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Network Analysis
01 – INTRODUCTION

S l i d e s  w e r e  c r e a t e d  b y :  D a n i e l  L e i t o l d
Network Science book (online)

Barabási, Albert-László. Network Science.
Cambridge University Press, 2016.

http://barabasi.com/networksciencebook/


What is network science?

5
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What is network science?
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What is network science?

Graphs?
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What is network science?

Graphs?

All together!
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Example - 2003 North American Blackout
Toronto, Detroit, Cleveland, Columbus, Long Island are shining (a), and gone 
dark (b)

14th August 2003 – 45 million people in US and 10 million people in Ontario
were left without power
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Example - 2003 North American Blackout
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Example - 2003 North American Blackout
Why is it important to us?

What is the network? What are the nodes and links?

How can we use network science to avoid cascading failures?

Could we have prevented the cascaded blackouts?
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Example - 2003 North American Blackout
Why is it important to us?

A power grid is a complex system that can be analysed with engineering 
methods, but these methods cannot handle the complexity well derived from 
the interconnections.

What is the network? What are the nodes and links?

The network is the power grid itself. Nodes are the power plants and the links 
are the wires between the plants.

How can we use network science to avoid cascading failures?

With determining the overloaded plants, we can create a more robust network.

Could we have prevented the cascaded blackouts?

Probably yes.
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When did network science start?
State 1: There are publications from Erdős-Rényi (1959) and Granovetter (1973).

State 2: There were social groups, trade routes and aqueduct in the ancient 
times already.
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When did network science start?
The network science is a new discipline. It became a separated discipline in the 
21st century.

Citations for the previous two papers jump on 21st century.

Main author: Albert-László Barabási

Two main force of network science:
◦ Emergence of Network Maps 

◦ Internet

◦ Hollywood

◦ Chemical reactions

◦ Universality of Network Characteristics
◦ Networks are different (nodes, links, how the links are appearing)

◦ BUT, the structures of the different networks are similar
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When did network science start?
Why so late? The reason may be its interdisciplinary. What does it mean?

Example:

Biological Research Food web

Information Technologies Co-purchases

Amazon Protein reactions

Mother Nature Wiring diagram
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When did network science start?
Why so late? The reason may be its interdisciplinary. What does it mean?

Example:

Biological Research Food web

Information Technologies Co-purchases

Amazon Protein reactions

Mother Nature Wiring diagram
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When did network science start?
Why so late? The reason may be its interdisciplinary. What does it mean?

Example:

Biological Research

Information Technologies

Amazon

Mother Nature

a

d

c
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When did network science start?
Why so late? The reason may be its interdisciplinary. What does it mean?

Example:

Biological Research - c

Information Technologies 

Amazon 

Mother Nature 
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When did network science start?
Why so late? The reason may be its interdisciplinary. What does it mean?

Example:

Biological Research - c

Information Technologies - a

Amazon

Mother Nature
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When did network science start?
Why so late? The reason may be its interdisciplinary. What does it mean?

Example:

Biological Research - c

Information Technologies - a

Amazon - d

Mother Nature
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When did network science start?
Why so late? The reason may be its interdisciplinary. What does it mean?

Example:

Biological Research - c

Information Technologies - a

Amazon - d

Mother Nature - b
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When did network science start?
Why so late? The reason may be its interdisciplinary. What does it mean?

Example:

Biological Research

Information Technologies

Amazon

Mother Nature

ba

c d
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When did network science start?
Why so late? The reason may be its interdisciplinary. What does it mean?

Example:

Biological Research - c

Information Technologies - d

Amazon - a

Mother Nature - b

ba

c d
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When did network science start?
Since each field had its own data representation, therefore network science-
based researches were denied in the beginning. 

BUT, network science demonstrates that science can cope with the challenge of 
complex systems.

Several key concepts of network science have their roots in graph theory.

What distinguishes network science from graph theory is its empirical nature, 
i.e. its focus on data, function and utility.

Network Science borrowed the followings:
◦ Formalism to deal with graph – from graph theory

◦ Dealing with randomness and universal principles – from statistical physics

◦ Dealing with control principles – from control and information theory

◦ Extracting information from incomplete and noisy data – from statistics
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Is network science useful? – Societal Impacts

Economic Impact: 
◦ Google search – PageRank measure for network.

◦ Facebook, LinkedIn, Twitter – advertising algorithms derived from network 
researcher.

Health:
◦ Gene networks: breakdown of molecular networks can cause human disease.

◦ Network pharmacology: cure disease without significant side effects (drug 
development).

◦ Network medicine: cellular interactions, drug targets in bacteria and humans.

Security (fighting terrorism):
◦ Saddam Hussein was found by social network analysis.

◦ The perpetrator of the 11th March 2004 Madrid train bombings was found by the 
examination of the mobile call network.
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Is network science useful? – Societal Impacts

Epidemics:
◦ In 2009, H1N1 pandemic was accurately predicted: Video.

◦ It helped to stop the spread of Ebola.

◦ In the autumn of 2010 in China, viruses, which spread through mobile phones, 
followed the predicted spreading scenario.

Neuroscience (mapping the brain):
◦ The human brain that consists of hundreds of billions 

of interlinked neurons is not understood.

◦ The only fully mapped brain available is that of the C. elegans
worm, which consists of 302 neuron.

Organization management:
◦ The most important role in the success of an organization: the informal network, 

capturing who really communicates with whom.
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http://networksciencebook.com/images/ch-01/video-1-1.m4v


Example – Organization management
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Example – Organization management
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Example – Organization management
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Example – Organization management
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Is network science useful? – Scientific Impact

Nowhere is the impact of network science more evident than in the scientific 
community.
◦ Citation patterns of the most cited 

papers in the area of complex 
systems (each of them are citation 
classics such as the butterfly effect, 
fractals or neural networks).

Some other success:
◦ Network science courses on major

universities.

◦ PhD programs in network science.

◦ Public excitement by books and 
movies like Linked, Nexus or Connected.

◦ and so on…
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Network Analysis
02 – GRAPH THEORY

S l i d e s  w e r e  c r e a t e d  b y :  A g n e s Va t h y - F o g a r a s s y
Network Science book (online)

Barabási, Albert-László. Network Science.
Cambridge University Press, 2016.

http://barabasi.com/networksciencebook/


The Bridges of Königsberg 
Problem: How can one go through each 
bridge with using each only once?

1735 – The beginning of graph theory.

Euler’s  approach:
◦ Grounds are vertices.

◦ Bridges are edges.

Solution: They build a new bridge 
between C and B (1875).

The Bridges of Königsberg (Video).
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http://networksciencebook.com/images/ch-02/video-2-1.m4v


Networks and Graphs
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Networks and Graphs
a – computer network

b – network of actors

c – network of protein interactions

d – mathematical graph

Structurally these networks are the same.

Two important properties:
◦ Number of nodes: 

◦ N = 4

◦ Number of links: 

◦ L = 4
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Degree and Average Degree
Questions: You have a social network from Facebook. 
◦ What are the nodes and the links? 

◦ Is it a directed or an undirected network?

◦ Who is the most well-known person?

40



k4 = 1

k2 = 3
k3 = 2

k1 = 2

Degree and Average Degree
You have a social network from Facebook. 
Questions: 
◦ What are the nodes and the links? 
◦ Is it a directed or an undirected network?
◦ Who is the most well-known person?

Degree:
◦ 𝑘𝑖: degree of node 𝑖 – the number of links belongs to node 𝑖

Total number of links in a network:

◦ 𝐿 =
1

2
σ𝑖=1
𝑁 𝑘𝑖

Average degree:

◦ 𝑘 =
1

𝑁
σ𝑖=1
𝑁 𝑘𝑖 =

2𝐿

𝑁
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Degree and Average Degree – directed 
Degree in directed case:

◦ Indigree (𝑘𝑖
𝑖𝑛): the number of links point to node 𝑖

◦ Outdegree (𝑘𝑖
𝑜𝑢𝑡): the number of links point from node 𝑖

◦ 𝑘𝑖 = 𝑘𝑖
𝑖𝑛 + 𝑘𝑖

𝑜𝑢𝑡

Total number of links in directed networks:

◦ 𝐿 = σ𝑖=1
𝑁 𝑘𝑖

𝑖𝑛 = σ𝑖=1
𝑁 𝑘𝑖

𝑜𝑢𝑡

Average degree in directed networks:

◦ 𝑘𝑖𝑛 =
1

𝑁
σ𝑖=1
𝑁 𝑘𝑖

𝑖𝑛

◦ 𝑘𝑜𝑢𝑡 =
1

𝑁
σ𝑖=1
𝑁 𝑘𝑖

𝑜𝑢𝑡

◦ 𝑘𝑖𝑛 = 𝑘𝑜𝑢𝑡 =
𝐿

𝑁
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𝑘1
𝑖𝑛 = 1

𝑘1
𝑜𝑢𝑡 = 1

𝑘4
𝑖𝑛 = 1

𝑘4
𝑜𝑢𝑡 = 0

𝑘2
𝑖𝑛 = 2

𝑘2
𝑜𝑢𝑡 = 1

𝑘3
𝑖𝑛 = 0

𝑘3
𝑜𝑢𝑡 = 2



Degree Distribution
𝑁𝑘: the number of nodes with degree 𝑘.

𝑝𝑘 =
𝑁𝑘

𝑁
: the probability that a randomly selected node has degree 𝑘.

Since 𝑝𝑘 is a probability, it must be normalized: σ𝑘=0
∞ 𝑝𝑘 = 1.

Degree distribution had central role in discovering scale-free property.

Example 1:
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Degree Distribution
𝑁𝑘: the number of nodes with degree 𝑘.

𝑝𝑘 =
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𝑁
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Degree Distribution
𝑁𝑘: the number of nodes with degree 𝑘.

𝑝𝑘 =
𝑁𝑘

𝑁
: the probability that a randomly selected node has degree 𝑘.

Since 𝑝𝑘 is a probability, it must be normalized: σ𝑘=0
∞ 𝑝𝑘 = 1.

Degree distribution had central role in discovering scale-free property.

Example 2:
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Degree Distribution
𝑁𝑘: the number of nodes with degree 𝑘.

𝑝𝑘 =
𝑁𝑘

𝑁
: the probability that a randomly selected node has degree 𝑘.

Since 𝑝𝑘 is a probability, it must be normalized: σ𝑘=0
∞ 𝑝𝑘 = 1.

Degree distribution had central role in discovering scale-free property.

Example 2:
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Degree Distribution – real example
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Adjacency Matrix
Mathematical description of a network: 𝐴

Directed case:
◦ 𝐴𝑖𝑗 = 1, if there is a link from node 𝑖 to node 𝑗

◦ 𝐴𝑖𝑗 = 0, if there is no link from node 𝑖 to node 𝑗

Undirected case:
◦ 𝐴𝑖𝑗 = 𝐴𝑗𝑖 = 1, if there is  a link between node 𝑖 and 𝑗
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Real Networks are Sparse
The number of links in an undirected network can be 
between:
◦ 𝐿𝑚𝑖𝑛 = 0

◦ 𝐿𝑚𝑎𝑥 =
𝑁
2

=
𝑁 𝑁−1

2
.

In reality 𝐿 ≪ 𝐿𝑚𝑎𝑥.

In yeast protein-protein interaction network:
◦ 𝑁 = 2018

◦ 𝐿 = 2930

◦ Theoretical maximum: 𝐿max = 219 853

◦ Only 1.33% of possible connections

Solution: 
◦ Edge list:

50

Edge list:

1  2

1  3

2  3

2  4



Weighted Networks
If we want to qualify the links, then we can associate weights for them.

