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Network Analysis

01 —INTRODUCTION

Albert Laszl6 Barabasi

Slides were created by: Daniel Leitold NETWORK

Network Science book (online)

Barabasi, Albert-Laszl6. Network Science.

SCIENCE
Cambridge University Press, 2016.
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What is network science?
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What is network science?

All together!
e




Example - 2003 North American Blackout

Toronto, Detroit, Cleveland, Columbus, Long Island are shining (a), and gone
dark (b)

14th August 2003 — 45 million people in US and 10 million people in Ontario
were left without power
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Example - 2003 North American Blackout

Why is it important to us?

What is the network? What are the nodes and links?

How can we use network science to avoid cascading failures?

Could we have prevented the cascaded blackouts?




Example - 2003 North American Blackout

Why is it important to us?

A power grid is a complex system that can be analysed with engineering
methods, but these methods cannot handle the complexity well derived from
the interconnections.

What is the network? What are the nodes and links?

The network is the power grid itself. Nodes are the power plants and the links
are the wires between the plants.

How can we use network science to avoid cascading failures?
With determining the overloaded plants, we can create a more robust network.
Could we have prevented the cascaded blackouts?

Probably yes.




When did network science start?

State 1: There are publications from Erd&s-Rényi (1959) and Granovetter (1973).

State 2: There were social groups, trade routes and aqueduct in the ancient

times already.

On random graphs L

Dedicated to O. Varga, at the occasion of his 50" birthdoy.
By P. ERDOS and A. RENYI (Budapest).

Let us consider a “random graph” I, x having n possible (labelled)
vertices and N edges; in other words, let us choose at random (with equal

e
probabilities) one of the ([2] ) possible graphs which can be formed from
AT

The Strength of Weak Ties
Mark S. Granovetter

American Journal of Sociology, Volume 78, Issue 6 (May, 1973), 1360-1380.

Your use of the JSTOR databasc indicates your acceptance of JSTOR's Terms and Conditions of Use. A copy of
JSTOR’s Terms and Conditions of Use is available at hup:/fwww jstor.orgfabout/terms.himl, by contacting JSTOR
at jstor-info@umich.edu, or by calling JSTOR at (888)388-3574, (734)998-9101 or (FAX) (734)998-9113. No part
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When did network science start?

The network science is a new discipline. It became a separated discipline in the

215t century.

Citations for the previous two papers jump on 215t century.

Main author: Albert-Laszl6 Barabasi

Two main force of network science:
o Emergence of Network Maps

° |Internet
> Hollywood
o Chemical reactions
o Universality of Network Characteristics
o Networks are different (nodes, links, how the links are appearing)
o BUT, the structures of the different networks are similar
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When did network science start?

Why so late? The reason may be its interdisciplinary. What does it mean?

Example:

Biological Research Food web
Information Technologies Co-purchases
Amazon Protein reactions
Mother Nature Wiring diagram
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When did network science start?

Why so late? The reason may be its interdisciplinary. What does it mean?

Example:

Biological Research

Information Technologies

Amazon

Mother Nature
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When did network science start?

Why so late? The reason may be its interdisciplinary. What does it mean?
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When did network science start?

Since each field had its own data representation, therefore network science-
based researches were denied in the beginning.

BUT, network science demonstrates that science can cope with the challenge of
complex systems.

Several key concepts of network science have their roots in graph theory.

What distinguishes network science from graph theory is its empirical nature,
i.e. its focus on data, function and utility.

i
| |  think the M€Y

Network Science borrowed the followings: century will be_ |
o Formalism to deal with graph — from graph theory the century of !
> Dealing with randomness and universal principles — from statistical physics complexity-”
o Dealing wi’Fh contro'l principl.es — from control a|.1d information the?rY stephen Hawking, |
o Extracting information from incomplete and noisy data — from statistics 0 *
January 2000 |




s network science useful? — Societal Impacts

Economic Impact:
o Google search — PageRank measure for network.

> Facebook, LinkedIn, Twitter — advertising algorithms derived from network
researcher.

Health:
o Gene networks: breakdown of molecular networks can cause human disease.

> Network pharmacology: cure disease without significant side effects (drug
development).
o Network medicine: cellular interactions, drug targets in bacteria and humans.

Security (fighting terrorism):
o Saddam Hussein was found by social network analysis.

> The perpetrator of the 11t March 2004 Madrid train bombings was found by the
examination of the mobile call network.




s network science useful? — Societal Impacts

Epidemics:
° In 2009, HIN1 pandemic was accurately predicted: Video.
° It helped to stop the spread of Ebola.

° In the autumn of 2010 in China, viruses, which spread through mobile phones,
followed the predicted spreading scenario.

Neuroscience (mapping the brain):

> The human brain that consists of hundreds of billions
of interlinked neurons is not understood.

> The only fully mapped brain available is that of the C. elegans
worm, which consists of 302 neuron.

Organization management:

> The most important role in the success of an organization: the informal network,
capturing who really communicates with whom.



http://networksciencebook.com/images/ch-01/video-1-1.m4v

Example — Organization management
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Example — Organization management
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s network science useful? — Scientific Impact

Nowhere is the impact of network science more evident than in the scientific

Community. 1000 - -
=== Chaos: Lorenz (1943}
] . ° E}DD -

0 C|tat|oq patterns of the most cited S — Spin lasses. Edward-Andersan (1975
Papers in the area Of Complex - Renormalization: Wilson [1975)
systems (each of them are citation e M 11, Motisoris: Llbrstiatd ioR)

. 600 -
classics such as the butterfly effect, = Fractals. Mandelbrot (1952
-
fractals or neural networks). iop ™ Networks. Watts-Strogatz (1998)
S th — = Networks: Barabasi-Albert [19599]
ome otner success:
. . 200 -
> Network science courses on major . Y~

e e
o g 9
T — ’ > i e =

universities. - L=

o PhD programs |n network SCIGHCG. 1960 1965 1970 1975 1980 1985 1900 1995 2000 2005 2010

i : Numb f citati th
> Public excitement by books and umber of citations on the paper / year

movies like Linked, Nexus or Connected.
° and so on...




Network Analysis

02 — GRAPH THEORY

Albert Laszl6 Barabasi

Slides were created by: Agnes Vathy-Fogarassy . .
Network Science book (online) N ESTC\{\I/E(N)EE
Barabasi, Albert-Laszl6. Network Science.
Cambridge University Press, 2016.



http://barabasi.com/networksciencebook/

The Bridges of Kdnigsberg

Problem: How can one go through each
bridge with using each only once?

1735 — The beginning of graph theory.

Euler’s approach:
o Grounds are vertices.
° Bridges are edges.

Solution: They build a new bridge
between C and B (1875).

The Bridges of Konigsberg (Video).



http://networksciencebook.com/images/ch-02/video-2-1.m4v

Networks and Graphs
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Networks and Graphs

a —computer network

b — network of actors

c — network of protein interactions

d — mathematical graph

Structurally these networks are the same.

Two important properties:
> Number of nodes:

° N=4
> Number of links:

c L=4




Degree and Average Degree

Questions: You have a social network from Facebook.
o What are the nodes and the links?

o |Is it a directed or an undirected network?

> Who is the most well-known person?




Degree and Average Degree

You have a social network from Facebook.
Questions:

o What are the nodes and the links?
o |Is it a directed or an undirected network?
> Who is the most well-known person?

Degree:
o k;: degree of node i — the number of links belongs to node i

Total number of links in a network:

1N
°L—§ i=1 K

Average degree:
(k) =y ik =




Degree and Average Degree — directed

Degree in directed case:

° Indigree (kii"): the number of links point to node i

> Outdegree (k?"“"): the number of links point from node i

ok = kit 4 kM N

kit =1
kout -1

Total number of links in directed networks:
o] = ZN km ZN kout
| k& =0

Average degree in directed networks: St
0 (kin> _ ZN km k3™ =
o (kout> — ﬁ i=1 kiout
o [1,in\ — outy _ L

(k') = (ko¥) = ~

=

kit =2
kout _1




Degree Distribution

Ny, : the number of nodes with degree k.
Di = %: the probability that a randomly selected node has degree k.

Since py, is a probability, it must be normalized: ) ;o pr = 1.
Degree distribution had central role in discovering scale-free property.

Example 1:
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Degree Distribution

Ny, : the number of nodes with degree k.
Di = %: the probability that a randomly selected node has degree k.

Since py, is a probability, it must be normalized: ) ;o pr = 1.

Degree distribution had central role in discovering scale-free property.

Example 2:




Degree Distribution

Ny, : the number of nodes with degree k.
Di = %: the probability that a randomly selected node has degree k.

Since py, is a probability, it must be normalized: ) ;o pr = 1.
Degree distribution had central role in discovering scale-free property.

Example 2:
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Adjacency Matrix

Mathematical description of a network: A

Directed case:
° A;j = 1, if thereis a link from node i to node j

° A;j = 0, if there is no link from node i to node j A, =

SO = OO
S O O
© O = O
© O = O

Undirected case:
° Ajj = Aj; = 1, ifthereis alink between node i and j

S = = O
— e O
S O = =
S o = O




Real Networks are Sparse

The number of links in an undirected network can be
between:

° Lmin =0
° Linax = (1;,) = N(A;_l)-

In reality L < L,,qx-

In yeast protein-protein interaction network:
o N =2018

o [, = 2930

o Theoretical maximum: Ly,,x = 219 853

° Only 1.33% of possible connections _
Edge list:

Solution:
o Edge list:




Weighted Networks

If we want to qualify the links, then we can associate weights for them.

