affects the quanti-
ties sold:

volume(v) = 500− 1.4 price(p).

Work out a profit function and determine the price that will maximize profit. Also,
compute the optimum value.

Answer:

Profit as a function of sales price: f(p) = (500− 1.4p)p− 30(500− 1.4p)− 6000,
which simplifies to f(p) = −1.4p2 + 542p − 21000. It has maximum at p ≈ 193.
The optimum value (max profit) ≈ e31457.

5. Find the extreme points of f(x) = x4 − 2x2 + 2. Determine whether they are local
or global minima/maxima. Having done so, determine the minimum of the same
function f(x) subject to −0.5 ≤ x ≤ 1.5.

Answer:

Note, f(x) is neither convex nor concave.

Taking the first derivative of f(x) and setting it equal to zero: f ′(x) = 4x3−4x = 0,
or x(x2 − 1) = 0, from which x1 = 0, x2 = −1, x3 = 1. x1 is a local maximizer
(the first derivative changes sign here from + to −, i.e., f(x) is locally concave),
x2 and x3 are local minimizers (analogous arguments). At the same time, they
are global minimizers since f(x) → +∞ as x → ±∞ (multiple optimum with
multiplicity of 2).

One local minimum of f(x) falls inside the −0.5 ≤ x ≤ 1.5 feasible region. There-
fore, the minimum of f(x) s.t. −0.5 ≤ x ≤ 1.5 is x = 1 and the optimum is
f(1) = 1.

6. Find the minimum of g(x) = x2 + e−x.

Answer:

Setting the first derivative of g equal to 0 the resulting equation is 2x − e−x = 0,
from which x ≈ 0.35. Since g is convex this point is a minimizer.

7. Solve the following nonlinear programming problem.

min f(x) =
1

4
x2 + x+ 1, subject to − 1 ≤ x ≤ 2.

Answer:

f(x) can be written as
(
1

2
x+ 1

)2

which is a convex function. It reaches its global

minimum at x = −2. However, it falls outside the −1 ≤ x ≤ 2 feasible region.
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Therefore, the minimum is attained at the boundary of the region. This is the point
nearest to x = −2 which is x = −1. Thus, it is the minimum point. The optimal
value is f(−1) = 0.25.

8. Determine which of the following functions is smooth/nonsmooth on the given do-
main. [Note: f(x) = f(x1, x2).]

(i) f(x) = log(x1x2)− (x1 + x2)
2, 0 < x1, x2 ≤ 100

(ii) g(x) = |x1 − 2|+ x3
2, 0 ≤ x1, x2 ≤ +∞

(iii) h(x) = |x1 + x2|2, −∞ ≤ x1, x2 ≤ +∞

Answer:

(i) f(x) smooth.

(ii) g(x) nonsmooth, because of the absolute value term.

(iii) h(x) = |x1 + x2|2 ≡ (x1 + x2)
2, which is smooth.

9. Which of the following functions have local extreme points (minimum or maxi-
mum), and if so, where? Why? [Note: f(x) = f(x1, x2).]

(i) f(x) = 1− x1x2

(ii) f(x) = x2
1 − x3

2

(iii) f(x) = x2
1 + x2

2

Answer:
Reminder: If all eigenvalues of a matrix are positive then the matrix is positive
definite.

The necessary condition for a point to be extreme for f(x) is that the gradient
vanishes in a point, ∇f(x0) = 0T. If in this point the Hessian is definite then this is
an extreme point (minimum or maximum).

(i) ∇f = [−x2,−x1] = 0 iff x1 = x2 = 0. The Hessian:

H =

[
0 −1

−1 0

]
.

The eigenvalues come from det[H − λI2] = λ2 − 1 = (λ + 1)(λ − 1) = 0,
giving λ1 = −1 and λ2 = 1. So, the Hessian is indefinite, no local extremum.

(ii) ∇f = [2x1,−3x2
2] = 0 iff x1 = x2 = 0. The Hessian:

H =

[
2 0
0 −6y

]
.
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In [0, 0] the eigenvalues come from det[H − λI2] = (2 − λ)(−λ) = 0, giv-
ing λ1 = 2 and λ2 = 0. So, the Hessian is positive semidefinite, no local
extremum.

(iii) ∇f = [2x1, 2x2] = 0 iff x1 = x2 = 0. The Hessian:

H =

[
2 0
0 2

]
.

It is positive definite, therefore [0, 0] is a local minimum.

10. Write the KKT conditions for the following problem:

min f(x) = x4
1 + 2x2

1 + 2x1x2 + 4x2
2

s.t. 2x1 + x2 = 10

x1 + 2x2 ≥ 10

x1, x2 ≥ 0.

Answer:

4x3
1 + 4x1 + 2x2 + 2λ− µ1 − µ2 = 0

2x1 + 8x2 + λ− 2µ1 − µ3 = 0

2x1 + x2 − 10 = 0

x1 + 2x2 − 10 ≥ 0

x1, x2 ≥ 0

µ1(x1 + 2x2 − 10) = 0

µ2x1 = 0

µ3x2 = 0,

µ1, µ2, µ3 ≥ 0

11. Consider the following constrained nonlinear programming problem:

max f(x) = x1x2 + x1x3 + x2x3

s.t. x1 + x2 + x3 = 3.

Define the KKT conditions for the problem. Find a solution that satisfies the con-
ditions. Determine if it is a maximizer.

Answer:
The Lagrangian function of the problem is:

L(x, λ) = x1x2 + x1x3 + x2x3 + λ(x1 + x2 + x3 − 3).
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A stationary point of L satisfies the following system of equations:

∂L(x, λ)

∂x1

= x2 + x3 + λ = 0

∂L(x, λ)

∂x2

= x1 + x3 + λ = 0

∂L(x, λ)

∂x3

= x1 + x2 + λ = 0

∂L(x, λ)

∂λ
= x1 + x2 + x3 − 3 = 0

This is a system of linear equations. It has a unique solution of (x∗
1, x

∗
2, x

∗
3) =

(1, 1, 1) and λ∗ = −2. This is a candidate for maximum. The determinant of the
Hessian is −3 (verify!), therefore f is concave and the point is a maximizer.

12. Consider the following nonlinear programming problem:

min 4(x1 − 2)2 + (x2 − 1)2

s.t. 16x1 + 6x2 = 63.

Write the L Lagrangian function of the problem. Define the necessary condition of
optimality for L and solve the resulting system. What is the solution if x1 ≤ 2 is
also imposed?

Answer:
L(x, λ) = 4(x1 − 2)2 + (x2 − 1)2 + λ(16x1 + 6x2 − 63)

Setting partial derivatives of L equal to zero:

8(x1 − 2) + 16λ = 0

2(x2 − 1) + 6λ = 0

16x1 + 6x2 = 63

The solution is x∗
1 = 3, x∗

2 = 2.5, (λ∗ = −0.5). Since the objective function is
convex the solution is a minimizer. Optimal value is 6.25.

If x1 ≤ 2 is also imposed, the solution is x∗
1 = 2, x∗

2 ≈ 5.17. The optimal value is
≈ 17.36 (much worse than without the additional constraint of x1 ≤ 2).
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