For example:
◦ Number of e-mails

◦ Length of phone call

◦ Distance between two cities

◦ …

In adjacency matrix:
◦ 𝐴𝑖𝑗 = 𝑤𝑖𝑗

In edge list:
◦ From node, to node, weight

◦ E.g. A, C, 12

51



Bipartite Networks
Bigraph: a network whose nodes can be divided into two disjoint sets U and V 
such that each link connects a U-node to a V-node.

Projections: 
o 2 projections can be generated

o Projection U: two nodes are connected
if they have at least one common
neighbour from set V. 

o Projection V: analogously

Example:
◦ Network of actors
◦ Network of diseases
◦ Network of recipe-ingredients
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Bipartite Networks – Diseasome network
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Paths and Distances
Path: Sequence of nodes such that each node is connected to 
the next one along the path by a link. 

Shortest (Geodesic) path, 𝑑: The path with the shortest 
distance 𝑑 between two nodes.

Network Diameter, 𝑑max: maximum shortest path in the 
network.

Average Path Length, 𝑑 : The average of the shortest paths 
between all pairs of nodes.

Cycle: A path with the same start and end node.

Eulerian Path: A path that traverses each link exactly once.

Hamiltonian Path: A path that visits each node exactly once.
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Paths and Distances
Path: Sequence of nodes such that each node is connected to 
the next one along the path by a link. 

Shortest (Geodesic) path, 𝑑: The path with the shortest 
distance 𝑑 between two nodes.

Network Diameter, 𝑑max: maximum shortest path in the 
network.

Average Path Length, 𝑑 : The average of the shortest paths 
between all pairs of nodes.

Cycle: A path with the same start and end node.

Eulerian Path: A path that traverses each link exactly once.

Hamiltonian Path: A path that visits each node exactly once.

59



Paths and Distances
Path: Sequence of nodes such that each node is connected to 
the next one along the path by a link. 

Shortest (Geodesic) path, 𝑑: The path with the shortest 
distance 𝑑 between two nodes.

Network Diameter, 𝑑max: maximum shortest path in the 
network.

Average Path Length, 𝑑 : The average of the shortest paths 
between all pairs of nodes.

Cycle: A path with the same start and end node.

Eulerian Path: A path that traverses each link exactly once.

Hamiltonian Path: A path that visits each node exactly once.
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Breadth-First Search (BFS) Algorithm
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Connectedness
In an undirected network nodes 𝑖 and 𝑗 are connected if there is a path between 
them. They are disconnected if such a path does not exist, 𝑑𝑖𝑗 = ∞.

A network is connected if all pairs of 
nodes in the network are connected. 

A network is disconnected if there is at 
least one pair of nodes with 𝑑𝑖𝑗 = ∞.

In a disconnected network we call its 
subnetworks components or clusters.

The link that connects two clusters 
is called bridge.
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Clustering Coefficient (undirected case)
Cusltering Coefficient (𝐶𝑖) measures the network’s 
local link density.

𝐶𝑖 =
2𝐿𝑖

𝑘𝑖 𝑘𝑖−1

◦ 𝐿𝑖:  number of links between the neighbours of node 𝑖

𝐶𝑖 = 0, if none of the neighbours of node 𝑖 links to each other.

𝐶𝑖 = 1, if the neighbours of node 𝑖 form a complete graph.

𝐶𝑖 is the probability that two neighbours of a node are
connected to each other. 

Average Clustering Coefficient ( 𝐶 ): degree of 
clustering of a whole network.

𝐶 =
1

𝑁
σ𝑖=1
𝑁 𝐶𝑖
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Network Analysis
03 – RANDOM NETWORKS

S l i d e s  w e r e  c r e a t e d  b y :  D a n i e l  L e i t o l d
Network Science book (online)

Barabási, Albert-László. Network Science.
Cambridge University Press, 2016.

http://barabasi.com/networksciencebook/


Party and wine

65

You invite 100 people for a party.

They do not know each other in the beginning.

Talking groups of 2 – 3 appear.

Then, you unfortunately said to Jane that the 

wine in unlabelled bottles is much better.

What happened?



Party and wine
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She shares this information only with her 
acquaintances. If she talks just 5 minutes to each 
person, then to share this information with 
everyone takes 5*99 minutes that is more than 
8 hours.

So can you calm down? 



Party and wine
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She shares this information only with her 
acquaintances. If she talks just 5 minutes to each 
person, then to share this information with 
everyone takes 5*99 minutes that is more than 
8 hours.

So can you calm down? 

NO!



Party and wine
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The Random Network Model
Two definitions:
◦ A random graph 𝐺(𝑁, 𝑝) is a graph of 𝑁 nodes where each pair of nodes is 

connected by probability 𝑝. – Erős-Rényi model (ER model)

◦ A random graph 𝐺(𝑁, 𝐿) is a graph of 𝑁 nodes that are connected by 𝐿
randomly placed links.
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The Random Network Model
A random graph 𝐺(𝑁, 𝑝) is a graph of 𝑁 nodes where each pair of nodes is 
connected by probability 𝑝.

A random graph 𝐺(𝑁, 𝐿) is a graph of 𝑁 nodes that are connected by 𝐿
randomly placed links.
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𝑁 = 12

𝑝 =
1

6

𝐿 = 10 𝐿 = 10 𝐿 = 8



The Random Network Model
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𝑁 = 100
𝑝 = 0.03



Degree Distribution
The probability that a random node has exactly 𝑘 links is the product of three 
terms:
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Degree Distribution
The probability that a random node has exactly 𝑘 links is the product of three 
terms:

◦ The probability that 𝑘 links are connected to the node: 𝑝𝑘
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Degree Distribution
The probability that a random node has exactly 𝑘 links is the product of three 
terms:

◦ The probability that 𝑘 links are connected to the node: 𝑝𝑘

◦ The probability that the remaining (𝑁 − 1 − 𝑘) links are missing: 1 − 𝑝 𝑁−1−𝑘
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Degree Distribution
The probability that a random node has exactly 𝑘 links is the product of three 
terms:

◦ The probability that 𝑘 links are connected to the node: 𝑝𝑘

◦ The probability that the remaining (𝑁 − 1 − 𝑘) links are missing: 1 − 𝑝 𝑁−1−𝑘

◦ A combinational factor:
𝑁 − 1
𝑘
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Degree Distribution
The probability that a random node has exactly 𝑘 links is the product of three 
terms:

◦ The probability that 𝑘 links are connected to the node: 𝑝𝑘

◦ The probability that the remaining (𝑁 − 1 − 𝑘) links are missing: 1 − 𝑝 𝑁−1−𝑘

◦ A combinational factor:
𝑁 − 1
𝑘

𝑝𝑘 =
𝑁 − 1
𝑘

𝑝𝑘 1 − 𝑝 𝑁−1−𝑘
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Degree Distribution
The probability that a random node has exactly 𝑘 links is the product of three 
terms:

◦ The probability that 𝑘 links are connected to the node: 𝑝𝑘

◦ The probability that the remaining (𝑁 − 1 − 𝑘) links are missing: 1 − 𝑝 𝑁−1−𝑘

◦ A combinational factor:
𝑁 − 1
𝑘

𝑝𝑘 =
𝑁 − 1
𝑘

𝑝𝑘 1 − 𝑝 𝑁−1−𝑘
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Binomial distribution



Degree Distribution
The most of real networks are 
sparse 𝑘 ≪ 𝑁.

In this limit the degree 
distribution is well approximated 
by the Poisson distribution.

𝑝𝑘 = 𝑒− 𝑘 𝑘 𝑘

𝑘!
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Real Networks are Not Poisson
The human population is 𝑁 = 7 ∗ 109.

Sociologists estimate that a typical person knows about 1000 people.

According to Poisson distribution:
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Real Networks are Not Poisson
The human population is 𝑁 = 7 ∗ 109.

Sociologists estimate that a typical person knows about 1000 people.

According to Poisson distribution:
◦ 𝑘max = 1185

◦ 𝜎𝑘 = 𝑘
1

2 = 31.62

◦ Usually: 𝑘 ± 𝜎𝑘
between 968 and 1032
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Real Networks are Not Poisson
The human population is 𝑁 = 7 ∗ 109.

Sociologists estimate that a typical person knows about 1000 people.

According to Poisson distribution:
◦ 𝑘max = 1185

◦ 𝜎𝑘 = 𝑘
1

2 = 31.62

◦ Usually: 𝑘 ± 𝜎𝑘
between 968 and 1032
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The Evolution of a Random Network
The social network at the party is evolved by the new acquaintances.

This means a continuously changing 𝑝.

Firstly, how 𝑘 influences the size of giant component

◦ Giant component (𝑁𝐺): A significant connected portion of the network. 
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The Evolution of a Random Network
The social network at the party is evolved by the new acquaintances.

This means a continuously changing 𝑝.

Firstly, how 𝑘 influences the size of giant component

◦ Giant component (𝑁𝐺): A significant connected portion of the network. 

Trivial cases:

◦ If 𝑝 = 0, then 𝑘 = 0, 𝑁𝐺 = 1, 
𝑁𝐺

𝑁
→ 0

◦ If 𝑝 = 1, then 𝑘 = 𝑁 − 1, 𝑁𝐺 = 𝑁, 
𝑁𝐺

𝑁
= 1
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The Evolution of a Random Network
The social network at the party is evolved by the new acquaintances.

This means a continuously changing 𝑝.

Firstly, how 𝑘 influences the size of giant component

◦ Giant component (𝑁𝐺): A significant connected portion of the network. 

Trivial cases:

◦ If 𝑝 = 0, then 𝑘 = 0, 𝑁𝐺 = 1, 
𝑁𝐺

𝑁
→ 0

◦ If 𝑝 = 1, then 𝑘 = 𝑁 − 1, 𝑁𝐺 = 𝑁, 
𝑁𝐺

𝑁
= 1

Suspicion:
◦ If 𝑘 increases from 0 → 𝑁 − 1, 𝑁𝐺 grows gradually from 1 → 𝑁
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The Evolution of a Random Network
The social network at the party is evolved by the new acquaintances.

This means a continuously changing 𝑝.

Firstly, how 𝑘 influences the size of giant component

◦ Giant component (𝑁𝐺): A significant connected portion of the network. 

Trivial cases:
◦ If 𝑝 = 0, then 𝑘 = 0, 𝑁𝐺 = 1, 

𝑁𝐺

𝑁
→ 0

◦ If 𝑝 = 1, then 𝑘 = 𝑁 − 1, 𝑁𝐺 = 𝑁, 
𝑁𝐺

𝑁
= 1

Suspicion:
◦ If 𝑘 increases from 0 → 𝑁 − 1, 𝑁𝐺 grows gradually from 1 → 𝑁

Reality:
◦
𝑁𝐺

𝑁
increases rapidly, if 𝑘 exceeds a critical value
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The Evolution of a Random Network
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What is the critical value of 𝑘 ? Video

http://networksciencebook.com/images/ch-03/video-3-2.m4v


The Evolution of a Random Network
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What is the critical value of 𝑘 ? → 1 Video

http://networksciencebook.com/images/ch-03/video-3-2.m4v


The Evolution of a Random Network
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What is the critical value of 𝑘 ? → 1

Four domains:

◦ Subcritical: 𝑘 < 0, 𝑝 <
1

𝑁

◦ Critical: 𝑘 = 1, 𝑝 =
1

𝑁

◦ Supercritical: 𝑘 > 1, 𝑝 >
1

𝑁

◦ Connected: 𝑘 > ln 𝑁 , 𝑝 >
ln(𝑁)

𝑁

Video

http://networksciencebook.com/images/ch-03/video-3-2.m4v


The Evolution of a Random Network
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The Evolution of a Random Network
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The Evolution of a Random Network
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What is the critical value of 𝑘 ? → 1

Four domains:

◦ Subcritical: 𝑘 > 0, 𝑝 <
1

𝑁

◦ Critical: 𝑘 = 1, 𝑝 =
1

𝑁

◦ Supercritical: 𝑘 > 1, 𝑝 >
1

𝑁

◦ Connected: 𝑘 > ln 𝑁 , 𝑝 >
ln(𝑁)

𝑁

Video

http://networksciencebook.com/images/ch-03/video-3-2.m4v


The Evolution of a Random Network
Subcritical domain:

◦ There is no giant component, or its relative size (
𝑁𝐺

𝑁
) is nearly 0.