For example:
°c Number of e-mails
o Length of phone call °
o Distance between two cities 10
° ... o 20
In adjacency matrix: ’
° Ajj = wyj 7 ’

In edge list:
° From node, to node, weight °
> E.g. A C, 12




Bipartite Networks

Bigraph: a network whose nodes can be divided into two disjoint sets U and V
such that each link connects a U-node to a V-node.

Projections: PROJECTIONU U U v PROJECTION V

o 2 projections can be generated

o Projection U: two nodes are connected
if they have at least one common
neighbour from set V.

o Projection V: analogously

Example:
o Network of actors

o Network of diseases
o Network of recipe-ingredients




Bipartite Networks — Diseasome network
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Paths and Distances

Path: Sequence of nodes such that each node is connected to
the next one along the path by a link.

Shortest (Geodesic) path, d: The path with the shortest
distance d between two nodes.

Network Diameter, d,,,x: maximum shortest path in the
network.

Average Path Length, (d): The average of the shortest paths
between all pairs of nodes.

Cycle: A path with the same start and end node.

Eulerian Path: A path that traverses each link exactly once.

Hamiltonian Path: A path that visits each node exactly once.
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Paths and Distances

Path: Sequence of nodes such that each node is connected to
the next one along the path by a link.

Shortest (Geodesic) path, d: The path with the shortest
distance d between two nodes.

Network Diameter, d,,,x: maximum shortest path in the
network.

Average Path Length, (d): The average of the shortest paths
between all pairs of nodes.

Cycle: A path with the same start and end node.
Eulerian Path: A path that traverses each link exactly once.

Hamiltonian Path: A path that visits each node exactly once.




Breadth-First Search (BFS) Algorithm




Connectedness

In an undirected network nodes i and j are connected if there is a path between
them. They are disconnected if such a path does not exist, dij = 00,

A network is connected if all pairs of
nodes in the network are connected.

A network is disconnected if there is at A : ’\ i{ ’i

least one pair of nodes with dij

- -]
oo
_-—— o oD
N = — e i
e B e e e

—
(=

In a disconnected network we call its
subnetworks components or clusters.

The link that connects two clusters
is called bridge.




Clustering Coefficient (undirected case)

Cusltering Coefficient (C;) measures the network’s
local link density.

= 2L C=1/2

ki(ki—1)

o L;: number of links between the neighbours of node i

C; = 0, if none of the neighbours of node i links to each other.
C; = 1, if the neighbours of node i form a complete graph.

C; is the probability that two neighbours of a node are
connected to each other.

Average Clustering Coefficient ((C)): degree of
clustering of a whole network.

(C) =<3, G
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Party and wine

You invite 100 people for a party.
They do not know each other in the beginning.
Talking groups of 2 — 3 appear.

Then, you unfortunately said to Jane that the

wine in unlabelled bottles is much better.

What happened?




Party and wine

She shares this information only with her
a M acquaintances. If she talks just 5 minutes to each
person, then to share this information with
everyone takes 599 minutes that is more than
8 hours.

b So can you calm down?

"\
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Party and wine

She shares this information only with her
a M acquaintances. If she talks just 5 minutes to each
person, then to share this information with

’

everyone takes 599 minutes that is more than
8 hours.

b So can you calm down?

A




Party and wine




The Random Network Model

Two definitions:

o Arandom graph G (N, p) is a graph of N nodes where each pair of nodes is
connected by probability p. — Er6s-Rényi model (ER model)

o Arandom graph G (N, L) is a graph of N nodes that are connected by L
randomly placed links.

P4l Erdés (1913-1996) Alfréd Rényi (1921-1970)




The Random Network Model

A random graph G (N, p) is a graph of N nodes where each pair of nodes is
connected by probability p.

A random graph G (N, L) is a graph of N nodes that are connected by L
randomly placed links.

12 ® O

% ‘5<f\\§% o. q\

ot\ .o o‘ /& ‘o

N
p




The Random Network Model

N = 100
p = 0.03




Degree Distribution

The probability that a random node has exactly k links is the product of three
terms:
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terms:
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Degree Distribution

The probability that a random node has exactly k links is the product of three
terms:

> The probability that k links are connected to the node: p*

> The probability that the remaining (N — 1 — k) links are missing: (1 — p)V~=17%

> A combinational factor: (Nl: 1)

Pic = (N,: 1) p“(1—p)V 7"

Binomial distribution




Degree Distribution

The most of real networks are
sparse (k) < N. | | . | . | .

0147 BINOMIAL POISSON i
— JI— r 8 —{k k -
012 Pr = (r\' 2 l)pk(l _p)ﬁ—l—f\ p}a: —e (k)ik—l)
In this limit the degree 01k g
pk > <

distribution is well approximated  Peakat - ,
by the Poisson distribution. k= (k) =p(N —1)

Width

(k) (K)F |
Dy =€ (k>7 0.02 F /




Real Networks are Not Poisson

The human populationis N = 7 * 10°.

Sociologists estimate that a typical person knows about 1000 people.

According to Poisson distribution:
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Real Networks are Not Poisson

The human populationis N = 7 * 10°.
Sociologists estimate that a typical person knows about 1000 people.

According to Poisson distribution:
© kmaX = 1185 a. b. c.

L B § I ] e 3_
© O-k — <k>5 — 31'62 5 ‘ .' i i | EEEI_NAC:DRATION i .: rl"fT[I}E-;igTIDNS -:
o Usually: (k) + oy, ?

between 968 and 1032




The Evolution of a Random Network

The social network at the party is evolved by the new acquaintances.

This means a continuously changing p.

Firstly, how (k) influences the size of giant component

o Giant component (N;): A significant connected portion of the network.
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The Evolution of a Random Network

The social network at the party is evolved by the new acquaintances.

This means a continuously changing p.

Firstly, how (k) influences the size of giant component
o Giant component (N;): A significant connected portion of the network.

Trivial cases:
°pr—0then(k)—ONG=1 £ >0

o Ifp =1,then (k) =N —1, N, _N,%z 1
Suspicion:

o If (k) increases from 0 - N — 1, N; grows gradually from 1 - N

Reallty
if (k) exceeds a critical value
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The Evolution of a Random Network

1

0.8

0.4

U.4

0.2

0

0 1 2 3 & 5 &

What is the critical value of (k)? Video



http://networksciencebook.com/images/ch-03/video-3-2.m4v

N, /M

The Evolution of a Random Network

1

0.8

0.4

U.4

0.2

0

0 1 2 3 & 5 &

What is the critical value of (k)? —» 1 Video



http://networksciencebook.com/images/ch-03/video-3-2.m4v

The Evolution of a Random Network

1

0.8

0.4

N, /M

U.4

0.2

] i | 1

0 1 2 3 & 5 &

What is the critical value of (k)? —» 1 Video

Four domains:
o Subcritical: (k) ,p o (k) ., p

o Critical: (k)  ,p > Connected: (k) , D



http://networksciencebook.com/images/ch-03/video-3-2.m4v

The Evolution of a Random Network

1

0.8

0.4

N, /M

U.4

0.2

] i | 1

0 1 2 3 & 5 &

What is the critical value of (k)? —» 1 Video

Four domains:
o Subcritical: (k) > 0,p < % o (k) ,p

o Critical: (k)  ,p > Connected: (k) , D



http://networksciencebook.com/images/ch-03/video-3-2.m4v

The Evolution of a Random Network

1

0.8

0.4

N, /M

U.4

0.2

] i | 1

0 1 2 3 & 5 &
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The Evolution of a Random Network

1

0.8

0.4

N, /N

U.4

0.2

0

0 1 2 3 & 5 &

What is the critical value of (k)? —» 1 Video

Four domains:

o Subcritical: (k) > 0,p < % o (ky>1,p > %

° Critical: (k) =1, p = % o Connected: (k) > In(N), p > lnl(VN)
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The Evolution of a Random Network

: : : .. _Ng+.
o There is no giant component, or its relative size (TG) is nearly 0.

Critical domain:
> Ng is O relatively to N.
2
o BUT!!, N is much larger, than N;~Ns .
> In case of popularity (7 * 10°) this means increase from ~22,7 to ~3 * 10°, % = 0.00043.

o Although there are separated components, the giant component includes most of the nodes.

o The giant component includes all of the nodes.

ey

> The network is connected. A




Real Networks are Supercritical

NETWORK N L (k) InN
Internet 102 244 609,066 6.34 | 1217
Power Grid 4,941 6,594 2.67 8.51
Science Collaboration | 23,133 04,439 8.08 10.05
Actor Network 702,388 | 29,397,908 83.71 | 13.46 ST
Protein Interactions 2,018 2,930 200  7.61 % B - .
roweecro [ ]
cossoranon | X ]
scror nenwork [ %

SUTE o
INTERACTIONS

T

10




Small Worlds

Six degrees of separation

° In case of any two individuals on Earth, there is a path between them through at most six
acquaintances.

o The information from Jane spreads rapidly.

An approach:

> (k) nodes at distance d = 1 E.g.: population
o (k)? nodes at distance d = 2 o (k) = 1000
° > 10® people can be

> (k)@ nodes at distance d reached in two steps.

Diameter d
_ ﬁ?vx Small World:

: dmax o In(k) The diameter depends logarithmically on the system size.




Watts-Strogatz Model

Watts-Strogatz model:

o Extension of the random network model.
o Motivated by:
o Small World property

o High clustering: The average clustering coefficient of real networks is much
higher than expected for a random network.

o Intermediate status between regular lattice (high clustering, lack of small-world
property) and random network (low clustering, but small-word property).