Critical domain:
◦ 𝑁𝐺 is 0 relatively to 𝑁.

◦ BUT!!, 𝑁𝐺 is much larger, than 𝑁𝐺~𝑁
2

3 .

◦ In case of popularity (7 ∗ 109) this means increase from ~22,7 to ~3 ∗ 106,
𝑁𝐺

𝑁
= 0.00043.

Supercritical domain:
◦ Although there are separated components, the giant component includes most of the nodes.

Connected domain:
◦ The giant component includes all of the nodes.

◦ The network is connected. 
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Real Networks are Supercritical
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Small Worlds
Six degrees of separation
◦ In case of any two individuals on Earth, there is a path between them through at most six 

acquaintances.

◦ The information from Jane spreads rapidly.

An approach:
◦ 𝑘 nodes at distance 𝑑 = 1

◦ 𝑘 2 nodes at distance 𝑑 = 2

◦ …

◦ 𝑘 𝑑 nodes at distance 𝑑

Diameter 𝑑max

◦ 𝑑max =
𝑙𝑛𝑁

𝑙𝑛 𝑘
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Small World:

The diameter depends logarithmically on the system size.

E.g.: population
◦ 𝑘 ≅ 1000

◦ 106 people can be 
reached in two steps.



Watts-Strogatz Model

Watts-Strogatz model:

o Extension of the random network model.

o Motivated by:

o Small World property

o High clustering: The average clustering coefficient of real networks is much 
higher than expected for a random network.

o Intermediate status between regular lattice (high clustering, lack of small-world 
property) and random network (low clustering, but small-word property).

Algorithm:

1. Start from a ring of nodes, each node is connected to their immediate and next 
neighbors.

2. With probability p each link is rewired to a randomly chosen node.
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Watts-Strogatz Model
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Network Analysis
04 – THE SCALE-FREE PROPERTY

S l i d e s  w e r e  c r e a t e d  b y :  A g n e s Va t h y - F o g a r a s s y
Network Science book (online)

Barabási, Albert-László. Network Science.
Cambridge University Press, 2016.

http://barabasi.com/networksciencebook/


Introduction
The network of the nd.edu domain (University of Notre Dame): Video
◦ 300,000 documents and 

◦ 1.5 million links

98
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Introduction
The network of the nd.edu domain (University of Notre Dame): Video
◦ 300,000 documents and 

◦ 1.5 million links

With 𝑁 ≈ 1012 document, WWW is the largest network humanity that has ever 
been built (human brain has 𝑁 ≈ 1011 neurons)
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http://networksciencebook.com/images/ch-04/video-4-1.mov


Introduction
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Power Laws and Scale-Free Networks

101

The real degree distribution of WWW

On a Log-Log scale the data form an 
almost straight line.

Degree follows Power Law, not Poisson
distribution.

𝑝𝑘~𝑘
−𝛾

In Figure:
◦ 𝛾𝑖𝑛 = 2.1

◦ 𝛾𝑜𝑢𝑡 = 2.45

◦ 𝑝𝑘𝑖𝑛~ 𝑘−𝛾𝑖𝑛

◦ 𝑝𝑘𝑜𝑢𝑡~ 𝑘−𝛾𝑜𝑢𝑡



Power Laws and Scale-Free Networks
Definition:
◦ A scale-free network is a network whose degree distribution follows a power law. 
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Power Laws and Scale-Free Networks
Definition:
◦ A scale-free network is a network whose degree distribution follows a power law. 

Discrete form:
◦ 𝑝𝑘 = 𝐶𝑘−𝛾

103

Pareto efficiency,
Pareto distribution,
Pareto principle, or
Power Law distribution

Vilfredo Federico 
Damaso Pareto

(1848 – 1923) 



Power Laws and Scale-Free Networks
Definition:
◦ A scale-free network is a network whose degree distribution follows a power law. 

Discrete form:
◦ 𝑝𝑘 = 𝐶𝑘−𝛾

𝐶 is determined by the normalization condition:
◦ σ𝑘=1

∞ 𝑝𝑘 = 1

◦ 𝐶 σ𝑘=1
∞ 𝑘−𝛾 = 1 → 𝐶 =

1

σ𝑘=1
∞ 𝑘−𝛾

=
1

𝜉 𝛾

Thus,

◦ 𝑝𝑘 =
𝑘−𝛾

𝜉 𝛾

◦ BUT! It diverges at 𝑝0, so we need to determine 
𝑝0 separately. 
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Pareto distribution,
Pareto principle, or
Power Law distribution

Vilfredo Federico 
Damaso Pareto

(1848 – 1923) 



Hubs
The main difference between Power Law and 
Poisson distribution:

◦ The tail.
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Hubs
The main difference between Power Law and 
Poisson distribution:

◦ The tail.

Parameters:
◦ 𝛾 = 2.1

◦ 𝑘 = 11 (a., b.)

◦ 𝑘 = 3 (c., d.)
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The Largest Hub

107

Network sizes:
◦ Web: 𝑁 ≈ 1012

◦ Population: 𝑁 ≈ 7 × 109

◦ Human gene network: 𝑁 ≈ 2 × 104

◦ E.coli metabolic network: 𝑁 ≈ 103

How big is 𝑘𝑚𝑎𝑥?



The Largest Hub

108

Network sizes:
◦ Web: 𝑁 ≈ 1012

◦ Population: 𝑁 ≈ 7 × 109

◦ Human gene network: 𝑁 ≈ 2 × 104

◦ E.coli metabolic network: 𝑁 ≈ 103

How big is 𝑘𝑚𝑎𝑥?
◦ Complete network: 

◦ Random network:

◦ Scale-free network: 𝒌𝒎𝒂𝒙~ 𝑵
𝟏

𝜸−𝟏



The Largest Hub

109

Network sizes:
◦ Web: 𝑁 ≈ 1012

◦ Population: 𝑁 ≈ 7 × 109

◦ Human gene network: 𝑁 ≈ 2 × 104

◦ E.coli metabolic network: 𝑁 ≈ 103

How big is 𝑘𝑚𝑎𝑥?
◦ Complete network: 𝑘𝑚𝑎𝑥 = 𝑁 − 1

◦ Random network: 𝑘𝑚𝑎𝑥~ ln𝑁

◦ Scale-free network: 𝑘𝑚𝑎𝑥~𝑁
1

𝛾−1

In figure:
◦ 𝑘 = 3

◦ 𝛾 = 2.5



Example

110



Example
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The Meaning of Scale-Free 
Random Networks have a scale

◦ Due to Poisson distribution 𝜎𝑘 = 𝑘
1

2, 𝜎 < 𝑘

◦ Degrees of nodes are in the range 𝑘 = 𝑘 ± 𝑘
1

2

◦ 𝑘 serves a „scale” for random networks

Scale-free Networks have no scale
◦ Network with a Power-law distribution with 𝛾 < 3

◦ Deviation from the average can be arbitrary large

◦ A randomly selected node can be:
◦ tiny

◦ huge
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How can we determine 𝛾?

113

Degree distribution of the real networks:



How can we determine 𝛾?

114

The degree exponent can be obtained by fitting a straight line to 𝑝𝑘 on a log-log plot.

Degree distribution of the real networks:



How can we determine 𝛾?
Anomalous Regime (𝛾 = 2)
◦ 𝑘𝑚𝑎𝑥 ≈ 𝑁

◦ 𝑑 ~ 𝑐𝑜𝑛𝑠𝑡

Ultra-Small World (2 < 𝛾 < 3)
◦ 𝑑 ~ 𝑙𝑛𝑙𝑛𝑁

◦ Example: Population: 𝑁 = 7 × 109

◦ 𝑙𝑛𝑁 = 22.66

◦ 𝑙𝑛𝑙𝑛𝑁 = 3.12

Critical Point (𝛾 = 3)

◦ 𝑑 ~
𝑙𝑛𝑁

𝑙𝑛𝑙𝑛𝑁

Small World (𝛾 > 3)
◦ 𝑑 ~ 𝑙𝑛𝑁
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Why Scale-free networks with 𝛾 < 2 do not exist?
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Why Scale-free networks with 𝛾 < 2 do not exist?

117



Why Scale-free networks with 𝛾 < 2 do not exist?
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Network Analysis
05 – THE BARABÁSI -ALBERT MODEL 

S l i d e s  w e r e  c r e a t e d  b y :  D a n i e l  L e i t o l d
Network Science book (online)

Barabási, Albert-László. Network Science.
Cambridge University Press, 2016.

http://barabasi.com/networksciencebook/


Introduction
Why do very different systems as the WWW and the cell both have scale-free 
architecture?

◦ The nodes of the cellular network are metabolites or proteins, while the nodes of the WWW are 
documents, representing information without a physical manifestation. 

◦ The links within the cells are chemical reactions and binding interactions, while the links of the WWW 
are URLs, or small segments of computer codes. 

◦ The history of these two systems could not be more different: The cellular network is shaped by 4 billion 
years of evolution, while the WWW is less than three decade old. 

◦ The purpose of the metabolic network is to produce the chemical components the cell needs to stay 
alive, while the purpose of the WWW is information access and delivery. 

Why does the random network model of Erdős and Rényi fail to reproduce the 
hubs and the power laws observed in real networks? 

We need to understand the mechanism responsible for the emergence of the 
scale-free property. 
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Growth and Preferential Attachment I
Why are hubs and power laws absent in random networks?
◦ In random network 𝑁 is a fixed number.

◦ But! Networks expand through the addition of new nodes. 

◦ Examples:
◦ In 1991 the WWW had a single node, today the Web has over a trillion (1012) documents.
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Growth and Preferential Attachment I 
Why are hubs and power laws absent in random networks?
◦ In random network 𝑁 is a fixed number.

◦ But! Networks expand through the addition of new nodes. 

◦ Examples:
◦ In 1991 the WWW had a single node, today the Web has over a trillion (1012) documents.

◦ The collaboration and the citation network continually expands through the publication of new research papers.
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Growth and Preferential Attachment I 
Why are hubs and power laws absent in random networks?
◦ In random network 𝑁 is a fixed number.

◦ But! Networks expand through the addition of new nodes. 

◦ Examples:
◦ In 1991 the WWW had a single node, today the Web has over a trillion (1012) documents.

◦ The collaboration and the citation network continually expands through the publication of new research papers.

◦ The actor network continues to expand through the release of new movies.

◦ The number of genes has grown from a few to the over 20,000 genes that have appeared in a human cell over four billion years.
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Growth and Preferential Attachment I 
Why are hubs and power laws absent in random networks?
◦ In random network 𝑁 is a fixed number.

◦ But! Networks expand through the addition of new nodes. 

◦ Examples:
◦ In 1991 the WWW had a single node, today the Web has over a trillion (1012) documents.

◦ The collaboration and the citation network continually expands through the publication of new research papers.

◦ The actor network continues to expand through the release of new movies.

◦ The number of genes has grown from a few to the over 20,000 genes that have appeared in a human cell over four billion years.

◦ We need to use a dynamic model instead of a static one!
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Growth and Preferential Attachment II 

125

Why are hubs and power laws absent in random networks?
◦ The random network model selects the interaction partners randomly.

◦ But! In most of the real networks, new nodes prefer one with more connections.

◦ Examples:
◦ We all know Google and Facebook, but we rarely encounter the billions of less-prominent nodes that populate the 

Web. We are more likely to link to a high-degree node than to a node with only few links.

◦ The more cited is a paper, the more likely that we have heard about it. As we cite what we have read, our citations 
are biased towards the more cited publications, representing the high-degree nodes of the citation network.