Algorithm:

1. Start from a ring of nodes, each node is connected to their immediate and next
neighbors.

2. With probability p each link is rewired to a randomly chosen node.




Watts-Strogatz Model

REGULAR SMALL-WORLD RANDOM
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Introduction

The network of the nd.edu domain (University of Notre Dame): Video
> 300,000 documents and

o 1.5 million links
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Introduction

The network of the nd.edu domain (University of Notre Dame): Video
> 300,000 documents and

o 1.5 million links

With N =~ 10?2 document, WWW is the largest network humanity that has ever
been built (human brain has N = 10! neurons)

P(k)
pajoadxy
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Introduction




Power Laws and Scale-Free Networks

The real degree distribution of WWW

On a Log-Log scale the data form an - "
almost straight line.

Degree follows Power Law, not Poisson
distribution.

In Figure:
°Yin = 2.1
© )/out = 245

~ ¢~ Yout

° Prkout




Power Laws and Scale-Free Networks

Definition:
o A scale-free network is a network whose degree distribution follows a power law.
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Definition:
o A scale-free network is a network whose degree distribution follows a power law.

Discrete form:

o — Ck_y
Pr Pareto efficiency,

Pareto distribution,
Pareto principle, or
Power Law distribution

[ Vilfredo Federico
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High 20 Percant (1848 — 1923)
Performers

80 Percent




Power Laws and Scale-Free Networks

Definition:

o A scale-free network is a network whose degree distribution follows a power law.

Discrete form:
° pr = Ck™Y

C is determined by the normalization condition:
° Xke1Pk =1

CCTE kT =1 5 O =

2 k¥ £

Thus,
Pk = )

o BUT! It diverges at p,, so we need to determine
Do separately.

Pareto efficiency,
Pareto distribution,
Pareto principle, or
Power Law distribution

Low
Performers

High 20 Percent

Performers
80 Percent

Vilfredo Federico
Damaso Pareto
(1848 —1923)




Hubs

The main difference between Power Law and
Poisson distribution:

o The tail.

Low
Performers
20 Percent

High
Performers
80 Percent




Hubs

.. b.
The main difference between Power Lawand 7'~ = = = y
Poisson distribution: bk . ]
o The tail. [ ]
01 ¢ - 102 & o
P | 1
Parameters: P POISSON 107 g 3
oy = 2.1 0.05 F 4 10-!@ —
o (k) =11 (a., b.) ]
@) —_— 10é ‘l- el r luuul I Il-"
<k> 3 (C" d) 0 50 10° 10 102 10

Low
Performers
High 20 Percent

Performers
80 Percent




The Largest Hub

Network sizes:

o Web: N = 1012

o Population: N = 7 x 10°

> Human gene network: N =~ 2 x 10*

> E.coli metabolic network: N ~ 103

How big is k., 45 ?




The Largest Hub

Network sizes:

o Web: N =~ 1012

o Population: N = 7 x 10°

> Human gene network: N =~ 2 x 10*
> E.coli metabolic network: N = 103

How big is k., 45 ?
o Complete network:
o Random network:

o Scale-free network:




The Largest Hub

Network sizes:

o Web: N = 1012

o Population: N = 7 x 10°

> Human gene network: N =~ 2 x 10*

10 L
> E.coli metabolic network: N =~ 103 10° | SCALE-FREE
.. 108 (N-1) k ~ N
How big is k., 45 ? 07 b pa
o Complete network: kg, = N — 1 K. L
o Random network: Kpgx~InN 10° |
1 10° ¢ RANDOM NETWORK
o - . ~ -1 3 L
Scale-free network: k,,, 4.~ NY 102 5 k_~InN
102 &
in figure: L Ll ecc R
o (k) — 3 100 ] | | | | | | | | |
107 10 10 N 10° 100 10"

oy = 2.5




Example

POISSON
9}
E Most nodes have
- X the same number
£ of links Bost
oston
§ _+>_< No highly
kS - connected nodes Los Ang
= -
[ St
@ +x
- L
= X

Number of links (k]




Number of nodes with k links

Example

POWER LAW
{ ‘

Many nodes A‘
",T Z/ with only a few links S

A few hubs with
large number of links

s
"p\ﬂ»{

Number of links (k]




The Meaning of Scale-Free

Random Networks have a scale
1
> Due to Poisson distribution g3, = (k)z2, 0 < (k)

1
> Degrees of nodes are in the range k = (k) + (k)2
o (k) serves a ,scale” for random networks

P\
Scale-free Networks have no scale
> Network with a Power-law distribution withy < 3
o Deviation from the average can be arbitrary large

° A randomly selected node can be:
° tiny

° huge




Degree distribution of the real networks:

How can we determine y?
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How can we determine y?

Degree distribution of the real networks:
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The degree exponent can be obtained by fitting a straight line to p, on a log-log plot.
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How can we determi

ney?

(v

o kmax ~ N )

o (d) ~ const

Ultra-Small World (2 <y < 3)

30 -

20 -

HUMAN PPI

INTERNET
(2011)

SOCIETY WWW

(a)
InN
(v > 3 and random)

o (d) ~ InilnN
o Example: Population: N = 7 x 10°
o InN = 22.66

o [nlnN = 3.12 05
Critical Point (y = 3) 3
InN
’ <d> = Ininn 02

Small World (y > 3)
o (d) ~ InN

1
1 1 1 1
(b) (o) (d)
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Why Scale-free networks with y < 2 do not exist?

(a) Graphical

1 =
2/3 +
1/3 +

1T 2 3

TR

e




Why Scale-free networks with y < 2 do not exist?

(a) Graphical (b) Not Graphical

1+ 1 r
2/3 - 2/3 -
1/3 + 1/3 * I.

123 T 2 3

¥ & ¥ &6
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Why Scale-free networks with y < 2 do not exist?

(a) Graphical (b) Not Graphical (c)

1+ 1 F
1 |

2/3 B 2/3 [ N:-|05
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Introduction

Why do very different systems as the WWW and the cell both have scale-free
architecture?

° The nodes of the cellular network are metabolites or proteins, while the nodes of the WWW are
documents, representing information without a physical manifestation.

° The links within the cells are chemical reactions and binding interactions, while the links of the WWW
are URLs, or small segments of computer codes.

o The history of these two systems could not be more different: The cellular network is shaped by 4 billion
years of evolution, while the WWW is less than three decade old.

° The purpose of the metabolic network is to produce the chemical components the cell needs to stay
alive, while the purpose of the WWW is information access and delivery.

Why does the random network model of ErdGs and Rényi fail to reproduce the
hubs and the power laws observed in real networks?

We need to understand the mechanism responsible for the emergence of the
scale-free property.




Growth and Preferential Attachment |

Why are hubs and power laws absent in random networks?
° In random network N is a fixed number.
o But! Networks expand through the addition of new nodes.

o Examples:
° In 1991 the WWW had a single node, today the Web has over a trillion (101?) documents.
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Why are hubs and power laws absent in random networks?
> In random network N is a fixed number.

o But! Networks expand through the addition of new nodes.

o Examples:
° In 1991 the WWW had a single node, today the Web has over a trillion (101?) documents.
° The collaboration and the citation network continually expands through the publication of new research papers.
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Why are hubs and power laws absent in random networks?
> In random network N is a fixed number.

o But! Networks expand through the addition of new nodes.

o Examples:
° In 1991 the WWW had a single node, today the Web has over a trillion (101?) documents.
° The collaboration and the citation network continually expands through the publication of new research papers.
° The actor network continues to expand through the release of new movies.
° The number of genes has grown from a few to the over 20,000 genes that have appeared in a human cell over four billion years.
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Why are hubs and power laws absent in random networks?
> In random network N is a fixed number.

o But! Networks expand through the addition of new nodes.

o Examples:
° In 1991 the WWW had a single node, today the Web has over a trillion (101?) documents.
The collaboration and the citation network continually expands through the publication of new research papers.

[e]

[e]

The actor network continues to expand through the release of new movies.

[e]

The number of genes has grown from a few to the over 20,000 genes that have appeared in a human cell over four billion years.

We need to use a dynamic model instead of a static one!

(e]
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Why are hubs and power laws absent in random networks?
> The random network model selects the interaction partners randomly.
o But! In most of the real networks, new nodes prefer one with more connections.

o Examples:

> We all know Google and Facebook, but we rarely encounter the billions of less-prominent nodes that populate the
Web. We are more likely to link to a high-degree node than to a node with only few links.

° The more cited is a paper, the more likely that we have heard about it. As we cite what we have read, our citations
are biased towards the more cited publications, representing the high-degree nodes of the citation network.

> The more movies an actor has played in, the more familiar is a casting director with his/her skills. Hence, the higher
the degree of an actor in the actor network is, the higher are the chances that he/she will be considered for a new
role.

In summary, the two differences:
o Growth
o Preferential attachment




The Barabasi-Albert Model

Initializing:
> A network with my nodes.
o Add links randomly to the network, until each node has at least one link.

Growth:
o Add a new node to the network,
> With m < m, new links such that,

Preferential Attachment:
ki

> The probability to connect node i is: [[(k;) =

ijj
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The Barabasi-Albert Model

Initialising:
> A network with my nodes.
o Add links randomly to the network, until each node has at least one link.