◦ The more movies an actor has played in, the more familiar is a casting director with his/her skills. Hence, the higher 
the degree of an actor in the actor network is, the higher are the chances that he/she will be considered for a new 
role.

In summary, the two differences:
◦ Growth

◦ Preferential attachment



The Barabási-Albert Model
Initializing:
◦ A network with 𝑚0 nodes.

◦ Add links randomly to the network, until each node has at least one link.

Growth:
◦ Add a new node to the network,

◦ With 𝑚 ≤ 𝑚𝑜 new links such that,

Preferential Attachment:

◦ The probability to connect node 𝑖 is: ∏ 𝑘𝑖 =
𝑘𝑖

σ𝑗 𝑘𝑗
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The Barabási-Albert Model
Initialising:
◦ A network with 𝑚0 nodes.

◦ Add links randomly to the network, until each node has at least one link.

Growth:
◦ Add a new node to the network,

◦ With 𝑚 ≤ 𝑚𝑜 new links such that,

Preferential Attachment:

◦ The probability to connect node 𝑖 is: ∏ 𝑘𝑖 =
𝑘𝑖

σ𝑗 𝑘𝑗

Example:
◦ 𝑚0 = 2
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The Barabási-Albert Model
Initialising:
◦ A network with 𝑚0 nodes.

◦ Add links randomly to the network, until each node has at least one link.

Growth:
◦ Add a new node to the network,

◦ With 𝑚 ≤ 𝑚𝑜 new links such that,

Preferential Attachment:

◦ The probability to connect node 𝑖 is: ∏ 𝑘𝑖 =
𝑘𝑖

σ𝑗 𝑘𝑗

Example:
◦ 𝑚0 = 2
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The Barabási-Albert Model
Initialising:
◦ A network with 𝑚0 nodes.

◦ Add links randomly to the network, until each node has at least one link.

Growth:
◦ Add a new node to the network,

◦ With 𝑚 ≤ 𝑚𝑜 new links such that,

Preferential Attachment:

◦ The probability to connect node 𝑖 is: ∏ 𝑘𝑖 =
𝑘𝑖

σ𝑗 𝑘𝑗

Example:
◦ 𝑚0 = 2

◦ 𝑚 = 2
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The Barabási-Albert Model
Initialising:
◦ A network with 𝑚0 nodes.

◦ Add links randomly to the network, until each node has at least one link.

Growth:
◦ Add a new node to the network,

◦ With 𝑚 ≤ 𝑚𝑜 new links such that,

Preferential Attachment:

◦ The probability to connect node 𝑖 is: ∏ 𝑘𝑖 =
𝑘𝑖

σ𝑗 𝑘𝑗

Example:
◦ 𝑚0 = 2

◦ 𝑚 = 2
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The Barabási-Albert Model
Initialising:
◦ A network with 𝑚0 nodes.

◦ Add links randomly to the network, until each node has at least one link.

Growth:
◦ Add a new node to the network,

◦ With 𝑚 ≤ 𝑚𝑜 new links such that,

Preferential Attachment:

◦ The probability to connect node 𝑖 is: ∏ 𝑘𝑖 =
𝑘𝑖

σ𝑗 𝑘𝑗

Example:
◦ 𝑚0 = 2

◦ 𝑚 = 2
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The Barabási-Albert Model
Initialising:
◦ A network with 𝑚0 nodes.

◦ Add links randomly to the network, until each node has at least one link.

Growth:
◦ Add a new node to the network,

◦ With 𝑚 ≤ 𝑚𝑜 new links such that,

Preferential Attachment:

◦ The probability to connect node 𝑖 is: ∏ 𝑘𝑖 =
𝑘𝑖

σ𝑗 𝑘𝑗

Example:
◦ 𝑚0 = 2

◦ 𝑚 = 2
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The Barabási-Albert Model
Initialising:
◦ A network with 𝑚0 nodes.

◦ Add links randomly to the network, until each node has at least one link.

Growth:
◦ Add a new node to the network,

◦ With 𝑚 ≤ 𝑚𝑜 new links such that,

Preferential Attachment:

◦ The probability to connect node 𝑖 is: ∏ 𝑘𝑖 =
𝑘𝑖

σ𝑗 𝑘𝑗

Example:
◦ 𝑚0 = 2

◦ 𝑚 = 2

◦ Video
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Network Analysis
06 - PRACTICE

S l i d e s  w e r e  c r e a t e d  b y :  A g n e s Va t h y - F o g a r a s s y

Cytoscape webpage
Cytoscape 3.5.0 User Manual
NetworkAnalyzer Online Help

http://www.cytoscape.org/index.html
http://manual.cytoscape.org/en/stable/index.html
http://med.bioinf.mpi-inf.mpg.de/netanalyzer/help/2.7/


Welcome screen

135

With Empty network
◦ Create a network from scratch

From Network File

From Network Database
◦ Public network data

◦ Search for gene, e.g. “BRCA2”

Organism Networks

Open Recent Session

Open Session File
◦ List of opened sessions

Help -> Show Welcome Screen…



Basics
Load network

Create network
◦ Add Node

◦ Add Edge

Change Style

Change Layout

Select
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NetworkAnalyzer
◦ Let 𝜎𝑖𝑗 the number of the shortest paths from node 𝑖 to node 𝑗

◦ Let |𝑑𝑖| the number of the shortest paths from node 𝑖

Generated measures:
◦ Average shortest path

◦ Clustering Coefficient

◦ Closeness Centrality

◦ Eccentricity

◦ Stress

◦ Degree

◦ Betweenness Centrality

◦ Neighborhood Connectivity

◦ Radiality

◦ Topological Coefficient

◦ Edge Betweenness

137



NetworkAnalyzer
◦ Let 𝜎𝑖𝑗 the number of the shortest paths from node 𝑖 to node 𝑗

◦ Let |𝑑𝑖| the number of the shortest paths from node 𝑖

Generated measures:
◦ Average shortest path

◦ Clustering Coefficient

◦ Closeness Centrality

◦ Eccentricity

◦ Stress

◦ Degree

◦ Betweenness Centrality

◦ Neighborhood Connectivity

◦ Radiality

◦ Topological Coefficient

◦ Edge Betweenness
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Mean of the length of geodesic paths

𝑑 𝑖 =
σ𝑗≠𝑖 𝑑𝑖𝑗

|𝑑𝑖|
is the average shortest path of node 𝑖

𝑑 1 =
1+2+2

3
=

5

3
= 1.6667



NetworkAnalyzer
◦ Let 𝜎𝑖𝑗 the number of the shortest paths from node 𝑖 to node 𝑗

◦ Let |𝑑𝑖| the number of the shortest paths from node 𝑖

Generated measures:
◦ Average shortest path

◦ Clustering Coefficient

◦ Closeness Centrality

◦ Eccentricity

◦ Stress

◦ Degree

◦ Betweenness Centrality

◦ Neighborhood Connectivity

◦ Radiality

◦ Topological Coefficient

◦ Edge Betweenness
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Connectedness of neighbours

𝐶𝑖 =
2𝐿𝑖

𝑘𝑖 𝑘𝑖−1
is the clustering coefficient of node 𝑖

𝐶2 =
2

6
= 0.3333



NetworkAnalyzer
◦ Let 𝜎𝑖𝑗 the number of the shortest paths from node 𝑖 to node 𝑗

◦ Let |𝑑𝑖| the number of the shortest paths from node 𝑖

Generated measures:
◦ Average shortest path

◦ Clustering Coefficient

◦ Closeness Centrality

◦ Eccentricity

◦ Stress

◦ Degree

◦ Betweenness Centrality

◦ Neighborhood Connectivity

◦ Radiality

◦ Topological Coefficient

◦ Edge Betweenness
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Reciprocal of average shortest path

𝐶𝑐(𝑖) =
1

𝑑 𝑖
is the closeness centrality of node 𝑖

𝐶𝑐(1) =
3

5
= 0.6



NetworkAnalyzer
◦ Let 𝜎𝑖𝑗 the number of the shortest paths from node 𝑖 to node 𝑗

◦ Let |𝑑𝑖| the number of the shortest paths from node 𝑖

Generated measures:
◦ Average shortest path

◦ Clustering Coefficient

◦ Closeness Centrality

◦ Eccentricity

◦ Stress

◦ Degree

◦ Betweenness Centrality

◦ Neighborhood Connectivity

◦ Radiality

◦ Topological Coefficient

◦ Edge Betweenness
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Maximum non-infinite of shortest path starts from node 𝑖

𝐸𝑐 𝑖 = max 𝑑𝑖𝑗 𝑖 ≠ 𝑗, 𝑑𝑖𝑗 ≠ ∞ is the eccentricity of node 𝑖

𝐸𝑐(1) = max 1,2,2 = 2



NetworkAnalyzer
◦ Let 𝜎𝑖𝑗 the number of the shortest paths from node 𝑖 to node 𝑗

◦ Let |𝑑𝑖| the number of the shortest paths from node 𝑖

Generated measures:
◦ Average shortest path

◦ Clustering Coefficient

◦ Closeness Centrality

◦ Eccentricity

◦ Stress

◦ Degree

◦ Betweenness Centrality

◦ Neighborhood Connectivity

◦ Radiality

◦ Topological Coefficient

◦ Edge Betweenness
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The number of the shortest paths going through node 𝑖
𝑆𝑡 𝑖 = σ𝑠≠𝑡≠𝑖 1 𝜎𝑠𝑡(𝑖) is the stress of node 𝑖
𝜎𝑠𝑡(𝑖) the number of the shortest paths from node 𝑠 to 𝑡 that 
passes node 𝑖
𝑆𝑡(2) = 4



NetworkAnalyzer
◦ Let 𝜎𝑖𝑗 the number of the shortest paths from node 𝑖 to node 𝑗

◦ Let |𝑑𝑖| the number of the shortest paths from node 𝑖

Generated measures:
◦ Average shortest path

◦ Clustering Coefficient

◦ Closeness Centrality

◦ Eccentricity

◦ Stress

◦ Degree

◦ Betweenness Centrality

◦ Neighborhood Connectivity

◦ Radiality

◦ Topological Coefficient

◦ Edge Betweenness
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The number of the connection of node 𝑖
𝑘𝑖 is the degree of node 𝑖
𝑘2 = 3



NetworkAnalyzer
◦ Let 𝜎𝑖𝑗 the number of the shortest paths from node 𝑖 to node 𝑗

◦ Let |𝑑𝑖| the number of the shortest paths from node 𝑖

Generated measures:
◦ Average shortest path

◦ Clustering Coefficient

◦ Closeness Centrality

◦ Eccentricity

◦ Stress

◦ Degree

◦ Betweenness Centrality

◦ Neighborhood Connectivity

◦ Radiality

◦ Topological Coefficient

◦ Edge Betweenness
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Proportion of appearance of node 𝑖 in all of the shortest paths

𝐶𝑏 𝑖 = σ𝑠≠𝑡≠𝑖
𝜎𝑠𝑡(𝑖)

𝜎𝑠𝑡
is the betweenness centrality of node 𝑖

𝐶𝑏(2) =
4

6
= 0.6667



NetworkAnalyzer
◦ Let 𝜎𝑖𝑗 the number of the shortest paths from node 𝑖 to node 𝑗

◦ Let |𝑑𝑖| the number of the shortest paths from node 𝑖

Generated measures:
◦ Average shortest path

◦ Clustering Coefficient

◦ Closeness Centrality

◦ Eccentricity

◦ Stress

◦ Degree

◦ Betweenness Centrality

◦ Neighborhood Connectivity

◦ Radiality

◦ Topological Coefficient

◦ Edge Betweenness
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Average degree of neighbours of node 𝑖

𝐶𝑛 𝑖 =
σ𝑗∈𝑛𝑖

𝑘𝑗

𝑘𝑖
is the neighbourhood connectivity of node 𝑖

𝑛𝑖 is the set of neighbours of node 𝑖
𝐶𝑛(1) = 3



NetworkAnalyzer
◦ Let 𝜎𝑖𝑗 the number of the shortest paths from node 𝑖 to node 𝑗

◦ Let |𝑑𝑖| the number of the shortest paths from node 𝑖

Generated measures:
◦ Average shortest path

◦ Clustering Coefficient

◦ Closeness Centrality

◦ Eccentricity

◦ Stress

◦ Degree

◦ Betweenness Centrality

◦ Neighborhood Connectivity

◦ Radiality

◦ Topological Coefficient

◦ Edge Betweenness
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How ties of node 𝑖 reach out into the network

𝑅 𝑖 =
𝑑𝑚𝑎𝑥+1 − 𝑑 𝑖

𝑑𝑚𝑎𝑥
is the radiality of node 𝑖

𝑅 1 =
3−1.6667

2
= 0.6667



NetworkAnalyzer
◦ Let 𝜎𝑖𝑗 the number of the shortest paths from node 𝑖 to node 𝑗

◦ Let |𝑑𝑖| the number of the shortest paths from node 𝑖

Generated measures:
◦ Average shortest path

◦ Clustering Coefficient

◦ Closeness Centrality

◦ Eccentricity

◦ Stress

◦ Degree

◦ Betweenness Centrality

◦ Neighborhood Connectivity

◦ Radiality

◦ Topological Coefficient

◦ Edge Betweenness
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How node 𝑖 shares interaction with other nodes

𝑇𝑖 =
𝑎𝑣𝑔 𝐽 𝑖,𝑗

𝑘𝑖
is the topological coefficient of node 𝑖

𝐽 𝑖, 𝑗 : number of common neighbours of node 𝑖 and 𝑗, 
(+1, if 𝑖 and 𝑗 are neighbours)
𝑇1 = 0 // 𝑘𝑖 must be at least 2, 𝑇3 = 0.8333



NetworkAnalyzer
◦ Let 𝜎𝑖𝑗 the number of the shortest paths from node 𝑖 to node 𝑗

◦ Let |𝑑𝑖| the number of the shortest paths from node 𝑖

Generated measures:
◦ Average shortest path

◦ Clustering Coefficient

◦ Closeness Centrality

◦ Eccentricity

◦ Stress

◦ Degree

◦ Betweenness Centrality

◦ Neighborhood Connectivity

◦ Radiality

◦ Topological Coefficient

◦ Edge Betweenness
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The number of shortest paths going through edge 𝑒 = (𝑖, 𝑗)
𝐵𝑒 𝑒 = σ𝑠,𝑡(1|𝜎𝑠𝑡 𝑒 ) is the edge betweenness of edge 𝑒

𝐵𝑒 𝑒1 = 6

𝑒1



Other applications
Gephi
◦ Random networks

◦ Basic network measures

◦ Website

Netlogo
◦ Barabási-Albert model simulator 

◦ (Sample Models/Networks/Preferential Attachment)

◦ Small World simulator 
◦ (Sample Models/Networks/Small Worlds)

◦ Giant Component simulator  
◦ (Sample Models/Networks/Giant Component)

◦ Website
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https://gephi.org/
https://ccl.northwestern.edu/netlogo/


Network Analysis
07 – EVOLVING NETWORKS

S l i d e s  w e r e  c r e a t e d  b y :  D a n i e l  L e i t o l d
Network Science book (online)

Barabási, Albert-László. Network Science.
Cambridge University Press, 2016.

http://barabasi.com/networksciencebook/


Introduction
By the late 1990s, two search engines had been created with an early start:
◦ Alta Vista

◦ Inktomi

Six years after the birth of the WWW, Google was a latecomer to search, BUT:
◦ Became the leading search engine, and

◦ by 2000 had become the biggest hub of the Web.

Youngster Facebook:
◦ In 2011 it became the Web’s biggest node.
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https://blogs-images.forbes.com/adamhartung/files/2015/04/Facebook-v-Google.jpg?width=960



Introduction
The Web’s competitive landscape highlights an important limitation of our 
modelling framework:
◦ None of the models is able to account for it. 

The biggest node is
◦ Random in Erdős-Rényi model

◦ The oldest in Barabási-Albert model (𝑘 𝑡 ~𝑡
1

2)
◦ first mover’s advantage

We will explore
◦ Initial attractiveness

◦ 𝑛 internal links

◦ Node deletion

◦ Aging of nodes

◦ Accelerated growth

152



The Bianconi-Barabási Model
Intrinsic node property:
◦ Fitness (𝜂): a random number chosen from a fitness distribution ρ(η)

◦ Video

The Bianconi-Barabási Model:

◦ Growth: a new node (𝑗) has:
◦ 𝑚 new connections, and

◦ 𝜂𝑗 fitness

◦ Preferential Attachment: probability to connect to node 𝑖
◦ Depends on degree (𝑘𝑖) and fitness (𝜂𝑖)

◦ ∏𝑖 =
𝜂𝑖𝑘𝑖

σ𝑗 𝜂𝑗𝑘𝑗
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http://networksciencebook.com/images/ch-06/video-6-1.webm


Degree Dynamics
We can predict each node’s evolution

◦
𝜕𝑘𝑖

𝜕𝑡
= 𝑚

𝜂𝑖𝑘𝑖
σ𝑗 𝜂𝑗𝑘𝑗

The degree at time 𝑡

◦ 𝑘 𝑡, 𝑡𝑖 , 𝜂𝑖 = 𝑚
𝑡

𝑡𝑖

𝛽 𝜂𝑖
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Degree Dynamics
We can predict each node’s evolution

◦
𝜕𝑘𝑖

𝜕𝑡
= 𝑚

𝜂𝑖𝑘𝑖
σ𝑗 𝜂𝑗𝑘𝑗

The degree at time 𝑡

◦ 𝑘 𝑡, 𝑡𝑖 , 𝜂𝑖 = 𝑚
𝑡

𝑡𝑖

𝛽 𝜂𝑖

Degree distribution:
◦ Equal Fitnesses (BA model)

◦ 𝑝𝑘~𝑘
−3

◦ Uniform Fitness Distribution
◦ 𝑝𝑘 depends on 𝑝(𝜂)
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Measuring Fitness
Our ability to determine the fitness is prone to errors.

Fitness is determined:

◦ not by us

◦ BUT by nodes
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The Fitness Distribution of the WWW The Fitness Distribution of Research Papers Predicting Ultimate Impact



Bose-Einstein Condensation
Some networks can undergo Bose-Einstein condensation.
◦ Fitness → Energy

◦ Links → Particles 

◦ Nodes → Energy levels

The links of the fitness model behave like 
subatomic particles in a quantum gas. 

Based on fitness distributions 
◦ Scale-free phase

◦ Fit-gets-rich phenomenon

◦ Degree distribution follows power-law

◦ Bose-Einstein condensation (Video)
◦ Winner takes-all phenomenon

◦ Hub and spoke topology

157

http://networksciencebook.com/images/ch-06/video-6-2.webm


Bose-Einstein Condensation
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Bose-Einstein Condensation
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Evolving Networks

Initial Attractiveness

Internal Links

Node Deletion

Accelerated Growth

Aging

160

The largest components in Apple’s inventor network over a 6-year period

https://www.kenedict.com/site_update/wp-content/uploads/2013/07/Apple_Evolution.png



Initial Attractiveness
In the Barabási–Albert model an isolated node cannot acquire link.

BUT in reality:
◦ new research paper has 𝑝 > 0

probability of being cited for the first 
time

◦ a person that moves to a new city 
quickly acquires acquaintances

Preferential attachment function :
◦ ∏𝑘~𝐴 + 𝑘

◦ Constant 𝐴 is called initial attractiveness
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The probability of a new paper to be cited 
for the first time (𝐴 = 7) is comparable to the citation 

probability of a paper with seven citations (𝐴 = 0).



Initial Attractiveness
Effect to the Barabási–Albert model:

The Degree Exponent is increased:

◦ 𝛾 = 3 +
𝐴

𝑚

Generates a Small-degree Saturation:

◦ 𝑝𝑘 = 𝐶 𝑘 + 𝐴 −𝛾

◦ pushes the small-𝑘 nodes 
toward higher degrees

◦ high degrees (𝑘 ≫ 𝐴): the degree 
distribution follows the power law
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The probability of a new paper to be cited 
for the first time (𝐴 = 7) is comparable to the citation 

probability of a paper with seven citations (𝐴 = 0).



Evolving Networks

Initial Attractiveness

Internal Links

Node Deletion

Accelerated Growth

Aging
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The largest components in Apple’s inventor network over a 6-year period

https://www.kenedict.com/site_update/wp-content/uploads/2013/07/Apple_Evolution.png



Internal Links
In many networks new links do not only arrive with new nodes but are added 
between pre-existing nodes.

Preferential attachment function:

◦ ∏ 𝑘, 𝑘′ ~ 𝐴 + 𝐵𝑘 𝐴 + 𝐵𝑘′

Limiting cases of:

◦ Double Preferential Attachment (A=0)

◦ 𝛾 = 2 +
𝑚

𝑚+2𝑛

◦ Lowers the degree exponent from 3 to 2

◦ Random Attachment (B=0)

◦ 𝛾 = 3 +
2𝑛

𝑚

◦ Degree exponent bigger than 3
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Evolving Networks

Initial Attractiveness

Internal Links

Node Deletion

Accelerated Growth

Aging
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The largest components in Apple’s inventor network over a 6-year period

https://www.kenedict.com/site_update/wp-content/uploads/2013/07/Apple_Evolution.png



Node Deletion
Real examples:
◦ employees leave the company 

◦ web documents are removed

In Barabási–Albert model in each step:
◦ Add a node with 𝑚 new links

◦ Remove a node with  𝑟 rate

Based on 𝑟, there are three different phases
◦ Scale-free phase (𝑟 < 1)

◦ 𝛾 = 3 +
2𝑟

1−𝑟

◦ Exponential phase (𝑟 = 1)
◦ 𝛾 → ∞,  𝑁 is constant, we loose scale-free property

◦ Declining Networks (𝑟 > 1)
◦ Alzheimer’s research focuses on the progressive loss of neurons
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The Impossibility of Node Deletion
Retraction lead to a dramatic drop in 
citations, but the papers continue to be cited.



Evolving Networks

Initial Attractiveness

Internal Links

Node Deletion

Accelerated Growth

Aging
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The largest components in Apple’s inventor network over a 6-year period

https://www.kenedict.com/site_update/wp-content/uploads/2013/07/Apple_Evolution.png



Accelerated Growth
Real examples:
◦ Internet increased from 〈𝑘〉 = 3.42 in November 1997 to 3.96 by December 1998.

◦ WWW increased its average degree from 7.22 to 7.86 during a five month interval.

◦ In metabolic networks the average degree of the metabolites grows approximately linearly 
with the number of metabolites.

The number of links arriving with new nodes is as follows:
◦ 𝑚 𝑡 = 𝑚0𝑡

𝜃

◦ If 𝜃 > 0, the network follows accelerated growth. 

Degree exponent

◦ 𝛾 = 3 +
2𝜃

1−𝜃

For 𝜃 = 1:
◦ The degree exponent diverges, leading to hyper-accelerating growth.

◦ In this case 〈𝑘〉 grows linearly with time and the network looses its scale-free nature. 
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Evolving Networks

Initial Attractiveness
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Node Deletion

Accelerated Growth

Aging
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The largest components in Apple’s inventor network over a 6-year period

https://www.kenedict.com/site_update/wp-content/uploads/2013/07/Apple_Evolution.png



Aging
Real examples:
◦ Actors have a finite professional life span.

◦ Scientists have a finite professional life span.