Growth:
o Add a new node to the network,
> With m < m, new links such that,

Preferential Attachment:

° The probability to connect node i is: [[(k;) = zkic-
jRj

Example:

o mO = 2

om =2

o Video



http://networksciencebook.com/images/ch-05/video-5-2.mov
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Welcome screen

With Empty network Welcome to Cytoscape >
Start Mew Session Open Recent Session
> Create a network from scratch e
Iﬁ With Empty Metwork: ;
From Network File ) EmE T
‘t= From Network File... Latest Mews
From Network Database s © Cytoscane 3.5.115 p to .
o Public network data - Mar27: Get Cytoscape 3.5: http://cytoscape.org
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New Users: See:
. D. melanogaster |yl D. rerio ials @ http://tutorials. :
Organism Networks & e
v> E coff 1\ H. sapiens
Open Recent Session 4~ [ p—

Open Session File
o List of opened sessions

About Cytoscape Documentation  Tutorials

[ ] Don't show again

Help -> Show Welcome Screen...




Basics

Load network

Create network
o Add Node
o Add Edge

Change Style
Change Layout

Select




NetworkAnalyzer

o

Node 3
Generated measures:
> Average shortest path
o Clustering Coefficient ~ Node 4
° Node 2

o Closeness Centrality

o Eccentricity /
o Stress Node 1

° Degree

o Betweenness Centrality

> Neighborhood Connectivity

o Radiality

> Topological Coefficient

o Edge Betweenness




NetworkAnalyzer

o

Node 3
Generated measures:
o Average shortest path
> Clustering Coefficient ~_ Node 4

. Node 2
o Closeness Centrality

o Eccentricity /

o Stress ot ¢

° Degree

o Betweenness Centrality M fh 1 L of seodes -

t t t

> Neighborhood Connectivity can orLie eng O BEOCESIC paths

o Radiality () (i) = | lI
: . 14242 5

> Topological Coefficient (d)(1D) =——= g = 1.6667

o Edge Betweenness

ZJZ Y is the average shortest path of node i




NetworkAnalyzer

o

o

Generated measures:
o Average shortest path
o Clustering Coefficient
o Closeness Centrality
o Eccentricity
o Stress
° Degree
o Betweenness Centrality
> Neighborhood Connectivity
o Radiality
> Topological Coefficient
o Edge Betweenness

Node 3

Node 4
Node 2

d

Node 1

Connectedness of neighbours

_ 2L; . . . . .
C; = D) is the clustering coefficient of node i




NetworkAnalyzer

o

Node 3
Generated measures:
o Average shortest path
o Clustering Coefficient ~_ Node 4

. Node 2
o Closeness Centrality

o Eccentricity /

o Stress Node 1

° Degree

> Betweenness Centrality _

- Neighborhood Connectivity Rec1procal of average shortest path
o Radiality

> Topological Coefficient

C.(i) = (d)( ) is the closeness centrality of node i
C.(1) = E = 0.6

o Edge Betweenness




NetworkAnalyzer

o

Node 3
Generated measures:
o Average shortest path
o Clustering Coefficient _ Node 4
° Node 2

o Closeness Centrality

o Eccentricity /

o Stress
Node 1
° Degree

> Betweenness Centrality _ o _
Maximum non-infinite of shortest path starts from node i

a E.(Q) = max(dij|i *J,di; # ) is the eccentricity of node i
> Radiality E.(1) = max(1,2,2) = 2
> Topological Coefficient

> Neighborhood Connectivity

o Edge Betweenness




NetworkAnalyzer

o

Node 3
Generated measures:
o Average shortest path
o Clustering Coefficient ~_ Node 4

. Node 2
o Closeness Centrality

o Eccentricity /

o Stress
Node 1
° Degree

o Betweenness Centrality
The number of the shortest paths going through node i

> Neighborhood Connectivity St(Q) = ¥orpei(1lage (i) is the stress of node i

> Radiality 0t (1) the number of the shortest paths from node s to t that
> Topological Coefficient passes node i
> Edge Betweenness St(2) = 4




NetworkAnalyzer

o

Node 3
Generated measures:
o Average shortest path
o Clustering Coefficient ~_ Node 4

. Node 2
o Closeness Centrality

o Eccentricity /
o Stress Node 1
o Degree

o Betweenness Centrality

The number of the connection of node i
k; is the degree of node i

o Radiality ky, =3

> Topological Coefficient

> Neighborhood Connectivity

o Edge Betweenness




NetworkAnalyzer

o

Node 3
Generated measures:
o Average shortest path
o Clustering Coefficient _ Node 4
° Node 2

o Closeness Centrality
o Eccentricity /

o Stress NI

° Degree

o Betweenness Centrality _ N

- Neighborhood Connectivity Proportion of appearance of node i in all of the shortest paths
o Radiality

> Topological Coefficient

Cp(i) = Zs#iiaj—(i} is the betweenness centrality of node i
st
Cy(2) == = 0.6667

o Edge Betweenness




NetworkAnalyzer

o

Node 3
Generated measures:
o Average shortest path
o Clustering Coefficient ~_ Node 4

. Node 2
o Closeness Centrality

o Eccentricity /

o Stress
Node 1
° Degree

o Betweenness Centrality

A d f neighb fnode i
o Neighborhood Connectivity VETAge epr=e 0T NEIEhboULs ot nodet

> Radiality C,(i) = T is the neighbourhood connectivity of node i

n; is the set of neighbours of node i

> Topological Coefficient
C.(1) =3

o Edge Betweenness




NetworkAnalyzer

o

Node 3
Generated measures:
o Average shortest path
o Clustering Coefficient ~_ Node 4

. Node 2
o Closeness Centrality

o Eccentricity /

o Stress
Node 1
° Degree

> Betweenness Centrality _ _ _
How ties of node i reach out into the network

, (dmax+1)—(d)(@)
R(i) =
© Radlallty E )) 3—16%"61'?96
R(1) = ' = 0.6667

> Neighborhood Connectivity

is the radiality of node i

> Topological Coefficient
o Edge Betweenness




NetworkAnalyzer

o

Node 3
Generated measures:
o Average shortest path
o Clustering Coefficient Node 4
5 . Node2 ~—
o Closeness Centrality
o Eccentricity /
o Stress NI
° Degree
o Betweenness Centrality How node i shares interaction with other nodes
° Neighborhood Connectivity T; = M is the topological coefficient of node i
° Radiality J (i, j): number of common neighbours of node i and j,
o Topological Coefficient (+1, if i and j are neighbours)

o Edge Betweenness =0




NetworkAnalyzer

o

Node 3
Generated measures:
o Average shortest path
o Clustering Coefficient ~_ Node 4

. Node 2
o Closeness Centrality

o Eccentricity /1/

o Stress
Node 1
° Degree

o Betweenness Centrality

The number of shortest paths going through edge e = (i, j)
B.(e) = X5 ¢(1]ost(e)) is the edge betweenness of edge e

o Radiality B.(e;) =6

> Topological Coefficient

> Neighborhood Connectivity

o Edge Betweenness




Other applications

Gephi
o Random networks

o Basic network measures
o Website

Netlogo

o Barabdasi-Albert model simulator
> (Sample Models/Networks/Preferential Attachment)

o Small World simulator
> (Sample Models/Networks/Small Worlds)

o Giant Component simulator
o (Sample Models/Networks/Giant Component)

o Website

—
( ; _:._.‘_-'l'l!- J:I

QAP

Gephl

makes graphs handy



https://gephi.org/
https://ccl.northwestern.edu/netlogo/
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Barabasi, Albert-Laszl6. Network Science.

SCIENCE
Cambridge University Press, 2016.


http://barabasi.com/networksciencebook/

Introduction

By the late 1990s, two search engines had been created with an early start:
o Alta Vista
o Inktomi

Six years after the birth of the WWW, Google was a latecomer to search, BUT:
> Became the leading search engine, and
> by 2000 had become the biggest hub of the Web.

Youngster Facebook:
° In 2011 it became the Web’s biggest node.

https://blogs-images.forbes.com/adamhartung/files/2015/04/Facebook-v-Google.jpg?width=960
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Introduction

The Web’s competitive landscape highlights an important limitation of our
modelling framework:

> None of the models is able to account for it.

The biggest node is
°c Random in Erd8s-Rényi model

1
° The oldest in Barabasi-Albert model (k(t)~tz)

o first mover’s advantage

k)~ (t-t)"

* >y
Exponential
ia

We will explore
o Initial attractiveness

o n internal links

o Node deletion ——
MODEL
M(k) ~k

y=3

o Aging of nodes
o Accelerated growth




The Bianconi-Barabasi Model

Intrinsic node property:
o Fitness (n): a random number chosen from a fitness distribution p(n)
o Video

The Bianconi-Barabasi Model:
o Growth: a new node (j) has:

° m new connections, and
° 1n;j fitness

o Preferential Attachment: probability to connect to node i
> Depends on degree (k;) and fitness (17;)

niki
(¢] . = —
I Zjnsk;



http://networksciencebook.com/images/ch-06/video-6-1.webm

Degree Dynamics

We can predict each node’s evolution
o Oki _ ) Miki

= (a) 0
dat Zj njk; E d
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. &l | ?.
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Degree Dynamics

We can predict each node’s evolution
o Oki _ ) Miki

at Zjnjkj 10"

The degree at time ¢
t BM;) -3
° k(t, t;,n;) =m (—) 10

ti

Degree distribution:
o Equal Fitnesses (BA model)

© pka—B 10_7
o Uniform Fitness Distribution
° py depends on p(7) 1079

10° 10! 102 k 107 104




Measuring Fithess

Our ability to determine the fitness is prone to errors.