The probability that a new node connects to node 𝑖 is:

◦ ∏ 𝑘𝑖 , 𝑡 − 𝑡𝑖 ~𝑘 𝑡 − 𝑡𝑖
−𝜈

◦ 𝑡𝑖 is the time node 𝑖 was added to the network

◦ 𝑡 is the actual time

◦ 𝜈 is a tuneable parameter 
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Aging
𝜈 influences the network:

◦ Negative 𝜈 (𝜈 < 0)

◦ enhances the role of the preferential attachment

◦ In the extreme case, 𝜈 → −∞ each new node connects to the oldest node, resulting in a hub and
spoke topology.

◦ Positive 𝜈

◦ In the extreme case, 𝜈 → ∞ each node will 
connect to its immediate predecessor.

◦ 𝜈 > 1

◦ In this case, aging effect overcomes the role 
of preferential attachment.

◦ Network looses its scale-free nature.
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The Impact of Aging on Degree Exponent



Aging
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Network Analysis
08 – DEGREE CORRELATIONS

S l i d e s  w e r e  c r e a t e d  b y :  A g n e s Va t h y - F o g a r a s s y
Network Science book (online)

Barabási, Albert-László. Network Science.
Cambridge University Press, 2016.

http://barabasi.com/networksciencebook/


Introduction
What is the common between the following celeb-pairs:
◦ Angelina Jolie and Brad Pitt

◦ Ben Affleck and Jennifer Garner

◦ Michael Douglas and Catherine Zeta-Jones

◦ Tom Cruise and Katie Holmes

They are married or were married.
◦ Who's Dated Who?

Why is it interesting?
◦ Number of eligible individuals: ~108

◦ List of celebrities: ~1000

◦ Probability they are married: ~10−5
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http://www.whosdatedwho.com/


Introduction
If we do not care about the dating habits of celebrities, what this phenomenon 
tells us about the structure of the social network?

◦ Political leaders and CEOs: They know an exceptionally large number of 
individuals and they are known by even more. They are hubs.

Interesting property of the social networks: 

◦ Hubs tend to have ties to other hubs.

◦ Is this true in other networks?
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Introduction
If we do not care about the dating habits of celebrities, what this phenomenon 
tells us about the structure of the social network?

◦ Political leaders and CEOs: They know an exceptionally large number of 
individuals and they are known by even more. They are hubs.

Interesting property of the social networks: 

◦ Hubs tend to have ties to other hubs.

◦ Is this true in other networks?

Counterexample: Protein-interaction network of yeast:
◦ 𝑁 = 1870, 𝐿 = 2277

◦ The two biggest hubs: 𝑘 = 56, 𝑘’ = 13

◦ Hubs link to many small-degree nodes.

◦ They generate hub-and-spoke patterns.
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Introduction
Let’s note the probability that the two hubs are connected to each other by:

◦ 𝑝𝑘,𝑘′ =
𝑘𝑘′

2𝐿

◦ In our case 𝑝56,13 = 0.16

◦ (𝑝1,2 = 0.0004)

The number of links to nodes with small degree is surprising:
◦ 𝑁1𝑝1,56 ≈ 12 nodes

◦ So, we except that the node has 12 neighbours with 𝑘 = 1.

◦ BUT: It has 46 neighbours with degree of one. 

Summary:
◦ In case of social networks: hubs connect to hubs.

◦ In protein network: hubs avoid linking to hubs.

◦ We measure this phenomenon with degree correlations.
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Assortativity and Disassortativity
The degree correlation matrix:

◦ 𝑒𝑖𝑗 - probability of the two ends of a randomly selected link has degrees 𝑖 and 𝑗

What is the probability, that one end of a randomly selected link has degree 𝑘:

◦ 𝑞𝑘 =
𝑘𝑝𝑘

𝑘

◦ Connection to 𝑒𝑖𝑗: σ𝑗 𝑒𝑖𝑗 = 𝑞𝑖
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Assortativity and Disassortativity
The degree correlation matrix:

◦ 𝑒𝑖𝑗 - probability of the two ends of a randomly selected link has degrees 𝑖 and 𝑗

What is the probability, that one end of a randomly selected link has degree 𝑘:

◦ 𝑞𝑘 =
𝑘𝑝𝑘

𝑘

◦ Connection to 𝑒𝑖𝑗: σ𝑗 𝑒𝑖𝑗 = 𝑞𝑖

Let see an example for the following network:
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Assortativity and Disassortativity
The degree correlation matrix:

◦ 𝑒𝑖𝑗 - probability of the two ends of a randomly selected link has degrees 𝑖 and 𝑗

What is the probability, that one end of a randomly selected link has degree 𝑘:

◦ 𝑞𝑘 =
𝑘𝑝𝑘

𝑘

◦ Connection to 𝑒𝑖𝑗: σ𝑗 𝑒𝑖𝑗 = 𝑞𝑖

Let see an example for the following network:

Three types of networks (based on degree correlation matrix):
◦ Neutral

◦ Assortative

◦ Disassortative
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Assortativity and Disassortativity
Neutral Network
◦ Connections are random

Colours: 
5 biggest hubs

nodes with high degree

nodes with small degree
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Assortativity and Disassortativity
Assortative Network
◦ Hubs connect to hubs

Colours: 
5 biggest hubs

nodes with high degree

nodes with small degree
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Assortativity and Disassortativity
Disassortative Network
◦ Hubs connect to nodes with small degree

Colours: 
5 biggest hubs

nodes with high degree

nodes with small degree
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Measuring Degree Correlations
Degree correlation function:

◦ 𝑘𝑛𝑛 𝑘𝑖 =
1

𝑘𝑖
σ𝑗=1
𝑁 𝐴𝑖𝑗𝑘𝑗

where 𝑘𝑛𝑛 𝑘𝑖 is the 𝑘𝑛𝑛 value of node 𝑖 (not of degree 𝑘𝑖).

For all nodes with degree 𝑘:
◦ 𝑘𝑛𝑛 𝑘 = σ𝑘′ 𝑘

′𝑃(𝑘′|𝑘)
𝑃(𝑘′|𝑘) means the conditional probability that following a link of a k-degree node we reach a 
degree-k' node.

𝑘𝑛𝑛 𝑘 can be predicted by:
◦ 𝑘𝑛𝑛 𝑘 = 𝑎𝑘𝜇, where 𝜇 is the correlation exponent:

◦ Assortative: 𝜇 > 0

◦ Neutral: 𝜇 = 0

◦ Disassortative: 𝜇 < 0
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Measuring Degree Correlations
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Measuring Degree Correlations
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Measuring Degree Correlations
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Degree Correlation Coefficient
Degree Correlation Coefficient:
◦ Enables to characterise the network with a single number

◦ 𝑟 = σ𝑗𝑘
𝑗𝑘 𝑒𝑗𝑘−𝑞𝑗𝑞𝑘

𝜎2

◦ 𝜎2 = σ𝑘 𝑘
2𝑞𝑘 − σ𝑘 𝑘𝑞𝑘

2

◦ −1 ≤ 𝑟 ≤ 1

The network is:
◦ disassortative, if r < 0

◦ neutral, if r = 0

◦ assortative, if r > 0

This coefficient is often called
as Pearson coefficient.
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Correlations in Directed Networks
In directed networks:

◦ 𝑘𝑛𝑛
𝛼,𝛽

(𝑘) is defined, where 𝛼 and 𝛽 refer to the 𝑖𝑛 and 𝑜𝑢𝑡 indices. 
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Xalvi-Brunet & Sokolov algorithm 
Generates networks with desired degree correlations.

Step 1: Choose at random two links. Label the four nodes of these two links with 
𝑎, 𝑏, 𝑐, and 𝑑 such that their degrees are ordered as: 𝑘𝑎 ≥ 𝑘𝑏 ≥ 𝑘𝑐 ≥ 𝑘𝑑.

Step 2: Break the selected links and rewire them to form new pairs.

Step 2A: To achieve an assortative network:
◦ Pairing the two highest degree nodes (𝑎 with b) and the two lowest degree nodes 

(c with d).

Step 2B: To achieve disassortative network:
◦ Pairing the highest and the lowest degree nodes (𝑎 with d and b with c).
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Xalvi-Brunet & Sokolov algorithm 
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The Impact of Degree Correlations
Giant component:

◦ Assortative network:

◦ Phase transition point is smaller ( 𝑘 < 1)

◦ Neutral network:

◦ Erdős-Rényi network, 𝑘 = 1

◦ Disassortative network:

◦ The phase transition point is delayed ( 𝑘 > 1)

Why is it important? The giant component
influences:
◦ Spread of disease

◦ Robustness of the network
◦ Assortative networks are more robust

◦ Disassortative networks are less robust
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Network Analysis
09 – NETWORK ROBUSTNESS

S l i d e s  w e r e  c r e a t e d  b y :  D a n i e l  L e i t o l d
Network Science book (online)

Barabási, Albert-László. Network Science.
Cambridge University Press, 2016.

http://barabasi.com/networksciencebook/


Introduction
Errors and failures can corrupt all human designs:
◦ Failure of a component in your car’s engine may 

force you to call for a tow truck.

◦ Wiring error in your computer chip can make 
your computer useless.

In natural and social systems:
◦ While there are countless protein misfolding errors 

and missed reactions in our cells, we rarely notice 
their consequences.

◦ Large organizations can function despite numerous 
absent employees.
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“Robust” comes from the latin Quercus Robur, meaning oak, 
the symbol of strength and longevity in the ancient world. 



Percolation Theory

195

Percolation theory is a highly developed subfield of statistical physics and 
mathematics.

A typical problem addressed by the illustration:
◦ showing a square lattice

◦ we place pebbles with probability 𝑝 at 
each intersection

◦ neighbouring pebbles are considered 
connected, forming clusters 

Questions:
◦ What is the expected size of the largest 

cluster?

◦ What is the average cluster size?



Percolation Theory
A key prediction of percolation theory is that the cluster size does not change 
gradually with 𝑝.

◦ For a wide range of p the lattice is populated with numerous tiny clusters.

◦ If 𝑝 approaches a critical value 𝑝𝑐, these small clusters grow and coalesce, leading to 
a large cluster.
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Percolation Theory
A key prediction of percolation theory is that the cluster size does not change 
gradually with 𝑝.

◦ For a wide range of p the lattice is populated with numerous tiny clusters.

◦ If 𝑝 approaches a critical value 𝑝𝑐, these small clusters grow and coalesce, leading to 
a large cluster.

Three main quantities:

◦ 𝑆 : average size of all finite clusters.

◦ 𝑃∞: order parameter, probability that a randomly 
chosen pebble belongs to the largest cluster.

◦ 𝜉: mean distance between two pebbles that 
belong to the same cluster.
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Percolation Theory
A key prediction of percolation theory is that the cluster size does not change 
gradually with 𝑝.

◦ For a wide range of p the lattice is populated with numerous tiny clusters.

◦ If 𝑝 approaches a critical value 𝑝𝑐, these small clusters grow and coalesce, leading to 
a large cluster.

Three main quantities:

◦ 𝑆 : average size of all finite clusters.

◦ 𝑃∞: order parameter, probability that a randomly 
chosen pebble belongs to the largest cluster.

◦ 𝜉: mean distance between two pebbles that 
belong to the same cluster.
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Inverse Percolation Transition and Robustness

Let us view a square lattice as a network whose nodes are the intersections.

Then, remove a fraction 𝑓 of nodes randomly
◦ If 𝑓 is small, the damage is little.

◦ Increasing 𝑓 can isolate chunks of nodes.

◦ For large 𝑓 the giant component breaks into tiny disconnected components.

This fragmentation process is not gradual
◦ It is characterized by a critical threshold 𝑓𝑐

Summary
◦ Breakdown of a random network under 

random  node removal is not a gradual 
process.

199



Robustness of Scale-free Networks
Percolation theory focuses mainly on regular lattices.