Fitness is determined:
° not by us

o BUT by nodes

10° I\ — Month 3

l"=- Fe— Moﬂthé

" -== Exponential distribution

104 L
p(n)
103 b
ijn g " . :

0 0.5 1 n 15

The Fitness Distribution of the WWW

1.0

0.4

0.2

0.0

CELL
NATURE
SCIENCE
PNAS
PHL
FRE

CITATIONS

The Fitness Distribution of Research Papers

I Barabési & Albert. Emergence of scaling in random netwarks. Science, 1999

1200 | | |
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I I I ]
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YEARS

I Venter et al,. The sequence of the human genome. Science, 2001

Ultimate Impact: 13.105
Ultimate Impact: 26,183

Predicting Ultimate Impact
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Bose-Einstein Condensation

Some networks can undergo Bose-Einstein condensation.

° Fitness — Energy
° Links — Particles
> Nodes — Energy levels

The links of the fitness model behave like
subatomic particles in a quantum gas.

Based on fitness distributions

> Scale-free phase
o Fit-gets-rich phenomenon
o Degree distribution follows power-law

> Bose-Einstein condensation (Video)
o Winner takes-all phenomenon

° Hub and spoke topology

NETWORK

1,
{E

FITNESS 1. —>
NEW NODE WITH n, %

IN-DEGREE OF NODE | —

BOSE GAS

ENERGY LEVEL €
NEW ENERGY LEVEL &

NUMBER OF PARTICLES
ON ENERGY LEVEL |



http://networksciencebook.com/images/ch-06/video-6-2.webm

Bose-Einstein Condensation
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Bose-Einstein Condensation

p(n)
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Evolving Networks

Initial Attractiveness

Internal Links

Node Deletion

Accelerated Growth

2007-2008 2009-2010 2011-2012

Aging

The largest components in Apple’s inventor network over a 6-year period

https://www.kenedict.com/site_update/wp-content/uploads/2013/07/Apple_Evolution.png
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Initial Attractiveness

In the Barabasi—Albert model an isolated node cannot acquire link.

BUT in reality: 104 F i S a
> new research paperhasp > 0 i i
probability of being cited for the first 1
time 102 F .
> a person that moves to a new city LK)
. . . i 2 =
uickly acquires acquaintances -
9 Y 9 9 ® All papers
. i 10° F o “3 m Papersolderthan5years 7
Preferential attachment function : A & DPupersalderthan 10 yars |
OHk~A+k ’]D_] T&o' — A=7O =
. o : i -= A=0.0 '
o Constant A is called initial attractiveness 02 b o
10° 10' 102k 109

The probability of a new paper to be cited
for the first time (A = 7) is comparable to the citation
probability of a paper with seven citations (A = 0).
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Initial Attractiveness

Effect to the Barabasi—Albert model:

The Degree Exponent is increased: 104 F i R R
A
=3+ 108 [ 1
Generates a Small-degree Saturation: 102 k -
opr =C(k+A)7Y mi(k) |
18 F ;
° pushes the small-k nodes P T
toward higher degrees 10° F g—m. m Papersolder than 5 years -
A Papers older than 10 years
, L A Pap years |
o high degrees (k > A): the degree 107 A&’ — A=70 :
- L. . [ == A=0.0 '
distribution follows the power law oy
10° 10 102 k103

The probability of a new paper to be cited
for the first time (A = 7) is comparable to the citation
probability of a paper with seven citations (A = 0).
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Evolving Networks

Initial Attractiveness

Internal Links

Node Deletion

Accelerated Growth

Aging

2007-2008 2009-2010 2011-2012

The largest components in Apple’s inventor network over a 6-year period

https://www.kenedict.com/site_update/wp-content/uploads/2013/07/Apple_Evolution.png
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Internal Links

In many networks new links do not only arrive with new nodes but are added
between pre-existing nodes.

Preferential attachment function:
o [1Ck, k")~(A + Bk)(A + Bk')

Limiting cases of:
> Double Preferential Attachment (A=0)

m

oy =2+

m+2n

° Lowers the degree exponent from 3 to 2

o> Random Attachment (B=0)
cy =3+ %n

o Degree exponent bigger than 3




Evolving Networks

Initial Attractiveness

Internal Links

Node Deletion

Accelerated Growth

Aging

2007-2008 2009-2010 2011-2012

The largest components in Apple’s inventor network over a 6-year period

https://www.kenedict.com/site_update/wp-content/uploads/2013/07/Apple_Evolution.png
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Node Deletion

Real examples: 45 -
> employees leave the company

L L] 1 1

RETRACTION :
o web documents are removed

In Barabasi—Albert model in each step:
o Add a node with m new links

o Remove a node with 7 rate

CITATIONS

Based on 7, there are three different phases
o Scale-free phase (r < 1)

2T
O y a 3 + E O 1 ] ] 1 ]
o Exponential phase (r = 1) 2000 2002 2004 2006 2008 2010 2012
o ¥y — 00, N is constant, we loose scale-free property YEARS
. . The Impossibility of Node Deletion
? Dedmmg Networks (7" > 1) Retraction lead to a dramatic drop in
o Alzheimer’s research focuses on the progressive loss of neurons citations, but the papers continue to be cited.
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Evolving Networks

Initial Attractiveness

Internal Links

Node Deletion

Accelerated Growth

Aging

2007-2008 2009-2010 2011-2012

The largest components in Apple’s inventor network over a 6-year period

https://www.kenedict.com/site_update/wp-content/uploads/2013/07/Apple_Evolution.png
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Accelerated Growth

Real examples:
° Internet increased from (k) = 3.42 in November 1997 to 3.96 by December 1998.
o WWW increased its average degree from 7.22 to 7.86 during a five month interval.

° In metabolic networks the average degree of the metabolites grows approximately linearly
with the number of metabolites.

The number of links arriving with new nodes is as follows:
o m(t) = myt?
° If @ > 0, the network follows accelerated growth.
Degree exponent
26
r=3tT
For8 = 1:
o The degree exponent diverges, leading to hyper-accelerating growth.

° In this case (k) grows linearly with time and the network looses its scale-free nature.




Evolving Networks

Initial Attractiveness

Internal Links

Node Deletion

Accelerated Growth

Aging

2007-2008 2009-2010 2011-2012

The largest components in Apple’s inventor network over a 6-year period

https://www.kenedict.com/site_update/wp-content/uploads/2013/07/Apple_Evolution.png
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Aging

Real examples:
o Actors have a finite professional life span.
o Scientists have a finite professional life span.

The probability that a new node connects to node i is:
o [TCki t — t)~k(t —t)™
° t; is the time node i was added to the network
o tis the actual time

° Vv is a tuneable parameter




Aging

v influences the network:
o Negative v (v < 0)
o enhances the role of the preferential attachment

° In the extreme case, v = —oo each new node connects to the oldest node, resulting in a hub and
spoke topology. :

i i
o Positive v 8 r ° |
!
° |n the extreme case, v — oo each node will !
. . . !
connect to its immediate predecessor. 6 L I
[
oy >1 % 'I'
'4
° In this case, aging effect overcomes the role 4t o’ _
of preferential attachment. Y
3 prmemmmmomemeeoeeee 20t =t it
o Network looses its scale-free nature. 5 ¢--0 -2 -0 -0--0-""" .
-2 - vV 0 1

The Impact of Aging on Degree Exponent
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Introduction

What is the common between the following celeb-pairs:
> Angelina Jolie and Brad Pitt

o Ben Affleck and Jennifer Garner
> Michael Douglas and Catherine Zeta-Jones
> Tom Cruise and Katie Holmes

They are married or were married.
> Who's Dated Who?

Why is it interesting?
> Number of eligible individuals: ~108
o List of celebrities: ~1000
o Probability they are married: ~107°



http://www.whosdatedwho.com/

Introduction

If we do not care about the dating habits of celebrities, what this phenomenon
tells us about the structure of the social network?

o Political leaders and CEOs: They know an exceptionally large number of
individuals and they are known by even more. They are hubs.

Interesting property of the social networks:
> Hubs tend to have ties to other hubs.

o |s this true in other networks?




Introduction

If we do not care about the dating habits of celebrities, what this phenomenon
tells us about the structure of the social network?

o Political leaders and CEOs: They know an exceptionally large number of
individuals and they are known by even more. They are hubs,_ : "

Interesting property of the social networks:
> Hubs tend to have ties to other hubs.

° |s this true in other networks? e
Counterexample: Protein-interaction network of yeast:

o N = 1870, L = 2277 A
> The two biggest hubs: k = 56,k’ = 13 " -
> Hubs link to many small-degree nodes. LAY AR AN
> They generate hub-and-spoke patterns.




Introduction

Let’s note the probability that the two hubs are connected to each other by:

*DPrr' = 5,
° |n our case Pse,13 = 0.16 =
> P12 = 0.0004

.
. s » 5%
L ] .'

The number of links to nodes with small degree is surprlsmg
° N1p1se = 12 nodes ]
> So, we except that the node has 12 neighbours with k = 1. .
o BUT: It has 46 neighbours with degree of one. '

Summary: .“
> In case of social networks: hubs connect to hubs. " S
° |In protein network: hubs avoid linking to hubs. I of /i 2
> We measure this phenomenon with degree correlations.