But:

◦ Internet refuses to break apart even in case of 
dramatic number of node failures. 

◦ For a scale-free network with degree exponent 
𝛾 = 2.5, identical pattern can be observed.

In case of random node removal the giant component 
fails to collapse at some finite 𝑓𝑐
◦ Giant component vanishes if 𝑓 is close to 1.

◦ Video
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Molloy-Reed Criterion
We need to determine 𝑓𝑐 to the scale free network.

We need to determine if there is a giant component in the network.

Molloy-Reed criterion
◦ There is a giant component in the network if

◦ 𝜅 =
𝑘2

𝑘
> 2

◦ If 𝜅 < 2, then there is no giant component in 
the network.

Critical threshold:

◦ 𝑓𝑐 = 1 −
1

𝑘2

𝑘
−1

◦ In a scale-free network, 𝑘 depends on 𝛾 (𝑝𝑘 = 𝑘−𝛾)
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Robustness of Finite Networks
Scale-free networks are more robust than random networks

◦ 𝑓𝑐 > 𝑓𝑐
𝐸𝑅

In case of Internet

◦ 𝑓𝑐 = 0.972

◦ 𝑁 = 192 244

◦ 97% → 186 861 routers should 
fail simultaneously.

The enhanced robustness is valid for

◦ Nodes

◦ Links
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Attack Tolerance
Hubs play important role in holding the network together. 

◦ What if we remove the hubs? 

◦ The likelihood that nodes would break in this descending order by degree under 
normal conditions is essentially zero. 

An attack

◦ Assumes a detailed knowledge of the network 
topology

◦ An ability to target the hubs

◦ And a desire to deliberately cripple the network 

Video
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Critical Threshold Under Attack
An attack on a scale-free network has two consequences:
◦ The critical threshold 𝑓𝑐 is smaller than 𝑓𝑐 = 1, indicating that under attacks a scale-

free network can be fragmented by the removal of a finite fraction of its hubs.

◦ The observed 𝑓𝑐 is remarkably low, indicating that we need to remove only a tiny 
fraction of the hubs to cripple the network.

The results of the removed hubs:
◦ It changes the maximum degree of the network from 𝑘𝑚𝑎𝑥to 𝑘max

′ as all nodes with 
degree larger than 𝑘max

′ have been removed.

◦ The degree distribution of the network changes from 𝑝𝑘 to 𝑝𝑘′
′ , as nodes connected 

to the removed hubs will loose links, altering the degrees of the remaining nodes.

By combining these two changes we can map the attack problem into the 
robustness problem discussed in the previous section.
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Attacks and Failures in Random and Scale-free Networks 
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Possible configurations of communication networks

Envisioned by Paul Baran in 1959. (Paul Baran was assigned to develop a communication system 
that can survive a Soviet nuclear attack.)
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Cascading Failures
So far we have assumed that each node failure is a random event, hence the 
nodes of a network fail independently from each other. 

In reality, in a network the activity of each node depends on the activity of its 
neighbouring nodes. 

Real examples:
◦ Blackouts (Power Grid)

◦ Denial of Service Attacks (Internet)

◦ Financial Crises

◦ Flight delays 
◦ Have an economic impact of over 

$40 billion per year 

◦ congested airports 

◦ normal traffic 
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Three phase of cascading networks
Based on average degree, three phases can be determined. (Section 8.6)
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Building Robustness
Can we maximize the robustness of a network to both random failures and 
targeted attacks without changing the cost?

Cost to build and maintain a network is:
◦ Proportional to average degree 〈𝑘〉

In order to enhance network robustness:
◦ We must increase 𝑓𝑐
◦ But 𝑓𝑐 depends on 𝑘 and 𝑘2

◦ Thus, we need to maximize 𝑘2 , if we wish to keep the cost 𝑘 fixed.

To maximize 𝑘2

◦ Two type of nodes:
◦ With 𝑘𝑚𝑖𝑛

◦ With 𝑘𝑚𝑎𝑥 (𝑘max = 𝐴𝑁
2

3, 𝐴 =
2 𝑘 2 𝑘 −1 2

1
3

2 𝑘 −1
)

Optimal solution: one node with 𝑘𝑚𝑎𝑥, others with 𝑘𝑚𝑖𝑛 (if kmin > 1)
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Real networks robustness
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Network Analysis
10 – COMMUNITIES

S l i d e s  w e r e  c r e a t e d  b y :  A g n e s Va t h y - F o g a r a s s y
Network Science book (online)

Barabási, Albert-László. Network Science.
Cambridge University Press, 2016.

http://barabasi.com/networksciencebook/


Introduction
Belgium is a bicultural society:
◦ 59% of its citizens are Flemish, speaking Dutch.

◦ 40% are Walloons who speak French.
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Introduction
Belgium is a bicultural society:
◦ 59% of its citizens are Flemish, speaking Dutch.

◦ 40% are Walloons who speak French.

Multiethnic countries break up all over the world.

How has this country fostered the peaceful 
coexistence of these two ethnic groups since 
1830? 
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How has this country fostered the peaceful 
coexistence of these two ethnic groups since 
1830? 

The community structure was identified by 
mobile call network.
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Introduction
Belgium is a bicultural society:
◦ 59% of its citizens are Flemish, speaking Dutch.

◦ 40% are Walloons who speak French.

Multiethnic countries break up all over the world.

How has this country fostered the peaceful 
coexistence of these two ethnic groups since 
1830? 

The community structure was identified by 
mobile call network.

Community: group of nodes that have a higher 
likelihood of connecting to each other than to 
nodes from other communities.
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Introduction
Two areas where communities play a particularly important role
◦ Social Network:

◦ Employees of a company
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Introduction
Two areas where communities play a particularly important role
◦ Social Network:

◦ Employees of a company

◦ Zachary’s Karate Club

◦ 34 members

◦ Who regularly interacted outside the club.

◦ Conflict between the club’s president and 
the instructor split the club into two.
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Introduction
Two areas where communities play a particularly important role:
◦ Social Network:

◦ Employees of a company

◦ Zachary’s Karate Club

◦ 34 member

◦ Who regularly interacted outside the club.

◦ Conflict between the club’s president and 
the instructor split the club into two.

◦ Biological Network:
◦ For a long time biology has been focusing on single genes.

◦ Disease module hypothesis:

◦ Each disease can be linked to a well-defined 
neighbourhood (or environment) of the cellular network.

H1: Fundamental Hypothesis
◦ A network’s community structure is uniquely encoded in its wiring diagram (𝐴𝑖𝑗).
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Basics of Communities
H2: Connectedness and Density Hypothesis
◦ A community is a locally densely connected subgraph in a network.

◦ Connected – each node reach all the others.

◦ Dense – a node connects to its community with higher probability.

Maximum Cliques
◦ Clique: complete subgraph

◦ Community is a group of nodes where all know each other. 
(First approach in 1994)

◦ Triangles are common, but bigger cliques are rare.

◦ With the strict requirement potential groups are excluded.
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Basics of Communities
Strong and Weak Communities
◦ Let 𝐶 be a connected subnetwork with 𝑁𝐶 node

◦ Let 𝑘𝑖
𝑖𝑛𝑡 be the number of links between node 𝑖 and nodes in 𝐶.

◦ Let 𝑘𝑖
𝑒𝑥𝑡 be the number of links between node 𝑖 and nodes not in 𝐶.

◦ If 𝑘𝑖
𝑒𝑥𝑡 = 0, then 𝐶 is a good community for node 𝑖.

◦ If 𝑘𝑖
𝑖𝑛𝑡 = 0, node 𝑖 should be assigned to a different community.
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Basics of Communities
Strong and Weak Communities
◦ Let 𝐶 be a connected subnetwork with 𝑁𝐶 node

◦ Let 𝑘𝑖
𝑖𝑛𝑡 be the number of links between node 𝑖 and nodes in 𝐶.

◦ Let 𝑘𝑖
𝑒𝑥𝑡 be the number of links between node 𝑖 and nodes not in 𝐶.

◦ If 𝑘𝑖
𝑒𝑥𝑡 = 0, then 𝐶 is a good community for node 𝑖.

◦ If 𝑘𝑖
𝑖𝑛𝑡 = 0, node 𝑖 should be assigned to a different community.

◦ Strong community:
◦ If the internal degree exceeds external degree in case of each node.

◦ 𝑘𝑖
𝑖𝑛𝑡 𝐶 > 𝑘𝑖

𝑒𝑥𝑡 𝐶 , ∀𝑖 ∈ 𝐶

◦ Weak community:
◦ If the total internal degree exceeds the total external degree.

◦ σ𝑖∈𝐶 𝑘𝑖
𝑖𝑛𝑡(𝐶) > σ𝑖∈𝐶 𝑘𝑖

𝑒𝑥𝑡(𝐶)
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Basics of Communities
Strong and Weak Communities
◦ Let 𝐶 be a connected subnetwork with 𝑁𝐶 node

◦ Let 𝑘𝑖
𝑖𝑛𝑡 be the number of links between node 𝑖 and nodes in 𝐶.

◦ Let 𝑘𝑖
𝑒𝑥𝑡 be the number of links between node 𝑖 and nodes not in 𝐶.

◦ If 𝑘𝑖
𝑒𝑥𝑡 = 0, then 𝐶 is a good community for node 𝑖.

◦ If 𝑘𝑖
𝑖𝑛𝑡 = 0, node 𝑖 should be assigned to a different community.

◦ Strong community
◦ If the internal degree exceeds external degree in case of each node.

◦ 𝑘𝑖
𝑖𝑛𝑡 𝐶 > 𝑘𝑖

𝑒𝑥𝑡 𝐶 , ∀𝑖 ∈ 𝐶

◦ Weak community
◦ If the total internal degree exceeds the total external degree.

◦ σ𝑖∈𝐶 𝑘𝑖
𝑖𝑛𝑡(𝐶) > σ𝑖∈𝐶 𝑘𝑖

𝑒𝑥𝑡(𝐶)

Clique
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Basics of Communities
Strong and Weak Communities
◦ Let 𝐶 be a connected subnetwork with 𝑁𝐶 node

◦ Let 𝑘𝑖
𝑖𝑛𝑡 be the number of links between node 𝑖 and nodes in 𝐶.

◦ Let 𝑘𝑖
𝑒𝑥𝑡 be the number of links between node 𝑖 and nodes not in 𝐶.

◦ If 𝑘𝑖
𝑒𝑥𝑡 = 0, then 𝐶 is a good community for node 𝑖.

◦ If 𝑘𝑖
𝑖𝑛𝑡 = 0, node 𝑖 should be assigned to a different community.

◦ Strong community
◦ If the internal degree exceeds external degree in case of each node.

◦ 𝑘𝑖
𝑖𝑛𝑡 𝐶 > 𝑘𝑖

𝑒𝑥𝑡 𝐶 , ∀𝑖 ∈ 𝐶

◦ Weak community
◦ If the total internal degree exceeds the total external degree.

◦ σ𝑖∈𝐶 𝑘𝑖
𝑖𝑛𝑡(𝐶) > σ𝑖∈𝐶 𝑘𝑖

𝑒𝑥𝑡(𝐶)

Clique ⊆ Strong community
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Basics of Communities
Strong and Weak Communities
◦ Let 𝐶 be a connected subnetwork with 𝑁𝐶 node

◦ Let 𝑘𝑖
𝑖𝑛𝑡 be the number of links between node 𝑖 and nodes in 𝐶.

◦ Let 𝑘𝑖
𝑒𝑥𝑡 be the number of links between node 𝑖 and nodes not in 𝐶.

◦ If 𝑘𝑖
𝑒𝑥𝑡 = 0, then 𝐶 is a good community for node 𝑖.

◦ If 𝑘𝑖
𝑖𝑛𝑡 = 0, node 𝑖 should be assigned to a different community.

◦ Strong community
◦ If the internal degree exceeds external degree in case of each node.

◦ 𝑘𝑖
𝑖𝑛𝑡 𝐶 > 𝑘𝑖

𝑒𝑥𝑡 𝐶 , ∀𝑖 ∈ 𝐶

◦ Weak community
◦ If the total internal degree exceeds the total external degree.

◦ σ𝑖∈𝐶 𝑘𝑖
𝑖𝑛𝑡(𝐶) > σ𝑖∈𝐶 𝑘𝑖

𝑒𝑥𝑡(𝐶)

Clique ⊆ Strong community ⊆ Weak community
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Basics of Communities
Number of communities:
◦ Simplest solution: graph bisection.

◦ Minimize the cut size.

◦ E.g. 1:

◦ 𝑁 = 10

◦ 𝑁1 = 𝑁2 = 5

◦ Check 252 bisection → suppose that it takes 
1 millisecond (10−3 second).

◦ E.g. 2:

◦ 𝑁 = 100

◦ 𝑁1 = 𝑁2 = 50

◦ ~ 1029 bisection → then it takes 1016 years 
on the same computer.

What if we do not know the size and 
number of the community?
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Hierarchical Clustering
Two different procedures
◦ Agglomerative algorithms

◦ Merge nodes into the same community.

◦ Ravasz algorithm

◦ Divisive algorithms
◦ Isolate communities by removing links.

◦ Girvan-Newman algorithm
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Hierarchical Clustering
Two different procedures
◦ Agglomerative algorithms

◦ Merge nodes into the same community.

◦ Ravasz algorithm

◦ Divisive algorithms
◦ Isolate communities by removing links.

◦ Girvan-Newman algorithm

Ravasz algorithm:
1. Assign each node to a community of its own and evaluate 𝑥𝑖𝑗 similarity for all node 

pairs. 𝑥𝑖𝑗 is calculated by neighbours, degrees and number of links (Section 9.3)

2. Find the community pair or the node pair with the highest similarity and merge 
them into a single community.

3. Calculate the similarity between the new community and all other communities.

4. Repeat Steps 2 and 3 until all nodes form a single community.
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Girvan-Newman algorithm
1. Compute the edge betweenness centrality 𝑥𝑖𝑗 of each link.

2. Remove one of the links with the largest centrality. 

3. Recalculate the centrality of each link for the altered network.

4. Repeat steps 2 and 3 until all links are removed.
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Hierarchical Clustering
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Hierarchical Clustering

233



Modularity
H3: Random Hypothesis
◦ Randomly wired networks lack an 

inherent community structure.
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Modularity
H3: Random Hypothesis
◦ Randomly wired networks lack an 

inherent community structure.

Modularity
◦ Allows us to decide if a community 

partition is better than some other ones.

◦ 𝑀 = σ𝑐=1
𝑛𝑐 𝐿𝑐

𝐿
−

𝑘𝑐

2𝐿

2

◦ 𝑛𝑐: number of communities

◦ 𝐿𝑐: number of links in community 𝐶𝑐
◦ 𝑘𝑐: sum of degrees of nodes in community 𝐶𝑐
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Modularity
H3: Random Hypothesis
◦ Randomly wired networks lack an 

inherent community structure.

Modularity
◦ Allows us to decide if a community 

partition is better than some other ones.

◦ 𝑀 = σ𝑐=1
𝑛𝑐 𝐿𝑐

𝐿
−

𝑘𝑐

2𝐿

2

◦ 𝑛𝑐: number of communities

◦ 𝐿𝑐: number of links in community 𝐶𝑐
◦ 𝑘𝑐: sum of degrees of nodes in community 𝐶𝑐

◦ Higher modularity implies better partition.

◦ If the whole network  is a single community, then 𝑀 = 0

◦ If each node form a separate community, then 𝑀 is negative
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Modularity
H3: Random Hypothesis
◦ Randomly wired networks lack an 

inherent community structure.

Modularity
◦ Allows us to decide if a community 
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◦ If the whole network  is a single community, then 𝑀 = 0

◦ If each node form a separate community, then 𝑀 is negative
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The Greedy Algorithm
H4: Maximal Modularity Hypothesis
◦ For a given network the partition with maximum modularity corresponds to the 

optimal community structure.
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The Greedy Algorithm
H4: Maximal Modularity Hypothesis
◦ For a given network the partition with maximum modularity corresponds to the 

optimal community structure.

Greedy Algorithm to produce maximal 𝑀
1. Assign each node to a community, starting with 𝑁 communities of single nodes.

2. Inspect each community pair connected by at least one link and compute the 
modularity difference Δ𝑀 obtained if we merge them. Identify the community pair 
for which Δ𝑀 is the largest and merge them. Note that modularity is always 
calculated for the full network.

3. Repeat Step 2 until all nodes merge into a single community, recording 𝑀 for each 
step.

4. Select the partition for which 𝑀 is maximal.
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The Greedy Algorithm
H4: Maximal Modularity Hypothesis
◦ For a given network the partition with maximum modularity corresponds to the 

optimal community structure.

Greedy Algorithm to produce maximal 𝑀
1. Assign each node to a community, starting with 𝑁 communities of single nodes.

2. Inspect each community pair connected by at least one link and compute the 
modularity difference Δ𝑀 obtained if we merge them. Identify the community pair 
for which Δ𝑀 is the largest and merge them. Note that modularity is always 
calculated for the full network.

3. Repeat Step 2 until all nodes merge into a single community, recording 𝑀 for each 
step.

4. Select the partition for which 𝑀 is maximal.

Disadvantage: increase of 𝑀 results in merged small communities (𝑘 < 2𝐿)
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The Greedy Algorithm
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Overlapping Communities
Real example:
◦ A teacher holds two courses, and knows most of the students.

◦ The students from the two courses do not know each other.

◦ How are the communities evolved in this case?

Until now, we have strictly distinguished the communities.

Two algorithms that enable overlapping communities:
◦ Clique Percolation

◦ Link Clustering
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Clique Percolation
Often called Cfinder

Two 𝑘-cliques are considered 
adjacent if they share 𝑘 – 1
nodes.

A 𝑘-clique community is the 
largest connected subgraph 
obtained by the union of all 
adjacent 𝑘-cliques.

If two 𝑘-cliques are not 
adjacent with each other, then 
they are belong to different 
communities.
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Link Clustering
Links can provide the communities.

Step 1: Define Link Similarity

◦ 𝑆 𝑖, 𝑘 , 𝑗, 𝑘 =
𝑛+ 𝑖 ∩ 𝑛+ 𝑗

𝑛+ 𝑖 ∪ 𝑛+ 𝑗

◦ 𝑛+(𝑖): set of neighbours of node 𝑖 including node 𝑖 itself
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Link Clustering
Links can provide the communities.

Step 1: Define Link Similarity

◦ 𝑆 𝑖, 𝑘 , 𝑗, 𝑘 =
𝑛+ 𝑖 ∩ 𝑛+ 𝑗

𝑛+ 𝑖 ∪ 𝑛+ 𝑗

◦ 𝑛+(𝑖): set of neighbours of node 𝑖 including node 𝑖 itself

Step 2: Apply Hierarchical Clustering
◦ Iteratively merging communities with the largest 

similarity link pairs.

245



Community Evolution
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Summary
Do we really have communities?
◦ How do we know that there are indeed 

communities in a particular network?

Hypotheses or theorems?

Do all the nodes need to belong to communities?

Dense vs. sparse communities.

Do communities matter?
◦ Image: neighbourhood of the

mobile call network.
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Network Analysis
11 – SPREADING PHENOMENA

S l i d e s  w e r e  c r e a t e d  b y :  D a n i e l  L e i t o l d
Network Science book (online)

Barabási, Albert-László. Network Science.
Cambridge University Press, 2016.

http://barabasi.com/networksciencebook/


Introduction
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In February 21, 2003, a physician from Guangdong Province in southern China checked in  
the Metropole Hotel in Hong Kong.

He previously treated people with a diagnosis: atypical pneumonia.

Next day, after leaving the hotel, he went to the local hospital,  
this time as a patient. He died there several days later of  
atypical pneumonia.

That night sixteen other guests of the Metropole Hotel  
and one visitor also contracted the disease:
Severe Acute Respiratory Syndrome, or SARS.

These guests carried the SARS virus with them to Hanoi,
Singapore, and Toronto

Epidemiologists later traced close to half of the  
8,100 documented cases of SARS back to the  
Metropole Hotel.



Introduction

In this chapter: spreading processes

◦ Biological
◦ Airborne diseases: Influenza, SARS,  

tuberculosis

◦ Contagious diseases and parasites: Ebola,
HIV, malaria

◦ Cancer-causing viruses: HPV, EBV

◦ Digital
◦ Computer viruses

◦ Mobile viruses

◦ Worms

◦ Social
◦ Innovations

◦ Knowledge

◦ Business practices

◦ Products

◦ Behaviour

◦ Rumours

◦ Memes
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Biological

The Great Plague

SARSHIV

1918 Spanish flu
H1N1 flu
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Digital
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Social
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Epidemic spreading – Why does it matter now?
High population density

High mobility

perfect conditions for epidemic spreading
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Epidemic Modelling
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Epidemiology relies on two fundamental hypotheses:

Epidemic models classify each individual based on the stage of the disease
affecting them.
◦ Susceptible (S): Healthy individuals who have not yet contacted the pathogen.

◦ Infectious (I): Contagious individuals who have contacted the pathogen and hence
can infect others.

◦ Recovered (R): Individuals who have been infected before, but have recovered from  
the disease, hence are not infectious.

Homogenous Mixing
◦ Each individual has the same  

chance of coming into contact  
with an infected individual.



Classical Epidemic Models – Basic States
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SImodel
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SI model
𝑁 entity

𝑆(𝑡) – number of healthy entity at time 𝑡

𝐼(𝑡) – number of infected entity at time 𝑡

𝛽 – likelihood that the disease will be transmitted from  
an infected to a susceptible individual in a unit time

𝑆(0 = 𝑁 − 1

𝐼 0 = 1

Dynamics:

𝑑𝐼 𝑡

𝑑𝑡
= 𝛽 𝑘

𝑆 𝑡 𝐼 𝑡

𝑁

E.g.: Toxoplasmosis
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SIS model
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SIS model

Difference to SI model

◦ 𝜇 – recovery rate

In SI model, each entity gets infected  

In case of SIS model:

◦ 𝜇 – recovery rate: 𝐼 ∞ = 1 −
𝜇

𝛽 𝑘

In the SIS model the epidemic has two possible outcomes:

◦ Endemic State (In Hungarian: népbetegség)

◦ 𝜇 < 𝛽〈𝑘〉

◦ Disease-free State

◦ 𝜇 > 𝛽〈𝑘〉

Dynamics:  
𝑑𝑖

𝑑𝑡
= 𝛽 𝑘 𝑖 1 − 𝑖 − 𝜇𝑖

E.g.: Common cold
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𝑅0 basic reproductive number
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𝑅0 =
𝛽 𝑘

𝜇

𝑅0: number of susceptible that will be infected by an 
infected individual while he/she is infected

The reproductive number predicts the  long-term 
fate of an epidemic
◦ 𝑅0 > 1 the epidemic is in the endemic state

◦ 𝑅0 < 1 the epidemic dies out



SIR model
In the SIR model recovered individuals  
enter a recovered state.

E.g.

◦ Flu

◦ SARS

◦ Plague

The reproductive number predicts the  long-

term fate of an epidemic:

◦ 𝑅0 < 1 the pathogen persists in the population
◦ 𝑅0 > 1 the pathogen dies out naturally

Dynamics: No closed solution
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SI – SIS – SIR model comparison

263



THANK YOU FOR YOUR

KIND ATTENTION!

EFOP-3.4.3-16-2016-00009

A felsőfokú oktatás minőségének és hozzáférhetőségének 

együttes javítása a Pannon Egyetemen