Assortativity and Disassortativity

The degree correlation matrix:
° e;j - probability of the two ends of a randomly selected link has degrees i and j

What is the probability, that one end of a randomly selected link has degree k:
kpk

°qr = ()

> Connection to g;;: Zj e;j = qi




Assortativity and Disassortativity

The degree correlation matrix:
° e;j - probability of the two ends of a randomly selected link has degrees i and j

What is the probability, that one end of a randomly selected link has degree k:
kpk

°qr =
(k)
B

> Connection to g;;: Zj e;j = qi

Let see an example for the following network:

A




Assortativity and Disassortativity

The degree correlation matrix:
° e;j - probability of the two ends of a randomly selected link has degrees i and j

What is the probability, that one end of a randomly selected link has degree k:
kpk

°qr =
(k)
B

> Connection to g;;: Zj e;j = qi

Let see an example for the following network:

A

Three types of networks (based on degree correlation matrix):
> Neutral
o Assortative

o Disassortative




Assortativity and Disassortativity

20 ™ | 1 0.02

Neutral Network
o Connections are random

15 - — 0.015
k1

10 — — 0.01
—l
=
= 5 — — 0.005
>
L
=z

L | | | 4 L1 0
0 5 10 15 20

Colours:
5 biggest hubs

nodes with high degree
nodes with small degree




Assortativity and Disassortativity

200 | . | 0.02

Assortative Network
> Hubs connect to hubs

- - 0.015
— — 0.01
Ll
>
|—
IE" — — 0.004%
(0l
o
(7]
2
| | | | - | L1 0
5 10 K 15 20
Colours: 2

5 biggest hubs

nodes with high degree 0 e G @

nodes with small degree




Assortativity and Disassortativity

20 - | . | 0.02

Disassortative Network

o Hubs connect to nodes with small degree
0.015

0.01

0.005

DISASSORTATIVE

Colours:
5 biggest hubs

nodes with high degree

nodes with small degree




Measuring Degree Correlations

Degree correlation function:
1
° knn(k;) = P 1Ak
where k,,,,(k;) is the k,,,, value of node i (not of degree k;).

For all nodes with degree k:
o kpn (k) = X, k'P(K'|k)

P(k'|k) means the conditional probability that following a link of a k-degree node we reach a
degree-k' node.

k..,,(k) can be predicted by:
o knn,(k) = ak*, where u is the correlation exponent:

o Assortative: u > 0
° Neutral: u =0

o Disassortative: u < 0
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Measuring Degree Correlations

SCIENTIFIC COLLABORATION
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Measuring Degree Correlations

SCIENTIFIC COLLABORATION METABOLIC NETWORK
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Degree Correlation Coefficient

Degree Correlation Coefficient:
° Enables to characterise the network with a single number

jk(ejk—ajax)

°7”:ij o2 rp=-1 -1« n <0

° 0% =Y k?q — i kqyl? oK o

co—1<r<1 -
The network is: \ '.\

o disassortative, if r < 0 | |

o neutral, ifr =0 o=+ oL =0

o assortative, ifr > 0

This coefficient is often called
as Pearson coefficient.




Correlations in Directed Networks

In directed networks:

0 kff,’f (k) is defined, where @ and [ refer to the in and out indices.
(10 = ]

(@) »{/ ® »{/ ot +
4 - "v— - /’ > ‘$— — ottt - -
In-in In-out K P(k,) |

(c) () - — )
> \'{\/ = & *

10° 10" 102 103 104

out-in out-out K




Xalvi-Brunet & Sokolov algorithm

Generates networks with desired degree correlations.

Step 1: Choose at random two links. Label the four nodes of these two links with
a, b, c, and d such that their degrees are ordered as: k;, = k;, = k. = k.

Step 2: Break the selected links and rewire them to form new pairs.

Step 2A: To achieve an assortative network:

° Pairing the two highest degree nodes (a with b) and the two lowest degree nodes
(c with d).

Step 2B: To achieve disassortative network:
o Pairing the highest and the lowest degree nodes (a with d and b with c).




Xalvi-Brunet & Sokolov algorithm

STEP 1T LINK SELECTION STEP 2 REWIRE

—

b
o
1\ />
ASSORTATIVE
Ks = Kkp = ke = Ky %

DISASSORTATIVE




The Impact of Degree Correlations

Giant component:
o Assortative network:
o Phase transition point is smaller ((k) < 1)
o Neutral network:
o Erd@s-Rényi network, (k) = 1
> Disassortative network:
o The phase transition point is delayed ({(k) > 1)

Why is it important? The giant component
influences:
o Spread of disease

o Robustness of the network
o Assortative networks are more robust

o Disassortative networks are less robust

1

0.8

0.6

0.4

0.2

Assortative ——ge—
Neutral =g
Disassortative g

0.5 1
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Introduction

Errors and failures can corrupt all human designs:

° Failure of a component in your car’s engine may
force you to call for a tow truck.

o Wiring error in your computer chip can make
your computer useless.

In natural and social systems:

o While there are countless protein misfolding errors
and missed reactions in our cells, we rarely notice
their consequences.

° Large organizations can function despite numerous
absent employees.

“Robust” comes from the latin Quercus Robur, meaning oak,
the symbol of strength and longevity in the ancient world.




Percolation Theory

Percolation theory is a highly developed subfield of statistical physics and
mathematics.

A typical problem addressed by the illustration:

> showing a square lattice p=0.1
> we place pebbles with probability p at ? L
each intersection s 3 00
> neighbouring pebbles are considered YU AR R,
connected, forming clusters e ,
Questions: 381 BCINEINAL,
> What is the expected size of the largest o AN EPYEEPY ¢
cluster? PASRAPEEEAS o
oL o

> What is the average cluster size?




Percolation Theory

A key prediction of percolation theory is that the cluster size does not change
gradually with p.

> For a wide range of p the lattice is populated with numerous tiny clusters.

° If p approaches a critical value p_, these small clusters grow and coalesce, leading to
a large cluster.




Percolation Theory

A key prediction of percolation theory is that the cluster size does not change
gradually with p.

> For a wide range of p the lattice is populated with numerous tiny clusters.

° If p approaches a critical value p_, these small clusters grow and coalesce, leading to
a large cluster.

Three main quantities:
o (S): average size of all finite clusters.

o P, : order parameter, probability that a randomly
chosen pebble belongs to the largest cluster.

o ¢: mean distance between two pebbles that
belong to the same cluster.




Percolation Theory

A key prediction of percolation theory is that the cluster size does not change
gradually with p.

> For a wide range of p the lattice is populated with numerous tiny clusters.

° If p approaches a critical value p_, these small clusters grow and coalesce, leading to
a large cluster. A

1

Three main quantities:
o (S): average size of all finite clusters.

o P, : order parameter, probability that a randomly a
chosen pebble belongs to the largest cluster.

o ¢: mean distance between two pebbles that
belong to the same cluster.
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Inverse Percolation Transition and Robustness

Let us view a square lattice as a network whose nodes are the intersections.

Then, remove a fraction f of nodes randomly
o If f is small, the damage is little.
o Increasing f can isolate chunks of nodes.
o For large f the giant component breaks into tiny disconnected components.

This fragmentation process is not gradual |
° It is characterized by a critical threshold f.
8 os|

Summary

> Breakdown of a random network under
random node removal is not a gradual

process. jJ —lf \_‘




Robustness of Scale-free Networks

Percolation theory focuses mainly on regular lattices.

But:
° Internet refuses to break apart even in case of
dramatic number of node failures.

o For a scale-free network with degree exponent
y = 2.5, identical pattern can be observed.

In case of random node removal the giant component
fails to collapse at some finite f,

o Giant component vanishes if f is close to 1.
> Video

o

=3

Pe (f)/P  (0)

Pw (f)/P  (0)

1 INTERNET

SCALE-FREE NETWORK



http://networksciencebook.com/images/ch-08/video-8-1.webm

Molloy-Reed Criterion

We need to determine f, to the scale free network.
We need to determine if there is a giant component in the network.

Molloy-Reed criterion

° There is a giant component in the network if ik y =40
o — &%) s y =30

K=" =2 sl s y=20°
° If kK < 2, then there is no giant component in S

the network. o .y

Critical threshold: =
1 — e,
° fe = 1_(k2) o
Wt M
0 ; -L 2000ssee5itoositsosei—>

° In a scale-free network, (k) dependsony (p, = k7Y)

o

0.25 0.5 f 0.75 1




Robustness of Finite Networks

Scale-free networks are more robust than random networks
ER
° fc > fc

In case of Internet 1 Link Removal
° f. = 0.972 o Node Removal «
o N = 192 244 075l e ™

°© 97% — 186 861 routers should
fail simultaneously.

P (f)/P & (0)

The enhanced robustness is valid for
> Nodes

0.25

° Links 0 | . RET

0 0.25 0.5 f 0.75 1




Attack Tolerance

Hubs play important role in holding the network together.
> What if we remove the hubs?

> The likelihood that nodes would break in this descending order by degree under

normal conditions is essentially zero. A

14 Attacks -e

Random Failures -

An attack

o Assumes a detailed knowledge of the network i 75
topology

o An ability to target the hubs
> And a desire to deliberately cripple the network

0.5

P (f)/P o (0)

0.25

Video
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Critical Threshold Under Attack

An attack on a scale-free network has two consequences:

o The critical threshold f. is smaller than f, = 1, indicating that under attacks a scale-
free network can be fragmented by the removal of a finite fraction of its hubs.

o The observed f,. is remarkably low, indicating that we need to remove only a tiny
fraction of the hubs to cripple the network.

The results of the removed hubs:
o It changes the maximum degree of the network from k,,,,,to k.« as all nodes with

!

degree larger than kp,,x have been removed.

> The degree distribution of the network changes from p;, to p,'(,, as nodes connected
to the removed hubs will loose links, altering the degrees of the remaining nodes.

By combining these two changes we can map the attack problem into the
robustness problem discussed in the previous section.




Attacks and Failures in Random and Scale-free Networks

A A
1. Attacks -e- -8 Attacks e
l .
Random Failures - 3-. Random Failures
....
0.75 075 - e e
= e s o
= 8 . "
8 »
(a °
& 0.5 = 05 | = .
— — L ]
: """'8’ ° .n
8 o g
B 0.25 0.25 |- ° '.
@ '.
0 0 [®0s00000000te00e0000ilsbossssssssrsi—=
0 0.25 0.5 f 0.75 1 0 0.25 0.5 f 0.75 1

Scale-free network Random network




Possible configurations of communication networks

Envisioned by Paul Baran in 1959. (Paul Baran was assigned to develop a communication system
that can survive a Soviet nuclear attack.)

“—LINK

™~ STATION

a. CENTRALIZED b. DECENTRALIZED C. DISTRIBUTED




Cascading Failures

So far we have assumed that each node failure is a random event, hence the
nodes of a network fail independently from each other.

In reality, in a network the activity of each node depends on the activity of its

neighbouring nodes. S RN A0
;,.-\. ‘ =

Real examples:
o Blackouts (Power Grid)

> Denial of Service Attacks (Internet)

o Financial Crises
° Flight delays

° Have an economic impact of over
S40 billion per year

o

o normal traffic




Three phase of cascading networks

Based on average degree, three phases can be determined. (Section 8.6)

SUBCRITICAL SUPERCRITICAL CRITICAL

© &

(k) <1 (k) > 1 (k) =1
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Building Robustness

Can we maximize the robustness of a network to both random failures and
targeted attacks without changing the cost?

Cost to build and maintain a network is:
o Proportional to average degree (k)

In order to enhance network robustness:
o We must increase f,

> But f, depends on (k) and (k?)
> Thus, we need to maximize (k?), if we wish to keep the cost (k) fixed.

To maximize {(k?)
> Two type of nodes:
o With kmin

1
- : 2(k)2((k)=1)?)3
°© With Kpmax (Kmax = AN3, A = 0 ) )

Optimal solution: one node with k., 4., others with k..., (if Kppin > 1)




Examples

RANDOM FAILURE -=-

0.75




Examples

1 ATTACK -=-
RANDOM FAILURE -=-
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Examples

1 % ATTACK -=-
RANDOM FAILURE-=-
0.75 |-
Peo
0.5
025 I
0

0 0.25 05 § 075 1




Real networks robustness
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Introduction

Belgium is a bicultural society:
> 59% of its citizens are Flemish, speaking Dutch.

> 40% are Walloons who speak French.




Introduction

Belgium is a bicultural society:
> 59% of its citizens are Flemish, speaking Dutch.
> 40% are Walloons who speak French.

Multiethnic countries break up all over the world.

How has this country fostered the peaceful
coexistence of these two ethnic groups since
18307
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Belgium is a bicultural society:
> 59% of its citizens are Flemish, speaking Dutch.
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coexistence of these two ethnic groups since
18307

The community structure was identified by
mobile call network.




Introduction

Belgium is a bicultural society: S
> 59% of its citizens are Flemish, speaking Dutch. N\ A

> 40% are Walloons who speak French.

How has this country fostered the peaceful o
coexistence of these two ethnic groups since
18307

The community structure was identified by
mobile call network.

Community: group of nodes that have a higher
likelihood of connecting to each other than to
nodes from other communities.




Introduction

Two areas where communities play a particularly important role
> Social Network:

o Employees of a company
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Introduction

Two areas where communities play a particularly important role:
> Social Network:

° Employees of a company
o Zachary’s Karate Club

° 34 member
o Who regularly interacted outside the club.

o Conflict between the club’s president and
the instructor split the club into two.
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H1: Fundamental Hypothesis VEAR
> A network’s community structure is uniquely encoded in its wiring diagram (4;;).

° Biological Network: b s
o For a long time biology has been focusing on single genes. 38
> Disease module hypothesis: é EE

o Each disease can be linked to a well-defined © 30
neighbourhood (or environment) of the cellular network. "




Basics of Communities

H2: Connectedness and Density Hypothesis

o A community is a locally densely connected subgraph in a network.
o Connected — each node reach all the others.
° Dense — a node connects to its community with higher probability.

Maximum Cliques
o Clique: complete subgraph

o Community is a group of nodes where all know each other.
(First approach in 1994)

° Triangles are common, but bigger cliques are rare.

o With the strict requirement potential groups are excluded.




Basics of Communities

Strong and Weak Communities
o Let C be a connected subnetwork with N- node

> Let k™ be the number of links between node i and nodes in C.
o Let kf** be the number of links between node i and nodes not in C.

o If kf* = 0, then C is a good community for node i.

o If k™ = 0, node i should be assigned to a different community.
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Strong and Weak Communities
o Let C be a connected subnetwork with N- node

> Let k™ be the number of links between node i and nodes in C.
o Let kf** be the number of links between node i and nodes not in C.

o If kf* = 0, then C is a good community for node i.

o If k™ = 0, node i should be assigned to a different community.

o Strong community:
o |f the internal degree exceeds external degree in case of each node.
o kM(C) > kFY(C),ViEeC

o Weak community:

o If the total internal degree exceeds the total external degree.
° Niecki™(C) > Xiec kT (C)
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Strong and Weak Communities
o Let C be a connected subnetwork with N node

> Let k™ be the number of links between node i and nodes in C.
o Let kf** be the number of links between node i and nodes not in C.

o If kf* = 0, then C is a good community for node i.
o If k™ = 0, node i should be assigned to a different community.
o Strong community
o If the internal degree exceeds external degree in case of each node.
o kM(C) > kFY(C),ViEeC
> Weak community

o If the total internal degree exceeds the total external degree.
° Niecki™(C) > Xiec kT (C)

Cligue
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Strong and Weak Communities /}
o Let C be a connected subnetwork with N node

> Let k™ be the number of links between node i and nodes in C.
o Let kf** be the number of links between node i and nodes not in C.
o If kf* = 0, then C is a good community for node i.
o If k™ = 0, node i should be assigned to a different community.
o Strong community
o |f the internal degree exceeds external degree in case of each node.
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> Weak community

o If the total internal degree exceeds the total external degree.
° Niecki™(C) > Xiec kT (C)

Cligue € Strong community




Basics of Communities

Strong and Weak Communities
o Let C be a connected subnetwork with N node

> Let k™ be the number of links between node i and nodes in C.
o Let kf** be the number of links between node i and nodes not in C.

o If kf* = 0, then C is a good community for node i.

o If k™ = 0, node i should be assigned to a different community.

o Strong community
o If the internal degree exceeds external degree in case of each node.
o kM(C) > kFY(C),ViEeC

> Weak community

o If the total internal degree exceeds the total external degree.
° Niecki™(C) > Xiec kT (C)

Clique € Strong community € Weak community




Basics of Communities

Number of communities:

o Simplest solution: graph bisection.
° Minimize the cut size.

° E.g. 1:
o N = 10
°N1=N2=5

o Check 252 bisection — suppose that it takes
1 millisecond (1073 second).

° E.g. 2:
o N = 100
© N1=N2=50

o ~ 1027 bisection — then it takes 10%° years
on the same computer.

Sy

What if we do not know the size and
number of the community?




Hierarchical Clustering

Two different procedures
o Agglomerative algorithms
° Merge nodes into the same community.
o Ravasz algorithm
o Divisive algorithms

° |Isolate communities by removing links.

o Girvan-Newman algorithm




Hierarchical Clustering

Two different procedures
o Agglomerative algorithms

° Merge nodes into the same communit

D K _J 1 H E F G

o Ravasz algorithm
o Divisive algorithms

° |solate communities by removing links

o Girvan-Newman algorithm

P @ O @ & = = X m T
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sEEdsE
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Ravasz algorithm:

1. Assign each node to a community of its own and evaluate x;; similarity for all node
pairs. x;; is calculated by neighbours, degrees and number of links (Section 9.3)

2. Find the community pair or the node pair with the highest similarity and merge
them into a single community.

3. Calculate the similarity between the new community and all other communities.
4. Repeat Steps 2 and 3 until all nodes form a single community.




Girvan-Newman algorithm

Compute the edge betweenness centrality x;; of each link.

Remove one of the links with the largest centrality.
Recalculate the centrality of each link for the altered network.

> wnN e

Repeat steps 2 and 3 until all links are removed.




Hierarchical Clustering




Hierarchical Clustering




Modularity

H3: Random Hypothesis

°c Randomly wired networks lack an
inherent community structure.




Modularity

H3: Random Hypothesis

°c Randomly wired networks lack an
inherent community structure.

Modularity

o Allows us to decide if a community
partition is better than some other ones.

=2 [ ()|

° n.: number of communities
o L.: number of links in community C,

° k.: sum of degrees of nodes in community C,




Modularity

H3: Random Hypothesis

°c Randomly wired networks lack an
inherent community structure.

Modularity

o Allows us to decide if a community
partition is better than some other ones.

=2 [ ()|

° n.: number of communities
o L.: number of links in community C,
° k.: sum of degrees of nodes in community C,

o Higher modularity implies better partition.
° If the whole network is a single community, then M = 0

° If each node form a separate community, then M is negative




Modularity

. OPTIMAL PARTITION
H3: Random Hypothesis M =0 41

°c Randomly wired networks lack an
inherent community structure.

. SUBOPTIMAL PARTITION
Modularity M=0.22

> Allows us to decide if a community

partition is better than some other one:
SINGLE COMMUNITY

n Lc k¢ : M =0
m =3 - ()|
° n.: number of communities
° L.: number of links in community C, NEGATIVE MODULARITY
° k.: sum of degrees of nodes in community C, M= - 012

o Higher modularity implies better partition.
° If the whole network is a single community, then M = 0

° If each node form a separate community, then M is negative




The Greedy Algorithm

H4: Maximal Modularity Hypothesis

° For a given network the partition with maximum modularity corresponds to the
optimal community structure.




The Greedy Algorithm

H4: Maximal Modularity Hypothesis

° For a given network the partition with maximum modularity corresponds to the
optimal community structure.

Greedy Algorithm to produce maximal M
1. Assign each node to a community, starting with N communities of single nodes.

2. Inspect each community pair connected by at least one link and compute the
modularity difference AM obtained if we merge them. Identify the community pair
for which AM is the largest and merge them. Note that modularity is always
calculated for the full network.

3. Repeat Step 2 until all nodes merge into a single community, recording M for each
step.

4. Select the partition for which M is maximal.




The Greedy Algorithm

H4: Maximal Modularity Hypothesis

° For a given network the partition with maximum modularity corresponds to the
optimal community structure.

Greedy Algorithm to produce maximal M
1. Assign each node to a community, starting with N communities of single nodes.

2. Inspect each community pair connected by at least one link and compute the
modularity difference AM obtained if we merge them. Identify the community pair
for which AM is the largest and merge them. Note that modularity is always
calculated for the full network.

3. Repeat Step 2 until all nodes merge into a single community, recording M for each
step.

4. Select the partition for which M is maximal.

Disadvantage: increase of M results in merged small communities (k < vV2L)




The Greedy Algorithm




Overlapping Communities

Real example:
o A teacher holds two courses, and knows most of the students.

o The students from the two courses do not know each other.
> How are the communities evolved in this case?

Until now, we have strictly distinguished the communities.

Two algorithms that enable overlapping communities:
o Clique Percolation
° Link Clustering




Cligue Percolation

Often called Cfinder

Two k-cliques are considered
adjacent if they share k - 1
nodes.

A k-cligue community is the
largest connected subgraph
obtained by the union of all
adjacent k-cliques.

If two k-cliques are not
adjacent with each other, then
they are belong to different
communities.




Link Clustering

Links can provide the communities.

Step 1: Define Link Similarity
5 S((l, k), (i; k)) _ Iny (i) Nnny ()l

In4 (D) Uni ()l
> n,(i): set of neighbours of node i including node i itself

S ((i.k). (j.k) = !

3 S ({Lk) (k) =1




Link Clustering

Links can provide the communities.

Step 1: Define Link Similarity
5 S((l, k), (]-’ k)) _ Iny (i) Nnny ()l

In4 (D) Uni ()l
> n,(i): set of neighbours of node i including node i itself

] h @

Step 2: Apply Hierarchical Clustering

3-4 3
° |teratively merging communities with the largest 3 ' .,/,"9
similarity link pairs. - 6-\4 7\.8
NN\ LS 12 L %5
s 2N : ~ 1-3 f.
‘ = 5 WX,W
1 p N
7-9 "‘--.. /.9
:?_8 /4 ,
_[I mmmmmmmmmmmm 1 5-9 6.\.5/ ! \!8
- 4 - ‘ 1 . . P T R
:“ ; O) S ((iL.k) (1.k)) = 3 S ({Lk) (k) =1




Community Evolution

GROWTH MERGING BIRTH
e

t t+1
t t+1
CONTRACTION SPLITTING

t t+1




Summary

Do we really have communities? 'x\%@
- )
> How do we know that there are indeed *%¢/

7l
5

fé
, a5
D

S

communities in a particular network?
MIDNIGHT

Hypotheses or theorems?
Do all the nodes need to belong to com
Dense vs. sparse communities.

Do communities matter?

> Image: neighbourhood of the
mobile call network.
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Introduction

In February 21, 2003, a physician from Guangdong Province in southern China checked in
the Metropole Hotel in Hong Kong.

He previously treated people with a diagnosis: atypical pneumonia.

Next day, after leaving the hotel, he went to the local hospital,
this time as a patient. He died there several days later of
atypical pneumonia.

That night sixteen other guests of the Metropole Hotel
and one visitor also contracted the disease:
Severe Acute Respiratory Syndrome, or SARS.

These guests carried the SARS virus with them to Hanoi,
Singapore, and Toronto

Epidemiologists later traced close to half of the
8,100 documented cases of SARS back to the
Metropole Hotel.




Introduction

In this chapter: spreading processes
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Biological

SARS : Cumulative Number of Reported Cases
Total number of cases: 2671 as of 8 April 2003, 14:30 GMT+2
2 e :

W Y ey

Spread of Bubonic Plague
in Eurape

i W HIV prevalence in adults, end 2001

The Great Plague

Cumulative number of Reported Cases b )
(From 1 November 02 to 8 April 03) Type of transmission

. 1 . 101-1000 [ nolocal transmission
e 21 B o ransmission
® 1. . il

ata Source: Word Health Organization
ap Production: Public Health Mapping Team
ommunicable Diseases (CDS)

Healh Organization, Apdl 2002
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Digital

Bluetooth (BT) contagion Multimedia messages (MMS) contagion

— MMS messages

Bluetooth range (- 10 m)

Bluetooth messages

BT susceptible phone Infected phone MMS susceptible phone
Phone out of Bluetooth range




Social

PHENOMENA

Venereal Disease

Rumor Spreading

Diffusion of Innovations

Computer Viruses

Mobile Phone Virus

Bedbugs

Malaria

AGENT

Pathogens

Information, Memes

ldeas, Knowledge

Malwares, Digital viruses

Mobile Viruses

Parasitic Insects

Plasmodium

NETWORK

Sexual Network
Communication Network
Communication Network
Internet

Social Network/Proximity Network

Hotel - Traveler Network

Mosquito - Human network




Epidemic spreading —\Why does it matter now?

High mobility

e

perfect conditions for epidemic spreading




Epidemic Modelling

Epidemiology relies on two fundamental hypotheses:

Epidemic models classify each individual based on the stage of the disease
affecting them.
o Susceptible (S): Healthy individuals who have not yet contacted the pathogen.

o Infectious (I): Contagious individuals who have contacted the pathogen and hence
can infect others.

> Recovered (R): Individuals who have been infected before, but have recovered from

the disease, hence are not infectious. m /—\

Homogenous Mixing
INFECTION REMOVAL

o Each individual has the same
chance of cominginto contact | ./ | U
INFECTED REMOVED

with an infected individual.
T (HEALTHY) (SICK) (IMMUNE/DEAD)

255




Classical Epidemic Models — Basic States

Infection
>, Removal
; :
Recovery
<
Recovery
<€

Susceptible Infected Removed

\ (healthy) / \ (sick) / \ (immune / deacy




SI model
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SI model

a.
N entity
HNFE@THJN
S(t) — number of healthy entity at time ¢ T
[(t) — number of infected entity at time ¢t — —
SUSCEPTIBLE INFECTED
(HEALTHY] ISICK]

[ — likelihood that the disease will be transmitted from
an infected to a susceptible individual in a unit time

‘l ___________________________
s | 4
0.5 | I | o | 7
S (O )= N-1 k=1 § - -
100) =1 o 20 ]
. 03 3 | / '
Dynamics: - bt
I(t) O FMAT R | TR TR T T TR T R NN RN S NN N I
02 UT 2 4 t 6 8 10
dl_(t) — ﬁ(k} M expon_entialw satur_ation)
dt N g regime regime
' If i is small, Ifi— 1,
E.g.: Toxoplasmosis i 4,




SIS model
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SIS model

Difference to S/ model
° L —recovery rate

In S| model, each entity gets infected

In case of SIS model:

> 11— recovery rate: [(o0) = 1 — ——

INFECTION
RECOVERY
<
INFECTED
(SICK)

Bk) b, [T
In the SIS model the epidemic has two possible outcomes:

o Endemic State (In Hungarian: népbetegség)

° u< Bk)
o Disease-free State

FRACTION INFECTED it)
o
T

o > Bk DUT 2 L

. di . . . 2
Dynamics: — = B(k)i(1 — i) — pi © Sutbreak
If i is small,

i ~ ioe(ﬂ(k)f’#)f

E.g.: Common cold

endemic |
state

ioo:l_L
s
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R, basic reproductive number

\ INFECTION
>

RECOVERY

B{k)
RO — T

Ry: number of susceptible that will be infected by an N\
infected individual while he/she is infected

INFECTED
(SICK)

The reproductive number predicts the long-term
fate of an epidemic
° Ry > 1the epidemicisin the endemic state

° Ry < 1the epidemic dies out

FRACTION INFECTED it)
o
T

D I i ] | 1 PR T S T T NN N SN TN N NN M
0 T y; L t 6 8 10
exponential endemic
outbreak state
If i is small, ie)=1 K
i ~ ioe(ﬂ(k)r’#)f ﬁ(k)
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SIR model

In the SIR model recovered individuals il | R

enter a recovered state. 'NFECHO; REMOVAL

© e
E . g. \ '\‘. "\ﬁ_ﬂg-:ﬁ!? ’/a

‘\__‘___ o __-// 4
(o]
Flu — INFECTED REMOVED
» SARS SICK) (IMMUNE/DEAD)

The reproductive number predicts the long-

term fate of an epidemic:
> R, < 1the pathogen persists in the population
> R, > 1the pathogen dies out naturally

0.75

FRACTION OF POPULATION

Dynamics: No closed solution




SI—=SIS = SIR model comparison
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